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Abstract. Geostatistical optimal design optimizes subsurface exploration9

for maximum information towards task-specific prediction goals. Until re-10

cently, most geostatistical design studies have assumed that the geostatis-11

tical description (i.e., the mean, trends, covariance models and their param-12

eters) is given a priori. This contradicts, as emphasized in Rubin and Dagan13

[1987b], the fact that only few or even no data at all offer support for such14

assumptions prior to the bulk of exploration effort. We believe that geosta-15

tistical design should (1) avoid unjustified a priori assumptions on the geo-16

statistical description, (2) instead reduce geostatistical model uncertainty as17

secondary design objective, (3) rate this secondary objective optimal for the18

overall prediction goal and (4) be robust even under inaccurate geostatisti-19

cal assumptions. Bayesian Geostatistical Design [Diggle and Lophaven, 2006]20

follows these guidelines by considering uncertain covariance model param-21

eters. We transfer this concept from kriging-like applications to geostatis-22

tical inverse problems. We also deem it inappropriate to consider paramet-23

ric uncertainty only within a single covariance model. The Matérn family of24

covariance functions has an additional shape parameter. Controlling model25

shape by a parameter converts covariance model selection to parameter iden-26

tification and resembles Bayesian model averaging over a continuous spec-27

trum of covariance models. This is appealing since it generalizes Bayesian28

model averaging from a finite number to an infinite number of models. We29

illustrate how our approach fulfills the above four guidelines in a series of syn-30

thetic test cases. The underlying scenarios are to minimize the prediction vari-31
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ance of (1) contaminant concentration or (2) arrival time at an ecologically32

sensitive location by optimal placement of hydraulic head and log-conductivity33

measurements. Results highlight how both the impact of geostatistical model34

uncertainty and the sampling network design vary according to the choice35

of objective function.36
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1. Introduction

Scarcity of data and subsurface variability lead to the understanding of hydraulic con-37

ductivity as a random space function [e.g., Journel and Huijbregts, 1978; de Marsily , 1986;38

Kitanidis, 1997; Rubin, 2003]. This acknowledges the uncertainty in flow and transport39

models stemming from unresolved heterogeneity of aquifer parameters. Adopting the40

model-based geostatistical approach [e.g., Diggle and Ribeiro, 2007], the random space41

function is defined by the global mean value, trend coefficients, and parameters in for42

covariance models often called structural parameters.43

Incorporating hydrogeological measurements (e.g., conductivity, flow and tracer data)44

helps to reduce the involved uncertainties. Two types of information are required: (1)45

hydrogeological measurements and (2) the underlying geostatistical model to interpolate46

between unsampled positions. Given limited financial resources, this information need has47

to be satisfied in an efficient manner via geostatistical optimal design (see Massmann and48

Freeze [1987]; Freeze et al. [1990]; James and Gorelick [1994]; Herrera and Pinder [2005]49

for applications in groundwater hydrology). Optimal design finds sampling schemes that50

maximize the expected gain of information, measured in various ways. The importance51

of setting task-oriented objectives, for example risk-driven approaches, is outlined by52

Maxwell et al. [1999]; de Barros and Rubin [2008]; de Barros et al. [2009].53

Most of these studies presume prefect prior knowledge on the structural parameters. In54

realistic scenarios, however, such strong a priori assumptions are hard to justify. Struc-55

tural parameters tend to be poorly identifiable, especially from data sets limited in size56

and accuracy. Pardo-Iguzquiza [1999] illustrated the inadequacy of point estimates for57
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structural parameters in synthetic case studies. The principle of Bayesian geostatistics58

[Kitanidis, 1986; Feinerman et al., 1986] acknowledges this fact and, instead, treats struc-59

tural parameters as yet another set of random variables. Uncertain structural parameters60

(“structural uncertainty”) increase the uncertainty of model predictions (such as contami-61

nant levels or fluxes) because they have a substantial influence on macroscopic flow, plume62

dilution and dispersion [e.g., Rubin, 2003], and covariance shape has a high impact on63

prediction uncertainty [Riva and Willmann, 2009]. Conditional simulation and geosta-64

tistical inverse modeling with structural uncertainty are provided by Rubin and Dagan65

[1987b, 1992a]; Woodbury and Ulrych [2000]; Pardo-Iguzquiza and Chica-Olmo [2008]. We66

believe that geostatistical optimal design should fulfill the following four guidelines:67

1. The objective of optimal design is to minimize uncertainty predictions. Structural68

uncertainty contributes to the overall prediction uncertainty, and hence must be assessed69

and accounted for.70

2. The potential of the planned data collection to reduce structural uncertainty must71

be considered in finding the optimal design.72

3. Estimating structural parameters should be “treated as a means to the primary end73

of spatial [or hydrogeological] prediction, rather than as an end in itself ” [Diggle and74

Lophaven, 2006]. This asks for an optimal resource allocation between collecting spatial75

and structural information.76

4. Optimal design patterns are sensitive to structural parameter values and should be77

made robust towards structural parameters [e.g., Christakos, 1992, p. 438].78

Our main concern is that structural uncertainty has to be accounted for in geostatistical79

optimal design. Although structural uncertainty is all the more relevant when setting80
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out to plan site investigation prior to data collection, it has hardly been recognized in81

geostatistical optimal design studies. Only few optimal design studies in hydrogeology82

[e.g., Criminisi et al., 1997] analyzed the issue of robustness. Müller [2007, chapter 3]83

included only uncertain trend parameters (no uncertain covariance) into geostatistical84

design.85

Most geostatistical design studies serve either the collection of spatial information or the86

identification of structural parameters. The former requires coverage of certain areas of87

the domain with samples, while the latter requires sampling certain lag distances. These88

seemingly contradictory objectives have sometimes been combined in multi-objective op-89

timization [e.g., Müller , 2007, pp. 173].90

Diggle and Lophaven [2006] introduced the concept of Bayesian Geostatistical Design,91

which accommodates for uncertainty in covariance parameters within the design procedure92

in a most natural manner. They featured the averaged kriging variance as objective93

function and limited their study to direct measurements of the estimated quantity. The94

more recent work by Marchant and Lark [2007b] introduced a first-order approximation95

for the influence of structural parameters on the kriging variance. Similar approximations96

[e.g., Zimmerman, 2006], are summarized by Müller [2007, pp. 178].97

Our study may claim, to the best knowledge of the authors, to be the transfer and98

first-time application of Bayesian Geostatistical Design to geostatistical inverse problems.99

In Section 2, we extend the Bayesian Geostatistical Design framework to measurements100

of dependent state variables (such as hydraulic heads) and the prediction uncertainty of101

yet other state variables (such as future solute concentrations).102
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Moreover, we wish to become more independent of arbitrarily chosen model shapes of103

covariance functions in geostatistical optimal design. Neuman [2003] stressed that the104

choice of geostatistical models will always be uncertain, and could be accounted for by105

Bayesian Model Averaging [Hoeting et al., 1999]. In our work, we opt for the Matérn106

family of covariance functions [Matérn, 1986] because it has an additional shape param-107

eter. Feyen et al. [2003] mentioned briefly that this shape parameter could be used to108

represent uncertainty in the shape of covariances. Following their rationale, we utilize109

the parametric control on the Matérn covariance shape to transform the model selection110

problem to a stochastic parameter inference problem. This approach resembles Bayesian111

Model Averaging over a continuous spectrum of models. Details and the relation to recent112

literature are provided in Section 3.113

We illustrate the resulting optimal design framework in a synthetic case study. Technical114

details of an exemplary implementation are provided in Section 4. In Sections 5 and 6,115

we optimize sampling strategies (conductivity and head data) for predicting (1) future116

contaminant levels and (2) arrival times at an ecologically sensitive location. On that basis,117

we demonstrate and discuss the fulfillment of our four suggested guidelines. It is important118

to stress that neither is Bayesian Optimal Design limited to our implementational choice119

nor is it restricted to our exemplary choice of unknown parameters, data types and the120

assumption of multi-Gaussianity taken in our test case.121

2. Bayesian Geostatistical Design

2.1. Model-Based Bayesian Geostatistics

Consider s a ns ×1 random space vector s = Xβ +εs (e.g., log-conductivity discretized122

on a numerical grid), with a trend model E [s] = Xβ plus zero-mean fluctuations εs.123
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X is a ns × p matrix containing p deterministic trend functions with p corresponding124

trend coefficients β. θ are structural parameters in the distribution of εs (e.g., such as125

scale and variance parameters of a covariance function, so that εs has a covariance matrix126

C = C (θ)).127

Conventional model-based geostatistics [Diggle and Ribeiro, 2002] consider known struc-128

tural parameters, and the distribution of s is p (s|β, θ). Bayesian geostatistics reflect the129

uncertainty of structural parameters by their joint distribution p (β, θ). This is in contrast130

to classical variogram analysis [e.g., Matheron, 1971] and maximum likelihood estimation131

methods [e.g., Schweppe, 1973; Kitanidis, 1995]. The Bayesian distribution (marked by a132

tilde) is obtained by marginalization [e.g., Kitanidis, 1986]:133

p̃ (s) =

∫

β

∫

θ

p (s|β, θ) p (β, θ) dθ dβ . (1)

Now consider the ny × 1 vector y of measurements at locations xm according to y =134

fy (s)+εr. Here, fy (s) is a process model (e.g., the groundwater flow equation) that relates135

observable variables (e.g., hydraulic heads) to s. εr is a vector of random measurement136

errors with known distribution p (εr). According to Bayes theorem, the distribution of s137

conditional on a given measurement vector yo is:138

p (s|β, θ,yo) ∝ p (yo|s) p (s|β, θ) . (2)

Again, the Bayesian distribution is obtained by marginalization:139

p̃ (s|yo) =

∫

β

∫

θ

p (s|β, θ,yo) p (β, θ|yo) dθ dβ . (3)

Note that the entire distribution p (s, β, θ) has been jointly conditioned on yo (see Ki-140

tanidis [1986]; Pardo-Iguzquiza [1999]; Woodbury and Ulrych [2000]; Diggle and Ribeiro141

[2002]).142
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The final purpose is the prediction of yet a different variable c (e.g., concentration),143

related to s via c = fc (s) (e.g., the transport equation):144

p̃ (c|yo) ∝
∫

β

∫

θ

∫

s

p (c|s) p (s|β, θ,yo) p (β, θ|yo) ds dθ dβ (4)

with Bayesian mean c̃ and increased variance σ̃2
c|y145

c̃ (yo) = Eβ,θ|yo
[Es [fc (s) |yo, β, θ]] (5)

σ̃2
c|y (yo) = Eβ,θ|yo

[Vs [fc (s) |yo, β, θ]]

+Vβ,θ|yo
[Es [fc (s) |yo, β, θ]] , (6)

where Ea [·] is the expected value operator over the distribution of a random variable a,146

and Va [·] is the respective variance.147

2.2. Optimal Design

Optimal design theory originated from the context of linear and non-linear regression148

Silvey [e.g., 1980]; Box [e.g., 1982]; Federov and Hackl [e.g., 1997]; Pukelsheim [e.g., 2006].149

Application to geostatistics is explained by Uciński [2005]; Müller [2007]; Nowak [2009a].150

A design is a set of decision variables d that specify the number, location and types151

of measurements to be collected in the data vector y. The objective is to minimize152

the uncertainty inherent in the predictive distributions p (s|yo) or p (c|yo), before even153

knowing the actual data values yo. To this end, a task-specific measure of prediction154

uncertainty φ (d, p) is defined [e.g., Müller , 2007; Nowak , 2009a] and minimized. For155

Bayesian Geostatistical Design [Diggle and Lophaven, 2006], these distributions are simply156

replaced by their Bayesian counterparts p̃ (s|yo) or p̃ (c|yo) (Eqs. 3 and 4):157

φ (d, p̃) = Ey [φ (y (d) , p̃)] =

∫
φ (y (d) , p̃) p̃ (y) dy . (7)
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Eq. (7) implicitly includes averaging over all possible values of the structural parameters,

because:

p̃ (y) =

∫

β

∫

θ

p (y|θ, β) p (θ, β) dθ dβ . (8)

In our illustrative test case (but not as a limitation of the general framework), we will158

choose to minimize the expected Bayesian prediction variance of c:159

Ey

[
σ̃2

c|y

]
= Ey

{
Eβ,θ|y

[
Vs|y(d),β,θ [fc (s)]

]}

+Ey

{
Vβ,θ|y

[
Es|y(d),β,θ [fc (s)]

]}
. (9)

It is important to highlight the two individual contributions to overall prediction uncer-160

tainty in the right-hand-side of Eq. (9): The first term resembles the prediction variance161

of concentration, averaged over all possible values of potential data and structural pa-162

rameters. The second term reflects how the estimate of concentration varies due to the163

uncertainty of structural parameters. These two terms result directly from Bayesian prin-164

ciples and weight the objectives of interpolation and structural identification in a natural165

manner. Note that this form of the minimum variance design criterion complies with all166

four of our guidelines stated in the introduction. More details on the fulfillment of our167

four guidelines are provided in Sections 6 and 7.168

The second term vanishes only at the theoretical (and mostly unrealistic) limit of known169

structural parameters. For that case, Eq. (9) degenerates to the C-criterion for geosta-170

tistical optimal design [e.g., Müller , 2007; Nowak , 2009a] with exemplary applications by171

Cirpka et al. [2004] and Herrera and Pinder [2005].172
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3. Continuous Bayesian Model Averaging and the Matérn Family of

Covariance Functions

Bayesian model averaging [Hoeting et al., 1999] considers several model alternatives173

and assigns prior probabilities to each of them, reflecting their respective credibility level.174

The modeling task is performed with all model alternatives, and posterior credibilities are175

assigned after comparison with available data. The final result is the ensemble of model176

outcomes, each one weighted by its posterior credibility. The overwhelming advantage177

is the increased robustness towards errors in individual conceptual models or in model178

selection.179

This principle can be applied to geostatistical model selection [e.g., Neuman, 2003].180

One could pick an arbitrary choice from the entire list of traditional parametric covariance181

models, and then proceed with Bayesian Model Averaging. We believe, however, that the182

choice of model alternatives should not be restricted by traditional adherence to a small183

set of mathematically preferred covariance models.184

Instead, we recommend a more elegant approach based on the Matérn family of co-185

variance functions [Matérn, 1986]. The works of Handcock and Stein [1993]; Diggle and186

Ribeiro [2002]; Marchant and Lark [2007a] suggest to use the flexibility of the Matérn fam-187

ily in order to include uncertainty in covariance shape and smoothness into geostatistical188

inversion The Matérn function is given by:189

C (ℓ) =
σ2

Y

2κ−1Γ (κ)

(
2
√

κℓ
)κ

Bκ

(
2
√

κℓ
)

ℓ =

√(
∆x1

λ1

)2

+

(
∆x2

λ2

)2

. . . , (10)

where σ2
Y is the variance of log-conductivity, ℓ is the anisotropic effective separation dis-190

tance, and κ ≥ 0 is an additional shape parameter. Γ (·) is the Gamma function, and191
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Bk (·) is the modified Bessel function of the third kind (Bessel’s k) of order κ [Abramowitz192

and Stegun, 1972, section 10.2]. ℓ has λi as scale parameters for each spatial dimension.193

In the form provided here, ℓ is scaled by a factor 2
√

κ to make the integral scale roughly194

independent of κ [e.g., Handcock and Stein, 1993]. For the specific values of κ = 0.5, 1, ∞,195

the Matérn family simplifies to the exponential, Whittle and Gaussian covariance models,196

respectively (Figure 1). The combination of κ = 1 and λ → ∞ approximates a power-197

law covariance [Minasny and McBratney , 2005], and arbitrary constructions with other198

models are allowed. More details on properties and specific additional advantages of the199

Matérn family are provided by Stein [1999].200

The novelty of this approach is the following: If one treats κ as a discrete random201

variable to resemble model selection, one arrives back at the principle of Bayesian Model202

Averaging. However, we suggest to keep κ a continuous parameter on the positive real203

line, introducing a continuous spectrum of model alternatives. We then simply include κ204

in the vector θ and treat it no different than the other uncertain structural parameters.205

This way, we convert the problem of model selection to a problem of stochastic parameter206

inference, embedded in the Bayesian approach, with a long list of available methods to207

draw from. We refer to this approach as Continuous Bayesian Model Averaging.208

4. Implementational Choices for the Illustrative Test Case

In the present section, we provide a computationally efficient first-order approximation209

of structural uncertainty applied to a multi-Gaussian geological description. First-order210

approaches are computationally very efficient and useful (within their range of valid-211

ity). Examples are adjoint-state sensitivities [Cirpka et al., 2004] in conjunction with212

FFT-based error propagation [Nowak et al., 2003] or the static Ensemble Kalman Filter213
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in Herrera and Pinder [2005]. We are aware of the limitations present in the multi-214

Gaussianity assumption. However, avoiding it would prohibit any linear approximation215

and would cause a substantial increase in computational costs. Note that Bayesian Geo-216

statistical Design is not restricted to any of the choices and approximations taken in the217

following.218

4.1. Multi-Gaussian First-Order Second-Moment Approximation

We model log-conductivity as a multi-Gaussian vector s of discrete cell-wise values with219

s|β, θ ∼ N (Xβ,Css (θ)), i.e., with mean vector Xβ and covariance matrix Css (θ). In220

the generalized intrinsic case, uncertain β is absorbed in the distribution of s. We assume221

a Gaussian prior distribution β ∼ N (β∗,Cββ) with expected value β∗ and covariance222

Cββ. By assuming β multi-Gaussian and independent of θ, we can integrate over p (β)223

in Eqs. (3) to (6) analytically [Kitanidis, 1986]: s|θ ∼ N (Xβ∗,Gss (θ)), where Gss =224

Css (θ) + XCββXT is a generalized covariance matrix [Kitanidis, 1993]. This approach225

has already proven useful to generalize geostatistical inversion [Nowak and Cirpka, 2004;226

Fritz et al., 2009]. The individual steps of linearizing fy (s) and fc (s) in s are summarized227

in Appendix A, leading to:228

Ey

[
σ̃2

c|y

]
= Eθ

[
σ2

c|y (θ)
]
+ Ey

{
Vθ|y [ĉ (y (d) , θ)]

}
, (11)

where σ2
c|y (θ) is the conditional variance of concentration for given θ.229

To further simplify Eq. (11), we expand in θ about its prior mean value θ̄, truncate230

after first order, and assume a prior covariance Cθθ to specify the structural uncertainty,231

similar to Rubin and Dagan [1987a]. After executing Ey {·}, we obtain:232

Ey

[
σ̃2

c|y (d)
]

= σ2
c|y

(
θ̄
)

+
∑

i

∑

j

〈
Cθθ|y

〉
ij




. . .
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. . .
∂c̄

∂θi

∣∣∣∣
θ̄i

∂c̄

∂θj

∣∣∣∣
θ̄j

+

(
∂κ

∂θi

∣∣∣∣
θ̄i

)

Gyy

(
θ̄
)
(

∂κ

∂θj

∣∣∣∣
θ̄j

)T



 , (12)

where κ = HcGss (θ)HTG−1
yy (θ) is the Kalman gain of concentration in Eq. (B3), c̄ =233

Es [c], and θ̄ = Eθ [θ].
〈
Cθθ|y

〉
ij

is the i, j-the element in the conditional covariance of θ,234

here approximated by the inverse of the Fisher information F. Eq. (12) is a linearized235

version of Eq. (9), similar to what Marchant and Lark [2007b] found in the simpler236

kriging-like design context. Details of the derivation are provided in Appendix B.237

Once actual data values become available after the optimal design task, we can update238

the structural parameters with the technique by Kitanidis and Lane [1985] and Kitanidis239

[1995], later upgraded to the generalized intrinsic case by Nowak and Cirpka [2006]. The240

conditional covariance of θ is again approximated by the inverse of F, and the conditional241

mean θ̂ is approximated by242

θ̂ ≈ θ̄ − F−1g (13)

where g is the gradient, F is the Fisher information matrix as specified in Appendix B243

and Cθθ|y ≈ F−1 .244

4.2. Implementation

Eq. (12) and the equations in the appendices merely require auto- and cross-covariances245

between data and predicted variables, and their derivatives with respect to the structural246

parameters. We entrust this task to the static Ensemble Kalman Filter (sEnKF) by247

Herrera [1998], and obtain the derivatives with respect to θ from additional parallel248

sEnKF’s with slightly different parameter values. Ensemble Kalman Filters are based249

on a certain type of optimal linearization [Nowak , 2009b] that outmatches traditional250

first-order expansions in accuracy, adequately represent dispersion and dilution of solute251
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transport, and hence avoid the non-trivial choice of dispersion coefficients when using252

estimated conductivity fields [Rubin et al., 1999; Nowak and Cirpka, 2006]. Once the253

design is decided upon and the data become available, we condition the log-conductivity254

field by the Kalman Ensemble Generator (KEG) [Nowak , 2009b], which is an adaptation255

of the EnKF to geostatistical inversion. The main steps of the analysis are:256

1. Find a near-optimal design using the techniques described in Section 2 and 4;257

2. Generate a synthetic data set for the suggested design by unconditional random258

simulation of a synthetic “true” aquifer (see section 5.5).259

3. With the synthetic data, compute the conditional ensemble statistics (e.g. mean260

and variance for concentration and arrival times) using KEG;261

4. Analyze the results for compliance with our four guidelines (see Section 7).262

The above framework is implemented in MATLAB. For groundwater flow, solute trans-263

port and random field generation, we use the same codes as in Nowak et al. [2008]. Each264

EnKF ensemble had a size of 4000 realizations, which is more than sufficient for Ensemble265

Kalman Filters in hydrogeological applications [Chen and Zhang , 2006]. We optimize our266

sampling patterns using the sequential exchange algorithm [e.g., Christakos, 1992, p. 411].267

Both the first-order approximation and the chosen optimization algorithm allow only to268

obtain so-called "near-optimal" designs (compare with Janssen et al. [2008]).269

5. Synthetic Case Study

5.1. Scenario Definition and Relevance

Consider a potential future groundwater contamination at an ecologically sensitive loca-270

tion due to a hypothetical upstream groundwater contamination as part of a risk scenario.271
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This type of scenario is relevant, for example, in the probabilistic assessment of human272

health risk, where hydrogeological data acquisition helps to reduce the uncertainty in risk273

estimates [Rubin et al., 1994; Maxwell et al., 1999; de Barros and Rubin, 2008; de Barros274

et al., 2009]. We will follow two different prediction objectives: to minimize the prediction275

variance of (1) steady-state contaminant concentration after continuous release (same sce-276

nario as McKinney and Loucks [1992]) and (2) contaminant arrival time at the sensitive277

location.278

We chose two objectives, because different objectives can yield fundamentally different279

design patterns. The actual choice of design objectives (and also multi-objective design,280

see Müller [2007]) of course depends on the specific modeling and management goals at281

the site under consideration. Our main point of using these two different objectives is to282

illustrate the role of structural uncertainty varies under different objectives.283

We will place 24 boreholes to obtain both core-scale measurements of transmissivity284

(e.g., from slug tests or disturbed-core grain-size analysis) and additional co-located mea-285

surements of hydraulic head (e.g., from minimum-cost groundwater level monitoring wells286

at the cored locations), with their respective measurement errors provided in Table 1.287

To demonstrate the effect of structural uncertainty, we compare the results between (a)288

known and (b) uncertain structural parameters β and θ in the geostatistical model. Com-289

bined with our two prediction objectives, this yields four different cases (1a, 1b, 2a and290

2b; see Table 2).291

5.2. Flow and Transport Configuration

For simplicity we limit our solute transport problem to the steady-state concentration

and the arrival time down-gradient of a continuous line source in a depth-integrated
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2D setting, and consider a point-like sensitive location. Depth-integrated steady-state

groundwater flow is described by:

∇ · [T (x)∇h] = 0 , (14)

where T [L2/t] is locally isotropic transmissivity and h [L] is hydraulic head. The space

coordinates are represented by x = (x1, x2). Boundary conditions are specified later. For

the steady-state transport we use:

v · ∇c −∇ · (Dd∇c) = 0 , (15)

where c [M/L3] is concentration, v =q/ne is velocity, q is the Darcy specific flux, ne is

porosity, and Dd [L2/t] is the pore-scale-dispersion tensor. We simulate the arrival time

t50 using moment-generating equations [Harvey and Gorelick , 1995]:

v · ∇mk −∇ · (Dd∇mk) = kmk−1 , (16)

with t50 = m1/m0, where m0 and m1 are the zeroth and first temporal moments of292

breakthrough for the related instantaneous release problem [e.g., Cirpka and Kitanidis,293

2000; Cirpka and Nowak , 2004; Nowak and Cirpka, 2006].294

The domain geometry, contaminant source and the sensitive location are illustrated in295

Figure (2). Relevant parameter values are provided in Table 1. Boundary conditions296

are ĥ = 1m and ĥ = 0m at x1 = 0m and x1 = 600m, respectively. Uncontaminated297

groundwater with ĉ = 0mg/ℓ enters at x1 = 0m, and the outflow boundary at x1 = 600m298

is unrestricted. The remaining two boundaries at x2 = 0m and x2 = 200m are no-flux299

boundaries for both flow and transport. We consider a fixed-concentration source with300

unit concentration c0 = 1 along a 50m (∼ 3 1/3 integral scales) wide line centered at301

x1 = 150m. A sensitive location is located at a longitudinal travel distance of 300m (∼302
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20 integral scales) down-gradient from the source, located at x2 =118.75m (12.5m or ∼303

5/6 integral scales offset from the center line).304

5.3. Bayesian Geostatistical Setup and Test Cases

Predicting contaminant transport over some distance in heterogeneous formations re-305

quires assumptions on the structure of variability. For illustration, we assume a stationary306

model in cases 1a and 2a, and an intrinsic model (due to a trend model with uncertain307

coefficients) in cases 1b and 2b, see Table 2. Cases 1b and 2b are less arbitrary and less308

subjective in their prior model assumptions: Following the Bayesian rationale, they do not309

claim to deterministically know the global mean, trend or the covariance function in ab-310

sence of information, i.e., prior to design and data collection. The remaining assumptions311

chosen for our illustration are that a single, domain-wide, intrinsic and multi-Gaussian312

geostatistical model applies. Less parsimonic descriptions with varying covariances, or313

even more complex multi-variate dependence, could be adopted if deemed necessary. This314

would increase the number of structural parameters and result in different sampling pat-315

terns. We generate random log-transmissivity fields using the Matérn family of covariances316

plus a global mean and a linear trend. The two linear trend functions have a spatial mean317

of zero and cause a total variation of ±0.5 over the respective length of the domain.318

Only for cases 1a and 2a, the structural parameters are considered known. For cases319

1b and 2b, their values are uncertain, with squared coefficients of variation CV 2 = 0.5320

for covariance parameters and unity variance for mean and trend parameters. Uncertain321

parameters are the global mean value β1, the trend coefficients in x1 and x2 directions (β2322

and β3, respectively), the variance σ2
Y , the scale parameters in x1 and x2 directions (λ1323

and λ2, respectively), and the Matérn shape parameter κ. Their prior mean values and324
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variances are specified in Table 1. For simplicity, we assume prior stochastic independence325

among the structural parameters.326

5.4. Effect of Structural Uncertainty on Prediction Mean and Variance

Figures 2 and 3 compare prior mean values and standard deviations of Y , h, c and t50 for327

the case of known and uncertain structural parameters, respectively. They are obtained328

from Monte-Carlo analysis with 16000 realizations each, using the geostatistical settings329

for cases 1 and 2 described in Section 5.3.330

The impact of uncertain mean and trend manifests in the form of a prior standard331

deviation of log-conductivity with values larger than σY = 1 in the center of the domain,332

with increasing values towards the domain boundaries (see Figure 3). The standard333

deviation of h for uncertain structure is dominated by the uncertain trend in x1 direction334

and by the given head boundaries [Rubin and Dagan, 1988].335

Structural uncertainty also affects the standard deviation of concentration, compare336

Figures 2 and 3 and analytical expressions [e.g., Fiorotto and Caroni , 2002; Caroni and337

Fiorotto, 2005; Schwede et al., 2008]. Our explanation is that macrodispersion and the338

approach rate to ergodicity become uncertain when the variance, integral scales and339

anisotropy are uncertain. Results from different Monte-Carlo analyses (not shown here)340

indicate that the global trend functions have almost no impact on concentration variance.341

With uncertain structure, the standard deviation for arrival time explodes by a factor342

of roughly ten; this can mostly be traced back to the uncertain global mean of Y , which343

dictates the average velocity. Variance, integral scales and anisotropy have an impact on344

large-scale effective conductivity [Zhang , 2002; Rubin, 2003], so that uncertain covariance345

parameters further increase the uncertainty of arrival time [Rubin and Dagan, 1992b].346
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5.5. Synthetic True Aquifer

Figure 4 depicts spatial maps of log-conductivity and the corresponding heads, con-347

centrations and arrival times for the “true” aquifer generated with random structural348

parameters (see Table 3). We will read values of Y and h at the near-optimal sampling349

locations and add random measurement error to obtain synthetic data. This way, we350

can compare the conditional results to fully known reference fields of Y , hydraulic heads,351

concentrations and arrival times, and to the random values of structural parameters used352

for generation.353

6. Results: Near-Optimal Sampling Patterns with Uncertain Structural

Parameters

In this section, we present the sampling patterns resulting from Bayesian Geostatistical354

Design, considering the structural parameters β and θ as uncertain (cases 1b and 2b),355

and then compare with the non-Bayesian cases 1a and 2a. The methodological steps are356

given in Section 4.2.357

6.1. Sampling Pattern Optimized for Predicting Concentration (Case 1b)

In case 1b (see Table 2), all structural parameters considered in our geostatistical model358

are uncertain, and we optimize the sampling pattern for optimal prediction of late-time359

concentration at the sensitive location. The resulting sampling pattern is shown in Fig-360

ure 5. The figure also shows the conditional mean (left column) and standard deviations361

(right column) after applying the design and using the synthetic measurement values362

obtained from the synthetic “true” aquifer shown in Figure 4.363

In principle, the original non-Bayesian prediction purpose leads to information needs in364

those regions of the domain where the statistical dependence between measurable quanti-365
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ties and the prediction goal is highest [e.g., Cirpka et al., 2004; Herrera and Pinder , 2005;366

Zhang et al., 2005; Nowak , 2009a]. At the same time, the Bayesian approach requires a367

diversification of sampled lag distances in order to reduce structural uncertainty. Hence,368

the sampling pattern found for case 1b is in essence similar to the one found by McKinney369

and Loucks [1992], with only small modifications due to structural uncertainty that will370

be discussed in Section 6.3. All our patterns are asymmetrical due to the transverse offset371

of the sensitive location relative to the center of the source.372

For case 1b, all sampling locations fall into two groups, each providing a specific set of373

information that is explained below:374

1. Measurements flanking the average migration pattern of the hypothetical plume.375

2. Samples in and around the source.376

The objective is to minimize the concentration fluctuations, σ2
c , at a sensitive location.377

As explained in Rubin [1991b], the prediction of low concentrations at the periphery of378

the plume is subject to the largest uncertainty. If we could obtain concentration mea-379

surements (which we cannot do because we predict a future contamination), we would380

sample along the flanks of the plume [see further discussion in Rubin, 2003], as depicted381

in Figure 6. Our results sample the flanks of the expected plume trajectory for different382

but highly related reasons. The plume’s flanks have the largest concentration gradients383

and, combined with uncertain positions of the streamlines, these gradients are converted384

to a high concentration variance. The head and conductivity measurements flanking the385

plume infer the position of streamlines in the plane of the sensitive location, which then386

translates to a reduced concentration variance [Rubin, 1991a].387
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The importance of small-scale fluctuations increases towards the sensitive target, while388

large-scale plume meandering is important at larger distances from the sensitive target.389

Therefore, the two rows of samples flanking the plume converge to the plume’s center in390

the vicinity of sensitive location. The above mechanisms are an outcome of solving the391

flow and transport equations [e.g., Rubin, 1991a; Kapoor and Kitanidis, 1997]. The same392

holds for the reduction of variance and coefficient of variation for concentration induced393

by conditioning (Figure 6).394

Figure 5 also shows a tendency to place the samples near the contaminant source. Be-395

sides resolving the directionality at short travel distances, measurements at these locations396

capture the volumetric flow rate through the source area. The latter is a key to predicting397

the evolving plume: A source area with below-average volumetric flow rate produces a398

narrow plume (in the ensemble sense) because streamlines are likely to converge down-399

stream of the source. Vice-versa, when a large portion of the domain’s total discharge400

is focused though the source area, a wider plume evolves. These facts emphasize the401

importance of source zone characterization even for far-field predictions. For the current402

objective function, the area within the expected plume trajectory turns out to be least403

significant.404

The availability of different data types is yet another factor that influences sampling405

patterns, not less important than the choice of prediction objective. For example, when406

monitoring contaminations that have already occurred, concentration data become avail-407

able. In studies on optimal plume monitoring, the resulting sampling patterns typically408

try to determine the current outline of the plume, i.e., find its fringes and the current409
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front [e.g., Criminisi et al., 1997; Herrera and Pinder , 2005; Wu et al., 2005; Zhang et al.,410

2005].411

When comparing to the synthetic “true” aquifer (see Figure 4) with the resulting condi-412

tional statistics (Figure 5), the global mean and trend of conductivity have been captured413

well. The contaminant source happens to be in an area of slow flow, such that a narrow414

plume leaves the source area, with peak concentrations prevailing only over a short travel415

distance (see the relatively short c = 0.5 isoline in Figures 4 and 5). This effect has been416

captured by the measurements in and around the source. The large-scale features of the417

flow field have also been captured: Like in our reference field, the conditional ensemble418

mean plume is accurately hitting the sensitive location, with its center line passing only419

slightly south of the sensitive location. Also, the uncertainty of structural parameters420

is reduced by conditioning, moving closer to the case of known structural parameters.421

Therefore, the map of concentration variance starts to exhibit the two distinct lines along422

the fringes of the plume (compare with Figure 2).423

6.2. Sampling Pattern Optimized for Predicting Arrival Time (Case 2b)

Now we repeat the above analysis, this time minimizing the prediction variance of arrival424

time t50 at the sensitive location (case 2b). Figure 7 shows the resulting near-optimal sam-425

pling pattern, the conditional mean (left column) and standard deviations (right column).426

The synthetic measurement values for conditioning are again taken from the random sim-427

ulation in Figure 4. The main sampling effort goes to the area between the source and the428

sensitive location, because arrival time is an integral outcome of the transport velocity429

along the entire distance. The seemingly random scattering of measurements within and430

outside the area between source and sensitive location mainly addresses structural un-431
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certainty. Some samples are scattered throughout the domain for better identification of432

the global mean and trend coefficients. Comparison of the conditional standard deviation433

between case 1b and 2b (Figures 5 and 7, respectively) shows that the pattern for case 1b434

is indeed better in reducing the uncertainty of concentration, while pattern 2b performs435

better in reducing the uncertainty of arrival time.436

6.3. Comparison to Non-Bayesian Cases (Cases 1a and 2a)

To illustrate the impact of structural uncertainty on sampling patterns, we repeated437

the same analysis with known structural parameters (cases 1a and 2a) and compare the438

resulting patterns (Figure 8, left column) and sampled lag distances (Figure 8, right439

column).440

The Bayesian approach to structural uncertainty honors the need for model identifica-441

tion, leading to a diversification of sampled lag distances [e.g., Uciński , 2005; Diggle and442

Lophaven, 2006; Müller , 2007]. The structural parameters θ = [σ2
Y , λ1, λ2, κ] require lag443

distances where they have the strongest impact on the covariance function (Figure 1).444

This information need appears in Eq. (12) as the derivatives of covariance functions with445

respect to structural parameters. For the global mean and variance, uncorrelated samples446

at great spacing are best, while covariance shape and scale additionally require a variety of447

low- to intermediate-range lags [e.g., Bogaert and Russo, 1999]. For the trend parameters,448

the most sensitive locations are close to the domain boundaries and corners, where the449

trend functions X have the largest impact on the expected value of Y = ln K.450

The pattern for case 1a (with known structural parameters) does already offer a variety451

of lag distances, so that the patterns in case 1a and 1b do not differ much. Minor changes452

include a better coverage of long lag distances, which help to better identify the trend453
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components. This is drastically different between cases 2a and 2b. The pattern for454

case 2a is extremely narrow in the x2-direction, and therefore does not support inference455

of the transverse trend or the transverse integral scale. Also, the samples are highly456

correlated due to their proximity along a single line, so that identification of the mean457

and variance are compromised. For these reasons, the pattern for case 2b is substantially458

different, offering a much wider range of lag distances for better identification of covariance459

parameters, and samples closer to the corners of the domain for better identification of460

the trend coefficients.461

7. Analysis and Discussion

This section discusses the impact of added samples on the prediction variance (Sec-462

tion 7.1), the reduction of structural uncertainty through sampling (model identification,463

Section 6.3) as well as the property of robustness (Section 7.3).464

7.1. Effect of Sampling on Prediction Variance

How well did the near-optimal sampling patterns reduce the prediction variance of con-465

centration? For the Bayesian cases 1b and 2b, the design criterion (Eq. 12) promised (in466

the expected sense) a reduction of prediction variances from σ2
c = 0.0329 to σ2

c = 0.0215467

for concentration, and from σ2
t50 = 2466.4 a2 to σ2

t50 = 1192.7 a2 for arrival time. σ2
c is di-468

mensionless because we used c0 = 1[−] for generality. An important caveat about expected469

prediction variances (such as Eqs. 9 and (12)) lies in their nature as expected value over470

yet unobserved data values (compare with Feyen and Gorelick [2005]). In addition, the471

Bayesian geostatistical framework averages over uncertain structural parameters that will472

be updated with yet unobserved data only later. By this property and by using Bayesian473
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prediction variances, Bayesian Geostatistical Design fulfills guideline 1 mentioned in the474

introduction. Using the synthetic data set, the near-optimal designs reduced the variances475

from σ2
c = 0.0585 to σ2

c = 0.0204 and from σ2
t50 = 2466.4 a2 to σ2

t50 = 41.121 a2 according476

to the conditional ensemble statistics.477

Figure 9a (total) shows the expected prediction variance of concentration according to478

Eq. (12) evaluated for different numbers of near-optimal sampling locations. Across all479

cases, the planned sampling at 24 borehole locations reduce prediction uncertainties to480

between 50 and 70 percent of the initial uncertainty. The most effective samples are, of481

course, the first few ones that occupy the most informative locations. Samples placed482

later are displaced to less informative locations or suffer from redundancy of information483

if placed close by. Due to the presence of measurement error, even exhaustive sampling484

of the entire domain prevents a deterministic description of the system.485

7.2. Effect of Sampling on Structural Uncertainty

The randomly generated structural parameters used to generate the synthetic “true”486

aquifer (Figure 4) are provided in Table 3 together with prior and posterior mean values487

after conditioning on the synthetic data from case 1b. Given the relatively small number488

of measurements and their level of measurement error (see Table 1), most structural489

parameters have been estimated very well.490

The right half of Figure 9b shows how structural uncertainty (measured by distribution491

entropy) decreases with increasing number of samples placed. We approximate the entropy492

difference by [Nowak , 2009a]:493

∆E (β, θ) = det
[
Cβθ|yC

−1
βθ

] 1

d , (17)
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where Cβθ|y is the joint conditional covariance matrix of β and θ, Cβθ is its prior version,494

and d is the total number of structural parameters. Apart from a sign flip, the same495

curves are called Information Yield Curves by de Barros et al. [2009]. They illustrate how496

the data narrow down structural uncertainty and identify the geostatistical model (see497

guideline 2 in the introduction). Model identification is merely an implicit sub-goal to498

gain prediction confidence. Eq. (9) and (12) contains this sub-goal in a natural manner,499

and hence do not require a user-defined (and hence subjective) ranking between prediction500

and model identification (see guideline 3 in the introduction).501

7.3. Cross-Case Validation, Robustness and Regular Sampling Grid

In order to discuss design robustness, we applied each near-optimal design pattern to the502

conditions of all other test cases. We then scaled all performances (reduction of prediction503

variance) by the performance of the pattern that was designed for each specific case. This504

yields the performance indices summarized in Table 4. Of course, each sampling pattern505

performs best when applying it to the respective case it was designed for, surpassing all506

other patterns. In the cross-comparison, pattern 1b outperforms pattern 1a when applied507

to the respective other test case (see Table 4, first two rows): The under-achievements508

when designing for structural uncertainty are smaller than the under-achievements when509

falsely pretending a known structure. Quite contrarily, pattern 2a outperforms pattern 2b:510

Due to the high impact of structural uncertainty onto the prediction objective, pattern511

2b is dominated by model identification. When applied to the rather unrealistic case 2a,512

most of its sampling effort is spent uselessly.513

The comparison between prediction variances with and without structural uncertainty514

in Section 5.4 indicated that some structural parameters do not contribute to one or515
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both of the prediction variances discussed here. One may now ask why to consider a516

seemingly irrelevant geostatistical parameter as uncertain. We will discuss the role of517

trend parameters in the prediction of concentration as an example. The trends add to the518

variability of both log-conductivity and hydraulic head. Even if the physical presence of519

a trend is known, we doubt that its actual magnitude could be specified deterministically.520

Without properly de-trended data, the data values would falsely be interpreted towards a521

larger overall variance σ2
Y , resulting in false interpretation of the data. In similar fashions,522

any unjustified assumption or mis-specification of geostatistical structure may introduce523

spurious error into data interpretation, and hence into either spatial interpolation or into524

the estimation of other structural parameters. In conclusion, even seemingly irrelevant525

structural parameters should be accounted for, thus providing robustness against mis-526

specified geostatistical models (guideline 4 listed in the introduction).527

For additional illustration, reference and comparison to simplistic designs, we also tested528

a regular sampling grid (8× 3 grid with 40m× 36m spacing) shown in (Figure 8, bottom529

row). The regular grid is clearly defeated in all cases. Neither can it provide detailed530

information on the release conditions, nor does it cover the variety of lag distances to531

identify the structural parameters, nor does it focus on the process-specific most sensitive532

regions of the domain.533

8. Summary and Conclusions

This study transferred the concept of Bayesian Geostatistical Design [Diggle and534

Lophaven, 2006] to geostatistical inverse problems. Like other geostatistical design tech-535

niques, it optimizes site investigation or monitoring plans (called designs) for contaminated536

sites, while accounting for heterogeneous subsurface parameters as geostatistical random537
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space functions. The optimal design is defined to achieve a minimal expected prediction538

uncertainty with respect to a given prediction objective.539

In contrast to conventional techniques, Bayesian Geostatistical Design allows for un-540

certainties in the geostatistical model itself. Uncertainties in the geostatistical model541

may include uncertain mean values, uncertain trend coefficients, uncertain choices of co-542

variance models, and uncertain parameters within the covariance model, all summarized543

under the term of structural uncertainty. Even non-Multi-Gaussian descriptions can be544

tackled, given adequate computational resources.545

In realistic situations of site investigation, initial information on geostatistical model546

parameters such as the variance or integral scale of log-conductivity is extremely scarce.547

This makes it illegitimate to assume fixed values a priori, and forces to treat them as548

uncertain. Otherwise, overly optimistic small levels of uncertainty would be specified,549

and the design would be optimized under unjustified (and possible false) assumptions.550

We argued that, under these premises, an adequate optimal design technique should fulfill551

four guidelines:552

1. Structural uncertainty has a significant impact on prediction uncertainty, which must553

be accounted for.554

2. Sampling helps to reduce structural uncertainty. This potential should be utilized555

in finding a sampling design.556

3. Reduction of structural uncertainty should be ranked versus the primary design557

objective in an optimal and natural manner.558

4. Designs should be robust towards mis-specified structural assumptions.559
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We showed that Bayesian Geostatistical Design indeed reduces the number or a priori560

assumptions on geostatistical structure, and also fulfills the above four guidelines. The561

only remaining assumptions are that the variability of the site can be described by a562

reasonable parametric geostatistical model (regardless of its parameter values). However,563

several different parametric models may cover different parts of the domain, and there is564

little restriction to the complexity of the parametric models.565

A key point is minimum arbitrariness when choosing a covariance model prior to sam-566

pling. To this end, we suggest the Matérn family of geostatistical covariance models. It567

offers an additional shape parameter, and includes the exponential, Whittle and Gaus-568

sian covariance function as special cases. This way, as indicated earlier by [Feyen et al.,569

2003], the problem of model selection becomes a problem of parameter estimation, with570

a wide range of methods available. We treat the shape parameter as yet another uncer-571

tain structural parameter, providing seamless integration of model uncertainty into the572

optimal design framework. We call this approach Continuous Bayesian Model Averaging573

because it is the limiting case of Bayesian Model Averaging over a continuous parametrized574

spectrum of models.575

In a series of test cases, we demonstrated how structural uncertainty influences the576

optimal design. The test scenario featured the placement of 24 co-located hydraulic577

head and log-conductivity measurements, optimized for minimal prediction variance of578

(1) steady-state contaminant concentration and (2) contaminant arrival time at an eco-579

logically sensitive location. Structural uncertainty was represented by an uncertain global580

mean, uncertain coefficients of a linear trend model, and the Matérn covariance function581
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with uncertain shape, variance and anisotropic integral scales. A variation of the test582

cases considered the structural parameters to be known for comparison.583

Only a few samples placed optimally were sufficient to largely eliminate the additional584

uncertainty stemming from structural uncertainty. The list of uncertain structural pa-585

rameters was shown to leave a distinct diversification in the fingerprint of the spatial586

pattern of the resulting optimal sampling layouts. The required diversification showed587

most clearly in the lag distances covered by the individual sampling patterns.588

Within the risk assessment application context, Bayesian Geostatistical Design aligns589

well with the TRIAD principle of site investigation suggested by the US EPA [Crumbling ,590

2001]. The TRIAD principle argues that information from ongoing site investigation591

should provide immediate feedback to adjust the sampling campaign in real-time, by592

continuously updating the site’s conceptual model during the ongoing investigation effort.593

Bayesian Geostatistical Design extends the TRIAD principle by a continuous updating of594

the site’s geostatistical model.595

It is important to emphasize that the Bayesian Geostatistical Design framework is596

not in any way limited to the implementational choices taken in our illustrative test597

cases. Our implementation used a first-order approximation for structural uncertainty,598

Ensemble Kalman Filters, and a sequential exchange optimization algorithm. We are599

aware of the limited range of validity given by first-order approximations and we do600

not claim generality within the results obtained in our illustrative test case. Willing to601

accept substantially increased computational costs, our approximations can be removed in602

exchange for brute-force Monte-Carlo or particle filter techniques, combined with genetic603

or simulated annealing optimization algorithms.604
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Appendix A

We define a linearized representation for fy (s) in the following form:605

y = fy (s) ≈ E [f (s)] + H (s− s̄) , (A1)

where ȳ = E [fy (s)] and s̄ are the mean values of p (y) and p (s), respectively. H takes the606

role of a sensitivity matrix. Within the linearized framework, the relevant mean values607

and covariances become:608

Gyy (θ) = HGss (θ)HT + R (A2)

ŝ (yo, θ) = Xβ∗ + Gss (θ)HTG−1
yy (θ) (yo − ȳ) (A3)

Gss|y (θ) = Gss (θ) − Gss (θ)HTG−1
yy (θ)HGss (θ) (A4)

Cββ|y =
(
XTHT

yG−1
yyHyX + Cββ

)−1
, (A5)

where Gyy is the generalized covariance of y, ŝ and Gss|y are the conditional mean and609

generalized covariance of s, and Cββ|y is the conditional covariance of β. Employing a610

likewise linearized representation of c = fc (s) with coefficient matrix Hc, the conditional611

predictive distribution for c becomes:612

ĉ (yo, θ) = c̄ + Hc (ŝ (yo, θ) − Xβ∗)

σ2
c|y (θ) = HcGss|y (θ)HT

c . (A6)

Due to linearization, the prediction variances for known θ are independent of data values,613

and Eq. (9) simplifies to:614

Ey

[
σ̃2

c|y

]
= Eθ

[
σ2

c|y (θ)
]
+ Ey

{
Vθ|y [ĉ (y (d) , θ)]

}
. (A7)

Linearization of fy (s) is exact for direct measurements of log K, and overwrites the re-615

sponsible rows of H by a sampling matrix [e.g., Fritz et al., 2009]. Dagan [1985] showed616
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analytically that linearized fy (s) for hydraulic heads is highly accurate for variances of617

log K up to unity, and Nowak et al. [2008] demonstrated its reliability for up to σ2
Y = 5618

by Monte-Carlo analysis.619

Appendix B

We now derive Eq. (12) from Eq. (11). For simplicity of notation, let ω (θ) ≡ σ2
c|y (θ).

Expanding ω (θ) up to first-order in θ yields:

ω (θ) ≈ ω
(
θ̄
)

+ ∇θωθ′ (B1)

where θ̄ = Eθ [θ], θ′ = θ− θ̄ and ∇θω is the row-vector Jacobian of ω evaluated at θ = θ̄.620

Due to E [θ′] = 0, the first term in Eq. (11) becomes:621

Eθ

[
σ2

c|y (θ)
]
≈ σ2

c|y

(
θ̄
)

= HcGss|y

(
θ̄
)
HT

c . (B2)

The second term in Eq. (11) is obtained in a similar fashion by setting622

c̄ (θ) + κ (θ)y′ ≡ c̄ (θ) + HcGss (θ)HTG−1
yy (θ) (y − ȳ)

= ĉ (y (d) , θ) , (B3)

with y′ = (y − ȳ). κ can be interpreted as the Kalman gain of predicted concentration,623

and c̄ (θ) is the ensemble mean concentration given θ, prior to sampling. Now, we expand624

c̄ (θ) and κ (θ) up to first order in θ:625

c̄ (θ) ≈ c̄
(
θ̄
)

+ ∇θc̄θ
′ (B4)

κ (θ) ≈ κ
(
θ̄
)

+ ∇θκθ′ . (B5)

The first-order perturbation of ĉ (y (d) , θ) is:

ĉ′ = ∇θc̄θ
′ + ∇θκθ′y′ , (B6)
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and its variance over the distribution p (θ|y) is (accurate to first order in θ):626

Vθ|y [ĉ (y (d) , θ)]

≈ Eθ|y

[
∑

i

∑

j

θ′iθ
′
j

{
∂γ

∂θi

(
∂γ

∂θj

)T

+
∂κ

∂θi

y′y′T

(
∂κ

∂θj

)T
}]

=
∑

i

∑

j

〈
Cθθ|y

〉
ij

{
∂γ

∂θi

(
∂γ

∂θj

)T

+
∂κ

∂θi

y′y′T

(
∂κ

∂θj

)T
}

(B7)

where Cθθ|y is the conditional covariance of θ and 〈·〉 denotes the i, j-the element. Cθθ|y is627

independent of actual data values when expressed via the inverse of the Fisher information628

F [e.g., Kitanidis and Lane, 1985]:629

F = Ey

[(
∂

∂θ
ln p (y|θ)

)T (
∂

∂θ
ln p (y|θ)

)]
. (B8)

In the current context, we assume that the θ has a prior covariance matrix Cθθ, so that

the elements Fij of F are given by [Nowak and Cirpka, 2006]:

Fij =
1

2
Tr

[
∂Gyy

∂θi

G−1
yy

∂Gyy

∂θj

G−1
yy

]
+ eT

i C−1
θθej , (B9)

where ei is the i-th unit vector. Gyy and its derivatives are evaluated at θ = θ̄. Now, we630

take the expected value over p (y) to obtain the second term in Eq. (11):631

Ey

{
Vθ|y [ĉ (y (d) , θ)]

}

≈
∑

i

∑

j

〈
Cθθ|y

〉
ij

{
∂γ

∂θi

(
∂γ

∂θj

)T

+
∂κ

∂θi

Gyy

(
θ̄
)( ∂κ

∂θj

)T
}

(B10)

Updating the structural parameters once data become available requires the gradient g632

[Kitanidis and Lane, 1985]. For the case of prior covariance Cθθ, its entries are [Nowak633

and Cirpka, 2006]:634

gi =
1

2
Tr

[
∂Gyy

∂θi

G−1
yy

]
− 1

2
(yo − ȳ)T

G−1
yy

∂Gyy

∂θj

G−1
yy (yo − ȳ) + eT

i

(
θ − θ̄

)
(B11)
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Figure 1. Examples from the Matérn family of covariance functions for different values

of the shape parameter κ, including some special cases.
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Figure 2. Illustration of the scenario for known structural parameters. Left: prior

mean values of Y = ln K, corresponding hydraulic heads h and the hypothetical plume

(steady-state concentration c and arrival time t50). Right: prior standard deviation.

Crossed circle: sensitive location. Thick black line: hypothetical contaminant source. For

parameter values, see Table 1 and Table 2 (cases 1a and 2a). Grey-scale is identical to

Figure 3 for direct comparison.
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Figure 3. Same as in Figure 2 but for uncertain structural parameters (cases 1b and

2b in Table 2).
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Figure 4. Synthetic “true” aquifer used to obtain measurement values: a realization of

Y = lnK and corresponding simulated hydraulic heads, steady-state concentration and

arrival time. Crossed circle: sensitive location. Thick black line: hypothetical contami-

nant source. For parameter values, see Tables 1, 2 and 3.
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Figure 5. Results for case 1b. Left: conditional mean for ln K, hydraulic heads h,

steady-state concentration c and arrival time t50 of hypothetical plume. Right: corre-

sponding conditional standard deviations. Crossed circle: sensitive location. Solid white

circles: near-optimal sampling locations (Y = ln K and head measurements). Thick black

line: hypothetical contaminant source. For parameter values, see Tables 1 and 2.
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Figure 6. Concentration variance and coefficient of variation (CVc) as a function of

the transverse direction. Curves are presented for 4 transects at different distances from

the source: x1 = 175, 250, 350 and 450 (in dimensionless numbers: ξ ≈ 12, 17, 23 and

30). (a) Prior concentration variance; (b) prior coefficient of variation; (c) conditional

concentration variance; and (d) conditional coefficient of variation.
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Figure 7. Results for case 2b. See Figure 5 for description.
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Figure 8. Left: Near-optimal design patterns for cases 1a-2b and a regular sampling

grid. Right: respective sampled lag distances. Crossed circles (left): sensitive location.

Solid white circles: 24 sampling locations; log-conductivity and hydraulic head measured

jointly. Thick black line: hypothetical contaminant source. Grey-scale background: Maps

of expected data worth (here: percent reduction of Bayesian predictive variance), evalu-

ated before the first sample. Black dots (right): sampled lag distances. Dot area increases

with multiple sampling of the same lag. Zero lag is not shown.
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Figure 9. (a): Reduction of prediction variance with increasing number of samples,

normalized to the initial prediction variance. Upper curve set (“total”, thick lines): ex-

pected prediction variance of c (solid) and t50 (dashed) according to Eq. (12). Lower

set of curves (“Bayesian part”, thin lines): only second term of Eq. (12). (b): Relative

entropy of structural parameters β and θ with increasing number of samples.
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Table 1. Parameter values used for the synthetic test cases.

Numerical domain

Domain size [L1, L2] [m] [600, 200]

Grid spacing [∆1, ∆2] [m] [2, 0.5]

Transport parameters

Head difference ∆h [m] 1

Effective porosity ne [−] 0.35

Pore-scale dispersivities [αℓ, αt] [m] [2, 0.25]

Diffusion coefficient Dm [m2/s] 10−9

Transversal plume dimension ℓS [m] 50m

Geostatistical model parameters (prior mean values)

Global mean β1 = ln Kg [−] ln (10−5)

Trend x1 β2 [−] 0

Trend x2 β3 [−] 0

Variance σ2
Y [−] 1.00

Integral scales (see Eq. 10) [λ1, λ2] [m] [15, 15]

Matérn’s kappa (see Eq. 10) κ [−] 2.50

Measurement error standard deviations

Y ≡ ln K σr,Y [−] 1.00

Head h σr,h [m] 0.01

Dimensionless numbers

Longitudinal travel distance source-target ξ = x1/λ1 [−] 20.00

Transverse offset from center line η = x2/λ2 [−] 1.2

Contaminant source width ζ = ℓs/λ2 [−] 3.33

Longitudinal Péclet Peℓ = λ1/αℓ [−] 7.50

Transverse Péclet Pet = λ2/αt [−] 60.00
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Table 2. Definition of test cases in our scenario. Objective: the quantity to be

minimized by sampling (prediction variance of contaminant concentration or of arrival

time at the sensitive location, respectively). Symbols: β1 [−]: global mean of ln K; β2

and β3 [−]: linear trend parameters; λ1 and λ2 [m]: scale parameters (spatial correlation);

κ [−]: shape parameter of the Matérn function.

Case Number Objective Assumptions structural uncertainty

1a σ2
c β, θ known none

1b σ2
c β, θ uncertain var [β1, β2, β3, σ

2
Y , λ1, λ2, κ]

= [1, 1, 1, 0.5, 112.5, 112.5, 1.75]

2a σ2
t50 β, θ known none

2b σ2
t50 β, θ uncertain var [β1, β2, β3, σ

2
Y , λ1, λ2, κ]

= [1, 1, 1, 0.5, 112.5, 112.5, 1.75]
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Table 3. Comparison of structural parameters: prior mean, synthetic reality and

posterior mean values identified with synthetic data from case 1b. 95% confidence intervals

are estimated from two times the posterior standard deviation, assuming a Gaussian

distribution.

Parameter prior mean synthetic posterior mean

(and 95% CI) values (and 95% CI)

global mean β1 [−] -9.32 (± 2 ) -9.98 -9.50 (± 0.14)

trend x1 β2 [−] 0 (± 2 ) +2.16 +2.24 (± 0.23)

trend x2 β3 [−] 0 (± 2 ) -1.11 -0.39 (± 0.93)

variance σ2
Y [−] 1.00 (± 1.41) 0.62 0.71 (± 0.53)

integral scale λ1 λ1 [m] 15.00 (±21.21) 21.53 21.49 (±15.00)

integral scale λ2 λ2 [m] 15.00 (±21.21) 29.63 24.92 (±15.06)

shape parameter κ [−] 2.50 (± 3.53) 3.89 2.12 (± 3.36)

Table 4. Performance index of different patterns in different cases

case 1a case 1b case 2a case 2b

pattern 1a 100% 60%

pattern 1b 95% 100%

pattern 2a 100% 98%

pattern 2b 68% 100%

regular grid 59% 75% 48% 96%
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