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We present a vertex-centered finite volume method for the fully coupled,
fully implicit discretization of two-phase flow in fractured porous media. Frac-
tures are discretely modeled as lower dimensional elements. The method
works on unstructured, locally refined grids and on parallel computers with
distributed memory. An implicit time discretization is employed and the
nonlinear systems of equations are solved with a parallel Newton-multigrid
method. Results from two-dimensional and three-dimensional simulations
are presented.
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1 Introduction

Fractures are present in many subsurface systems and can strongly influence or even domi-
nate fluid flow and transport behavior. Because of the importance of fractured systems for
secondary recovery techniques, waste disposal safety analysis and remediation techniques
they have been investigated since the 1960s (Barenblatt et al., 1960; Warren and Root,
1963) and still receive considerable attention. The difficulties which arise for conceptual
and numerical modeling stem from the strongly heterogeneous and anisotropic nature
of the fracture-matrix system. For multiphase flow problems the behavior is much more
complex than in the case of a single phase, since in the presence of two phases fractures
may act as barriers or main flow paths, depending on saturation. Finally, uncertainties
associated with field problems introduce difficulties into the simulation process.

Fractures appear on different length scales. We consider subsurface systems where the
location and properties of the dominant fractures are known or can be estimated to good
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agreement with the site, with the length of these fractures on the order of the size of the
domain under investigation. Special consideration is given to a combined treatment of
the behavior of the fluid phases in the fractures and the rock matrix, which should model
accurately the interchange processes between fractures and rock matrix. This suggests a
coupled approach where the fluid flow is described by a set of equations which are valid in
both parts of the domain and which doesn’t introduce artificial exchange terms between
these parts. Instead the model incorporates a physically meaningful description of the fluid
phase behavior at the media discontinuities based on the accurate treatment of the capillary
pressure. We apply the extended interface conditions derived in van Duijn et al. (1995),
which were originally developed for media discontinuities like lenses and layers and which
are used for fractures here. This addresses the above mentioned issue of heterogeneities.

As for the problem of the anisotropic nature of fractures, we do not approach this is-
sue from the modeling side but instead seek an appropriate discretization method. A
discretization of a fractured medium domain with volumetric elements in the fractures
requires a mesh which resolves the geometry of the problem. Due to the small fracture
widths the resulting mesh will either consist of a very large number of elements or the
mesh will contain elements with a very large aspect ratio. These elements are known to
introduce difficulties into the solution behavior of iterative solvers. Our approach is to
apply a mixed-dimensional finite volume discretization method which realizes fractures
as lower-dimensional elements. We use one-dimensional elements for fractures in two-
dimensional domains and two-dimensional fracture elements in three-dimensional do-
mains. These elements can be used in an extension of the finite volume method of Bastian
and Helmig (1999). This method is suited for unstructured grids and adaptive grid re-
finement as well as for efficient parallelization by domain decomposition. The nonlinear
systems arising from the implicit discretization are solved by an inexact Newton method
which uses multigrid for the solution of the linearized systems.

The presented method is implemented in software. The features of this software can be
summarized as follows.

• Domains in 2D and 3D with unstructured, hybrid grids and adaptive grid refine-
ment.

• Fully coupled mass-conserving vertex centered finite volume discretization.

• Physically correct treatment of capillary pressure at fracture–matrix interfaces by ex-
tended interface conditions.

• Phases can be compressible or incompressible.

• Fully implicit time discretization with selectable time stepping schemes.

• Efficient solution of the linearized systems with multigrid methods.

• Parallelization for distributed memory computers.

To the best knowledge of the authors, this combination of features in software is unique.
The organization of the rest of this paper is as follows. In the next section we present the

model equations which are valid in fractures and rock matrix, and we explain the interface
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conditions at the boundaries between fractures and rock matrix. Then in section 3 we
present the finite volume method for the elements of mixed dimension and include some
notes on implementation, parallelization and pre- and post-processing. We explain the
time discretization and the nonlinear and linear solution methods. In section 4 we present
results. In two dimensions a comparison of the mixed-dimensional and a standard finite
volume method shows the adequacy and limitations of the method. In three dimensions,
we show an application in a domain with a complex fracture network.

2 Two-phase flow equations

We consider an isothermal system of two phases, the wetting phase w (water in our con-
text) and the nonwetting phase n. The phases are considered to consist of a single compo-
nent each, i. e. we will not consider phase transitions. The non-wetting phase can be any
non-aqueous phase liquid (napl) like oil or gas—the underlying equations are the same.
Compressible phases are included in the model and the software implementation, which is
crucial for water-gas systems. Because of the smaller density and viscosity differences the
treatment of water-oil systems is numerically easier. We only present water-gas systems to
prove the capability of the method. If a gas phase is referred to explicitly, we denote it
with g instead of n.

Central to the derivation of the governing equations is the existence of a representative
elementary volume (REV) for the fracture and the matrix. Since we treat fractures dis-
cretely, we assume that an REV exists for the rock matrix as well as for the fractures. See
Berkowitz (2002) for an overview of current questions arising in fracture flow modelling.

2.1 Conservation of mass and Darcy’s law

We consider the two-phase system in a porous medium which fills the domain Ω ⊂ Rd,
d = 2, 3. We use the set of equations also employed in Bastian and Helmig (1999) and refer
to Bastian (1999) and Helmig (1997) for a more thorough description. The governing
equations are the conservation of mass for each phase α = w,g:

(1)
∂(ΦραSα)

∂t
+∇ · (ραvα) = ραqα,

where w denotes the water phase and g denotes the napl phase. We assume that the
effective porosity Φ only depends on position, Φ = Φ(x). Sα = Sα(x, t) is the saturation
of phase α and the two phases fill the pore space,

(2) Sw + Sn = 1.

ρα = ρα(x, t) is the density of phase α. For incompressible fluids ρα is constant, otherwise
an equation of state for ideal gases is employed, pα = ραRT , with the phase pressure pα,
an individual gas constant R and the temperature T . We assume isothermal conditions.
qα = qα(x, t) is the source term of phase α and vα is the Darcy velocity of phase α. The
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Darcy velocity is given by a multiphase extension of Darcy’s law for each phase α = w,g,

(3) vα = −
krαK

µα
(∇pα − ραg)

The Darcy velocity only depends on the macroscopic phase pressure pα. K is the tensor
of absolute permeability, krα is the relative permeability of phase α (see next section 2.2).
µα = µα(pα) is the dynamic viscosity, g is the gravitation vector (0, 0,−g), g = 9.81[m/s2].

These equations are valid in the matrix and in the fracture if the flow is laminar in both
regions. If the fracture is open, the local cubic law derived from the Hele-Shaw analog (see
Bear, 1972) can be employed to define the absolute permeability for the flow of a single
incompressible fluid phase: Assuming a setup of two parallel plates arranged at a distance
b the averaged velocity between the plates is

(4) v =
b2

12

1

µ
∇h

with the piezometric head

(5) h =
p

ρg
+ z.

The absolute permeability is then K = b2/12. Extensions to the local cubic law which
incorporate fracture surface roughness can be found in Singhal and Gupta (1999).

2.2 Constitutive relations

The set of equations (1) needs to be completed with constitutive relations. We use the
Brooks-Corey capillary pressure function (Brooks and Corey, 1964)

(6) pc(Sw) = pdS
− 1

λ
e

which employs the effective saturation Se of the wetting phase,

(7) Se =
Sw − Swr

1 − Swr
Swr ≤ Sw ≤ 1.

pd is the entry pressure, Swr is the residual water saturation, and λ is related to the pore
size distribution: Materials with small variations in pore size have a large λ value while
materials with large variations in pore sizes have small λ values. Usually λ is in the range
0.2 ≤ λ ≤ 3.

The relative permeability functions after Brooks-Corey are

krw(Sw) = S
2+3λ

λ
e ,(8)

krn(Sw) = (1 − Se)2(1 − S
2+λ

λ
e ).(9)
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Figure 1: Brooks-Corey capillary pressure curves in rock matrix and fracture.

Across the interface between the wetting phase and the non-wetting phase a jump dis-
continuity occurs in the pressure, because the pressure pn in the non-wetting phase is
larger than the pressure pw in the wetting phase. This jump is the capillary pressure pc,

(10) pc = pn − pw ≥ 0.

The model for the flow of a wetting fluid phase w and a non-wetting fluid phase n in a
porous medium is now described by inserting (3) into (1)

∂(ΦρwSw)

∂t
−∇ · (ρw

krw

µw
K(∇pw − ρwg)) = ρwqw in Ω,(11a)

∂(ΦρnSn)

∂t
−∇ · (ρn

krn

µn
K(∇pn − ρng)) = ρnqn in Ω,(11b)

This model will be used throughout the rest of this paper. The coupling of saturation and
pressure by

(12) Sw + Sn = 1, and pn − pw = pc,

makes only two out of the four variables pw, pn, Sw, and Sn independent variables.
The model has to be complemented by appropriate boundary conditions and initial

conditions which have to be chosen consistent with (12). We delay the formulation of the
boundary conditions until section 3.1, where an appropriate choice of unknowns is made
based on the constitutive relationships (12).

2.3 Interface conditions at Media Discontinuities

The governing equations for two-phase fluid flow in porous media are only valid if the
media properties are subject to slow and smooth variation. At media discontinuities with
sharp changes in properties like permeability or porosity it is necessary to introduce inter-
face conditions which model the correct physical behavior. We adapt the approach of van
Duijn et al. (1995) for the treatment of media discontinuities to the case of fractured media
here.
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The significant influence of the capillary pressure on the fluid flow especially at media
discontinuities has been shown in laboratory experiments (Dawe et al., 1992; Kueper et al.,
1989). These results indicate that it is especially important to capture the effects of the
capillary forces in the description of the interface conditions since they are responsible for
trapping and pooling at media discontinuities.

The partial differential equations for two-phase flow are of second order in space. An
interface condition at an inner boundary does therefore have to consist of two conditions.
The first condition is fluid conservation, so we require continuity of the flux of both phases
across the interface.

For the derivation of the second condition we consider two parts of the domain, a
fracture Ωf and the matrix Ωm. (The derivation is the same if we consider lenses or layers
of different materials.) We assume a mobile wetting phase in both matrix and fracture,
hence we require that pw is continuous across the fracture-matrix interface Γ . The absolute
permeabilities in their respective domains are

(13) K(x) =

{
Kf(x) if x ∈ Ωf,

Km(x) if x ∈ Ωm.

Accordingly, the porosity Φ depends on the domain as well as the capillary pressure func-
tion pc(Sw) and the relative permeability functions krα. The shape of the capillary pressure
functions pc(Sw) is shown in figure 1.

Two assumptions are essential for our framework: We do not consider blocking frac-
tures (e. g. fractures filled with clay) and assume that

• the absolute permeability in the matrix is smaller than the absolute permeability in
the fractures, Km(x) < Kf(y) for all x, y ∈ Ω, and

• the capillary pressure function values in the matrix are larger than the capillary pres-
sure function value in the fractures for the same saturation, pm

c (x) > pf
c(x) for x ∈ Ω.

This implies that the entry pressure of the rock matrix is larger than the entry pres-
sure of the fractures.

For the Brooks-Corey capillary pressure relation, the entry pressure is positive, and there
is a saturation S?

w such that continuity of the capillary pressure can only be achieved if
Sw ≤ S?

w. In van Duijn et al. (1995) it is shown for a one-dimensional problem that
for Sw > S?

w the capillary pressure is discontinuous and that Sw is 1 in the matrix Ωm.
Physically, if the non-wetting phase is not present (i. e. Sw = 1 and Sn = 0), then pn is
undefined and pc (which is defined as pn − pw) is also undefined. The proposed interface
condition is called extended capillary pressure condition and is

(14) Sm
w =

{
0 if Sf

w > S?
w,

(pm
c )−1 (

pf
c(Sf

w)
)

else.
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2.4 Summarization of model assumptions and classification of
the model

The model equations of the previous sections only differentiate in terms of material prop-
erties between fractures and matrix. This is different than in the classical approach to
fracture modeling by double porosity models (Barenblatt et al., 1960; Warren and Root,
1963), where different equations are valid in the different regions and the coupling be-
tween the domains is handled by the introduction of exchange terms. Different exchange
terms have been proposed (Kazemi, 1969), but the displeasing introduction of an addi-
tional modeling parameter remains. Other extensions are multi-porosity models which
extend the model by differentiating between two or more matrix species with different
permeabilities, or the dual-permeability models of Hill and Thomas (1985); Clemo and
Smith (1989), which considers the rock matrix not only as a storage term but allow for
transmissivity in the matrix. A mathematical analysis of the double-porosity model was
given in Arbogast (1989), Arbogast et al. (1990), Arbogast et al. (1991). The derivation
can be found for single-phase fluids in Allaire (1997) and for two-phase flow in Bourgeat
(1997). Computational aspects are considered in Arbogast (1997).

Double-porosity and double permeability models fall into the class of equivalence models
and have mostly been employed for problems with periodic fracture networks. An alter-
native approach is the modeling of fractures with lower dimensional elements (sometimes
called shell elements). This concept has been applied for the numerical simulation of frac-
ture networks which neglect the influence of the matrix altogether and only model fluid
flow in the fracture network. Apart from this approach, which is only justified for rocks
with very small matrix conductivity, there have been finite element models which employ
elements of different dimensionality. The term discrete model can be found in the literature
for both approaches; to distinguish both the former is also called discrete fracture network
model. The combination of discrete fracture network models with a continuum model is
also known as the hybrid model. Wilson and Witherspoon (1974) was one of the earliest
papers on numerical simulation of water flow in fractured porous media. It contains two
finite element models, one with two-dimensional elements for rock matrix and fractures
and one model with one-dimensional elements for the fracture network which does not
take the rock matrix into account. Gureghian (1975) formulated a finite element model
in three space dimensions with tetrahedral elements in the rock matrix and triangular ele-
ments in the fractures; a similar approach is presented in Baca et al. (1984) and in Eaton
and Bixler (1987). The approach of element types of different dimension is also pursued
in Woodbury and Zhang (2001); Sudicky and McLaren (1998).

The investigation of unsaturated flow received less attention in the past. J. S. Y. Wang
and T. N. Narasimhan (1985) modeled unsaturated flow with a discrete fracture approach.
Berkowitz et al. (1988) considered solute transport in a fractured porous medium with
discrete fractures modeled by one-dimensional equations and the matrix modeled by two-
dimensional equations, coupled by exchange terms. In Helmig (1993) mixed-dimensional
elements were employed for two-phase flow; see also ROCKFLOW (1986–2003).

We consider the lack of an exchange term between fractures and rock matrix in the
discrete model to be an important conceptual advantage of our method.

The assumptions which are imposed on the model can be summarized as follows.



8 Reichenberger et al. | A mixed-dimensional FVM for multiphase flow in fractured porous media

1. We assume that fracture width is orders of magnitude smaller than the fracture
length. Fractures are of essentially planar geometry, with an associated aperture in
each point.

2. We assume that the multiphase fluid flow equations (11) are valid in the rock matrix
and the fractures, i. e. the multiphase extension of Darcy’s law is valid. This implies
that we assume a laminar flow regime in both domains and that an rev can be found
for fracture and matrix. Multi-component and non-isothermal behavior of the fluids
is not considered.

3. The absolute permeability of the fractures is larger than the absolute permeability of
the rock matrix. Fractures may be open or filled, but we do not consider blocking
fractures.

4. Relative permeability functions and capillary pressure functions exist for fractures
and matrix. The capillary pressure function is assumed to be strictly monotone de-
creasing, and we assume that the capillary pressure functions for rock and matrix do
not intersect.

5. The wetting phase exists and is mobile in fractures and rock matrix.

3 Discretization with a vertex centered finite
volume method

The character of multi-phase flow problems in porous media with discretely modeled frac-
tures brings along with it some requirements for the discretization method. The complex
geometry of fractured media can only be represented with unstructured grids. Conse-
quently, the numerical scheme has to work on unstructured grids. Special attention has to
be given to the fact that solutions of the multiphase flow equation (11) can exhibit sharp
fronts. This suggests a locally mass conservative method since methods which are not lo-
cally mass conservative can fail to predict the correct location of shocks or sharp fronts (see
Hou and LeFloch, 1994; LeVeque, 2002). Finite volume methods are suited for unstruc-
tured grids and are locally mass conservative. Properties of the finite volume method are
analyzed in Bey (1998); Michev (1996).

For the time discretization we have to consider that for parabolic equations explicit
methods are only stable if the time step ∆t is on the order O(h2) with h being the mesh
size. This leads to very small time step sizes if the mesh is sufficiently fine. In order to be
able to apply the method to a wide range of applications with large time steps, we choose
an implicit time discretization method. The implicit time discretization generates large
nonlinear systems of equations. They can be solved by inexact Newton methods. The
linearized systems in the Newton method can be solved efficiently by multigrid methods,
possibly accelerated by a Krylov-subspace method such as GMRES or Bi-CGSTAB.

A popular method in the context of reservoir modeling is the IMPES scheme (im-
plicit pressure, explicit saturation), which decouples the equations into an elliptic water
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phase pressure equation (which is solved implicitly) and a NAPL phase saturation equa-
tion (which is solved explicitly). The fully coupled, fully implicit approach has the advan-
tage of being more robust and applicable to a wider range of problems. It also avoids the
possibly very small time step sizes of the explicit saturation step. The stability of the fully
coupled fully implicit scheme allows for larger time steps, although they should not be
taken too large for accuracy reasons.

To compute a numerical solution for the two-phase flow equations, first an adequate
formulation for the problem has to be found. This is done in section 3.1. Then the finite
volume method is presented in sections 3.2 to 3.6. The description of the discretization
method considers the domains Ωm and Ωf separately and then explains how a coupled
treatment within the framework of conforming methods is possible. The concluding
sections give an overview of the time discretization, the Newton method, the multigrid
method and related implementational issues.

3.1 The phase pressure-saturation formulation

As already pointed out, only two out of the four variables pw, pn, Sw, and Sn in the
multiphase flow equations (11) can be chosen as independent variables. We choose the
substitutions

(15) Sw = 1 − Sn, pn = pw + pc(1 − Sn)

to obtain the (pw, Sn)-formulation. Other choices are possible, see Helmig (1997). De-
spite the choice of Sn as a primary unknown, we sometimes write Sw in the following if
it facilitates reading. Of course a similar exchange of pw and pn is not possible, because
the choice of pw as an independent variable has larger implications. Formulations based
on pw assume that the water phase exists everywhere in the domain. Because we consider
problems in initially fully water-saturated domains with a residual water saturation (i. e.
the water phase is never completely replaced by gas) this is the appropriate choice.

The equations now read

∂(Φρw(Sw))

∂t
−∇ · (ρw

krw

µw
K(∇pw − ρwg)) −ρwqw = 0,(16a)

∂(Φρn(Sn))

∂t
−∇ · (ρn

krg

µn
K(∇pw +∇pc(Sw) − ρng)) −ρnqn = 0,(16b)

where we used Sw for 1−Sn. We consider these equations in (0, T)×Ω. Ω ⊂ Rd, (d = 2, 3)

is a domain with polygonal or polyhedral boundary for d = 2 and d = 3 respectively. The
equations are complemented with initial conditions and boundary conditions of Neu-
mann or Dirichlet type on the respective boundaries Γαn and Γαd

pw(x, 0) = pw0(x) Sn(x, 0) = Sn0(x) ∀x ∈ Ω ,(17a)
pw(x, t) = pwd(x, t) on Γwd Sn(x, t) = Snd(x, t) on Γnd ,(17b)

ρwvw · n = φw(x, t) on Γwn ρnvn · n = φn(x, t) on Γnn.(17c)

If both phases are incompressible no initial condition for pw is required. Γ
p
wd should have

positive measure to determine pw uniquely.
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In the following we assume the dependencies

g = constant(18)
qα = qα(x, t)(19)
pc = pc(x, Sw)(20)

krα = krα(x, Sα)(21)
ρα = ρα(pα)(22)
µα = µα(pα)(23)
Φ = Φ(x)(24)

The influence of fractures on the fluid flow is included through the dependency of the
quantities in equation (24) on the position, i. e. the values are different depending on
whether they are evaluated in a fracture or in the rock matrix.

3.2 The geometry of the problem

In the previous section the domain was only specified with respect to the shape of its
boundary and without the description of fractures. We now explain the assumptions on
the fracture network which are essential for the discretization method. In the following
superscript m denotes entities in the volumetric rock matrix and superscript f denotes
entities in the fracture network.

Let Ω ⊂ Rd be a polygonal or polyhedral domain for d = 2 or d = 3, respectively.
The domain contains a nonempty set of fractures {f1, . . . , fF}. Each fracture fi is a (d − 1)-
dimensional object—i. e. we identify each fracture with its middle surface—and each frac-
ture fi has a width wi associated with it, which may be variable in the fracture. For simplic-
ity we assume the fractures to have a planar geometry: In a two-dimensional domain the
fractures are line segments and in a three-dimensional domain we assume polygonal shape
of the fractures (although circular or elliptic shapes can also be treated by the method, as
well as non-planar shapes). The union of the fractures constitutes the fracture network

(25) Ωf =

F⋃
i=1

fi ⊂ Ω.

The domain of the rock matrix Ωm is the whole domain,

(26) Ωm = Ω.

This means that the domains of the fracture network and the rock matrix overlap.

3.3 The finite volume grids and the dual grids

The discretization method requires a mesh for Ωm and Ωf. For the volumetric mesh we
consider a subdivision Em

h of Ωm into K elements Ωe, Em
h = {Ω1, . . . ,ΩK} with

⋃
e Ωe = Ω

and Ωe∩Ωf = ∅ for e 6= f. Ωe is the open subdomain covered by the element with index e.
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Figure 2: Example domain with fractures and mesh resolving the fracture network geom-
etry.

h denotes the diameter of the largest element. The subdivision has to resolve the geometry
of the fractures fi, comparable to domains with inner boundaries.

Figure 2 shows an example for a two-dimensional mesh. The volumetric elements Ωe

of Em
h are triangles or quadrilaterals in two dimensions and tetrahedra, pyramids, prisms,

or hexahedra in three dimensions. Hybrid grids, i. e. grids of mixed element type are
admissible, but we require that Em

h is a triangulation: No vertex of an element lies in the
interior of a side of another element.

The volumetric elements are complemented with lower dimensional elements on the
fractures which are line elements for two-dimensional problems and triangles or quadri-
laterals for three-dimensional problems. The fracture elements constitute a mesh Ef

h =

{Ωf
1, . . . ,Ωf

Kf } which is conforming with the volumetric mesh, i. e. each Ωe is an element
side or face for the two-dimensional and three-dimensional case, respectively.

The vertex centered finite volume method requires the construction of a secondary mesh
Bm

h . For the volumetric mesh it is constructed by connecting element barycenters with
edge midpoints as shown in figure 3 in two dimensions. In three dimensions, first the ele-
ment barycenters are connected to element face barycenters and then these are connected
with edge midpoints. Vertices of the grid are denoted by vi and their corresponding co-
ordinate vector by xi. By construction each control volume contains exactly one vertex,
and the control volume containing vertex vi is denoted by bm

i . The generation of the
dual grid for the fractures happens in the same way for two-dimensional fractures. One-
dimensional elements are simply divided into parts of equal length. This construction
results in a conforming dual mesh for volumetric and fracture elements. The fracture dual
mesh is denoted Bf

h.
The internal skeleton of the volumetric dual grid consists of the sides of the control

volumes. The interface between control volume b and b′ inside of element e is denoted by

(27) γe,b,b′ = ∂Ωe ∩ ∂Ωb ∩ ∂Ωb′ for e ∈ Em
h , b, b′ ∈ Bm

h
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Figure 3: Mesh, dual grid and fracture elements/volumes.

and the union of all internal edges of the volumetric dual grid is denoted by

(28) Γm
int = {γe,b,b′ | e ∈ Em

h , b, b′ ∈ Bm
h }.

For the fracture dual grid the intersection of control volume b and b′ on the edge between
elements e and f is

(29) γe,f,b,b′ = ∂Ωe ∩ ∂Ωf ∩ ∂Ωb ∩ ∂Ωb′ for e, f ∈ Ef
h, b, b′ ∈ Bf

h

and the union of all internal control volume intersections (which are points for one-
dimensional fractures and edges for two-dimensional fractures) of the fracture dual grid is
denoted by

(30) Γf
int = {γe,f,b,b′ | e, f ∈ Ef

h, b, b′ ∈ Bf
h}.

In the two-dimensional case, γe,f,b,b′ is already determined uniquely by e and f (or b and
b′), but in the three-dimensional case all four are needed.

The external skeleton is the union of the element sides on the domain boundary, defined
for the volumetric dual mesh and the fracture dual mesh,

Γm
ext = {γe,b | γe,b = ∂Ωe ∩ ∂Ωb ∩ ∂Ω for e ∈ Em

h , b ∈ Bm
h },(31)

Γf
ext = {γe,f,b | γe,f,b = ∂Ωe ∩ ∂Ωf ∩ ∂Ωb ∩ ∂Ω for e ∈ Ef

h, b ∈ Bf
h}.(32)

With each element of the skeleton we associate a fixed unit normal n. For γ ∈ Γm
ext and

γ ∈ Γf
ext we choose the outward unit normal. For interior sides the direction of n is chosen

arbitrarily, but fixed—a possible choice is to let n point from the element with the larger
index to the element with the lower index.

For any function f defined on Ω, which may be discontinuous on Γm
int and Γf

int, we define
the jump of f at x ∈ γ ∈ Γint to be

(33) [v](x) = lim
ε→0+

v(x + εn) − lim
ε→0+

v(x − εn).
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element
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Figure 4: Notation for control volumes

3.4 Approximation spaces and weak formulation

For the discretization we introduce the standard conforming, piecewise linear finite ele-
ment spaces in the matrix and fracture domain

Vm
h = {v ∈ C0(Ωm) | v is linear on Ωe ∈ Em

h },(34)

Vf
h = {v ∈ C0(Ωf) | v is linear on Ωe ∈ Ef

h},(35)

and the non-conforming test space Wh (based on the secondary mesh)

Wh = {w ∈ L2(Ωm) | w is constant on each bi ∈ Bm
h },(36)

Wf
h = {w ∈ L2(Ωf) | w is constant on each bf

i ∈ Bf
h}.(37)

Figure 5 shows two basis functions for Vm
h and Vf

h. Depending on the element type (e.g.
for quadrilaterals), the term linear has to be replaced by multi-linear in (34),(35) as well as
in the following.

We will only describe the treatment of homogeneous Dirichlet-type boundary condi-
tions to keep the presentation free from notational abundance. The subspaces for ho-
mogeneous Dirichlet boundary conditions for fracture and matrix and the both phases
α = g,w are

Vτ
hα0 = {v ∈ Vτ

h | v|Γαd
= 0},(38)

Wτ
hα0 = {w ∈ Wτ

h | w|Γαd
= 0},(39)

with τ = m, f. General Dirichlet boundary conditions can be treated as in Bastian (1999).
In the case of inhomogeneous Dirichlet boundary conditions it is necessary to employ sep-
arate function spaces for water pressure and gas saturation, which adhere to the respective
boundary conditions. These spaces can depend on time, a feature which is not explicitly
mentioned. This is only a notational convenience and at all times Vτ

hα0 and Wτ
hα0 should

be thought of as Vτ
hα0(t) and Wτ

hα0(t).
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Figure 5: Basis functions for volumetric elements and fracture elements.

3.5 Discontinuous saturation spaces and projections

The phase saturations Sn and Sw are a discontinuous quantity at interfaces between media
with different properties as well as at all vertices vi ∈ Ωf

h, because these vertices are shared
by the rock matrix and the fracture network. A discontinuous saturation can not be repre-
sented by the standard conforming finite element spaces Vm

h and Vf
h so instead we choose

discontinuous saturation spaces

Sm
h = {v ∈ L2(Ωm) | v|Ωe

linear for Ωe ∈ Em
h },(40)

Sf
h = {v ∈ L2(Ωf) | v|Ωe

linear for Ωe ∈ Ef
h}.(41)

By means of the mappings Πm and Πf,

Πm : Vm
h → Sm

h ,(42)

Πf : Vf
h → Sf

h,(43)

it is possible to formulate the discretization by the conforming finite element functions
from the previous section, but to employ the correct discontinuous saturation function
wherever appropriate. These mappings employ the extended interface conditions from
section 2.3.

Sm
h is only continuous within elements so we define the mapping for a given x ∈ Ωe.

The values of the function

(44) sm
h = Πmvh vh ∈ Vm

h , sh ∈ Sm
h

are uniquely determined by the values of sh in the corners of Ωe by

(45) sh(x) = Πmvh(x) =
∑

i∈V(e)

Se
i ϕm

i (x)

where V(e) is the set of indices of the corner vertices of Ωe and the value Se
i at corner

vertex vi is found by

(46) Se
i =


v(xi) if pc(xe, 1 − v(xi)) = pcmin(xi),

0 if pcmin(xi) < pc(xe, 1),

1 − S else, with S from pc(xe, S) = pcmin(xi).
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vh ∈ Vh Πmvh ΠfΛvh

Figure 6: A function vh ∈ Vh and the mapping into the saturation spaces, Πmvh and
ΠfΛvh.

Here we employ the minimal capillary pressure function pcmin(x) defined as

(47) pcmin(x) = min
Ωe∈E(x)

pc(xe, 1 − v(x))

and we denote the element barycenter of element e as xe. E(x) is the set of elements which
contain x in their closure,

(48) E(x) = {Ωe ∈ Ωm ∪Ωf | x ∈ Ωe}.

For fractures the same construction is employed, only that the fracture basis functions
are used instead of matrix basis functions,

(49) sh(x) = Πfvh(x) =
∑

i∈V(e)

Se
i ϕf

i(x) for sh ∈ Sf
h, vh ∈ Vf

h

The connection between the spaces Vm
h and Vf

h is created by the projection Λ. So far,
Vm

h and Vf
h have been treated as separate spaces with separate unknowns in the vertices of

the grid. The projection

(50) Λ : Vm
h → Vf

h

vm
h 7→ vf

h with vm
h (x) = vf

h(x) for all x ∈ Ωf.

is the function which maps the finite element function vm
h defined in the matrix to the

finite element function vf
h defined in the fracture network whose values coincide in the

fracture network. Figure 6 shows a function vh ∈ Vh and the mappings Πmvh into the
matrix space and ΠmΛvh into the fracture space.

3.6 Weak formulation

The weak formulation of equations (16) for the rock matrix is found by multiplying with
the test functions and integration by parts. We employ the following forms in the formu-
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lation of the weak form for the rock matrix:

mm
w (pwh, Snh, wm

wh, wm
nh) :=

∂

∂t

∑
b∈Bm

h

∫
b

Φρw(1 − ΠmSnh)dx(51a)

am
w (pwh, Snh, wm

wh, wm
nh) :=

∑
γ∈Γm

int

∫
γ

ρwvw · n[wm
wh]ds(51b)

+
∑

γ∈Γm
ext∩Γwn

φwwm
wh ds −

∑
b∈Bm

h

∫
b

ρwqw dx

mm
n (pwh, Snh, wm

wh, wm
nh) :=

∂

∂t

∑
b∈Bm

h

∫
b

ΦρnΠmSnh dx(51c)

am
n (pwh, Snh, wm

wh, wm
nh) :=

∑
γ∈Γm

int

∫
γ

ρnvn · n[wm
nh]ds(51d)

+
∑

γ∈Γm
ext∩Γnn

φnwm
nh ds −

∑
b∈Bm

h

∫
b

ρnqn dx

The terms in mm
α are called accumulation term and the terms in am

α are called internal
flux term, boundary flux term and source and sink term, respectively. For the numerical
evaluation of the accumulation term we employ a midpoint rule, which corresponds to
the mass lumping approach in the finite element method. The Darcy velocities in the
interior flux terms are evaluated with an upwind scheme. For the water phase this is for a
given side γ = γe,b,b′

(52)
∫
γ

ρwvw · n[wh]ds =

∫
γ

ρwλ?
wγṽw · n[wh]ds

with the upwind evaluation of the mobility

(53) λ?
wγ = (1 − β)λwh(xγ) + β ·

{
λwh(xb) if ṽw · n ≥ 0

λwh(xb′) else

and the directional part of the velocity

(54) ṽw = −K(xe)(∇p(xγ) − ρw(xγ)g)

xγ is the barycenter of γ and xb is the grid vertex inside control volume b. The source and
sink terms and the boundary flux terms are evaluated by the midpoint rule. The analogous
evaluation scheme is employed for the non-wetting phase saturation. The parameter β

controls the upwinding strategy. For β = 1 full upwinding is achieved, while β = 0 results
in a central differencing scheme. We employ a fixed β, but adaptive choices depending on
the local Peclet number are possible (Michev, 1996).

The corresponding forms for the fracture space mf(·, ·, ·, ·) and af(·, ·, ·, ·) are derived by
replacing superscript m with f and using the projections Λ of pw and Sn instead of pw and
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Sn directly.

mf
w(Λpwh, ΛSnh, wf

wh, wf
nh) :=

∂

∂t

∑
b∈Bf

h

∫
b

Φρw(1 − ΛΠfSnh)dx(55a)

af
w(Λpwh, ΛSnh, wf

wh, wf
nh) :=

∑
γ∈Γf

int

∫
γ

ρwvw · n[wf
wh]ds(55b)

+
∑

γ∈Γf
ext∩Γwn

φwwf
wh ds −

∑
b∈Bf

h

∫
b

ρwqw dx

mf
n(Λpwh, ΛSnh, wf

wh, wf
nh) :=

∂

∂t

∑
b∈Bf

h

∫
b

ΦρnΠfΛSnh dx(55c)

af
n(Λpwh, ΛSnh, wf

wh, wf
nh) :=

∑
γ∈Γf

int

∫
γ

ρnvn · n[wf
nh]ds(55d)

+
∑

γ∈Γf
ext∩Γnn

φnwf
nh ds −

∑
b∈Bf

h

∫
b

ρnqn dx

In the evaluation of these terms the lower dimension of the integrals has to be taken
into account by using appropriate integral transformations and in the evaluation of the
directional velocity.

Note that both wm
wh and wm

nh are only necessary in (51) and (55) if Dirichlet boundary
conditions are present in different parts of the boundary for pw and Sn. Additionally, wf

wh

and wf
nh are just a notational convenience: The fracture space test functions are related to

the matrix space test functions by a projection Ξ : wm
αh 7→ wf

αh.
The final formulation of the coupled scheme is now found by adding the two bilinear

forms: Find pwh ∈ Vhw0 and Snh ∈ Vhg0 such that for all wnh ∈ Wm
hg0, wwh ∈ Wm

hw0 and
0 < t < T

(56) m(pwh, Snh, wwh, wnh) + a(Λpwh, ΛSnh, wwh, wnh) =

mm(pwh, Snh, wwh, wnh) + mf(Λpwh, ΛSnh, Ξwwh, Ξwnh)

+ am(pwh, Snh, wwh, wnh) + af(Λpwh, ΛSnh, Ξwwh, Ξwnh) = 0.

3.7 Time discretization

The traditional approach to the numerical solution of time-dependent partial differential
equations is by the method of lines. First, a spatial discretization is applied to the problem
(i. e. the finite volume method from the previous section), which leads to a system of
ordinary differential equations. This system is then solved by a time differencing scheme
which can be chosen from the wide range of available methods (Hairer and Wanner, 1996;
Thomée, 1997). The arising systems of ordinary differential equations are stiff and should
be treated by implicit methods.

We divide the time interval (0, T) into discrete time steps

0 = t0, . . . , tM = T
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of variable or fixed size and employ superscript n notation for functions (e. g. pwh) and
coefficient vectors (e. g. Snh) denoting values at time step tn:

pwh(tn) = pn
wh and Snh(tn) = Sn

nh.

We employ the standard (multi-)linear nodal finite element basis; this introduces a unique
relationship between the discrete functions pwh, Snh and their coefficient vectors pw and
Sn.

The application of the finite volume discretization scheme leads to the semi-discretization

∂

∂t
Mw(pw(t), Sn(t)) + Aw(pw(t), Sn(t)) = 0,(57)

∂

∂t
Mn(pw(t), Sn(t)) + An(pw(t), Sn(t)) = 0,(58)

where M corresponds to m and A corresponds to a. The system can be written as

(59)
(

Mww Mwn

Mnw Mnn

)(∂pw(t)
∂t

∂Sn(t)
∂t

)
+

(
Aw(pw, Sn)

An(pw, Sn)

)
= 0

with the submatrices

(60) (Mαw)ij =
∂Mαw,i

∂pw,j
(Mαg)ij =

∂Mαg,i

∂Sn,j
.

This results in a system of differential algebraic equations (DAE) of index 1 in implicit
form. The matrix M,

(61) M =

(
Mww Mwn

Mnw Mnn

)
,

is singular in the incompressible case. An analysis for the incompressible case shows that a
discrete form of the elliptic equation has to be satisfied. This is called the implicit constraint.
One backward Euler step guarantees the validity of the implicit constraint. Time steps
computed with other choices than θ = 0 in the one step θ method below do not fulfill this
property, but they leave the implicit constraint fulfilled if it is satisfied in the preceding
time step. For this reason, we always employ one backward Euler step as the first time
step, regardless of the time differencing scheme of the subsequent steps.

The time step scheme in the one step θ notation reads: For n = 0, 1, . . . ,M − 1 find pn
w,

Sn
n such that for α = w,n

(62) Mn+1
α + Mn

α + ∆tnθ(An+1
α ) + ∆tn(1 − θ)(An

α) = 0

For θ = 0 this yields the backward (or implicit) Euler scheme, θ = 1/2 yields the Crank-
Nicholson scheme. The implicit Euler scheme is first-order accurate and has very good
stability (strongly A-stable, Hairer and Wanner (1996)), the Crank-Nicholson scheme is
second order accurate but has weaker damping properties which may cause stability prob-
lems (only A-stable).
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Closely related is the fractional-step-θ scheme. It consists of three sub-steps tn →
tn+α → tn+1−α → tn+1, where each sub-step k is a one-step-θ step with θk and ∆tk

chosen as

θ1 = 2 −
√

2 ∆t1 = (1 −
√

2/2)∆t = α∆t,

θ2 =
√

2 − 1 ∆t2 = (
√

2 − 1)∆t = (1 − α)∆t,

θ3 = 2 −
√

2 ∆t3 = (1 −
√

2/2)∆t = α∆t

The θi can be chosen different than above as long as θ1 = θ3 = θ ∈ (1/2, 1], and θ2 = 1−θ

holds. The fractional-step-θ scheme is of second order for α = 1 −
√

2/2 and strongly A-
stable for any θ ∈ (1/2, 1]. The scheme possesses, other than the Crank-Nicholson scheme,
the full smoothing property in case of rough initial data. Note that the sub-stepping does
not result in higher computational cost since the step size ∆t can be chosen three times
larger than for the single-step-θ scheme.

3.8 Nonlinear and linear system solution

In the fully coupled, fully implicit discretization a large system of nonlinear equations
has to be solved in each time step and an accurate solution of the equations is necessary,
because otherwise the local mass conservation could be destroyed. The nonlinear system
solution is done with an inexact Newton method, where the linearized systems arising in
each step of the Newton method are solved iteratively with a multigrid method. In the first
steps of the nonlinear scheme, the approximate iterative solution of the linearized systems
does not deteriorate the convergence of the nonlinear solver which converges quadratically
only in a close neighborhood of the solution. In a close neighborhood of the solution the
defect reduction in the linear solver should be chosen adequately small. To ensure global
convergence, a line search algorithm is applied in the Newton steps (see Braess, 1992).

3.8.1 Inexact Newton method

The discretization scheme leads to a system of nonlinear algebraic equations

(63) F(z) = 0

with a vector z which contains pressure and saturation unknowns,

(64) z = (pw,1, . . . , pw,N, Sn,1, . . . , Sn,N)T

and a vector function F with components

(65) F = (Fw,1, . . . , Fw,N, Fn,1, . . . , Fn,N)T .

For the one step θ scheme the components are given by

(66) Fα = Mn+1
α − Mn

α + ∆tnθ(An+1
α ) + ∆tn(1 − θ)(An

α).

Dirichlet values are included in the equation and treated by inserting a trivial equation.
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The linearized equations are described by the Jacobian matrix J of F at point z,

(67) (J(z))ij =
∂Fi

∂zj
(z).

The entries of A are computed by numerical differentiation,

(68)
∂Ji

∂zj
(z) =

Fi(z + ∆zjej) − Fi(z)

∆zj
+ (O)(∆zj)

A description of the inexact Newton algorithm can be found in Bastian (1999). In order
to achieve global convergence of the method a simple line search strategy is employed in
the Newton method. Initial guesses for the solution can be found from the solution of
the last time step—which usually gives good initial guesses as long as the time step size is
not too large—or by a hierarchical strategy, where the nonlinear system is solved on the
coarsest mesh and then the solution is interpolated to the finer mesh, where this is taken
as the initial guess. The process is repeated up to the finest grid level. This is an effective
strategy for the first time step, where no previous solution is available. A combination
of both approaches is possible and advantageous for large time steps, where the initial
solution on level 0 uses the solution from the previous time step as an initial guess.

3.8.2 Multigrid solution of the linearized equations

The solution of the linearized equations typically dominates the overall runtime of fully
coupled, fully implicit schemes, so an efficient solution strategy is the key to an over-
all efficient scheme. The fastest solvers are multigrid methods (Hackbusch, 1985), with
an optimal complexity of O(N), where N is the number of unknowns in the system of
linear equations. A further acceleration of the solution process is achieved by using the
BiCGSTAB-method (van der Vorst, 1992) together with the multigrid method.

In practice, difficulties with multigrid convergence can arise from problems with discon-
tinuities, anisotropic problems or convection dominated convection-diffusion problems.
Since the interface between fractures and matrix is resolved by the coarse grid, the first
problem is less severe. We employ the diagonally scaled/truncated restriction multigrid
algorithm of Bastian (1999) to improve multigrid convergence in the presence of discon-
tinuous material coefficients. The anisotropy of the fractured domain is treated by the
mixed-dimensional approach, which remedies the most severe anisotropies introduced by
the thin fractures. In order to achieve a robust scheme for locally refined grids, we employ
the local multigrid method of Bastian et al. (1997).

The standard multigrid smoothers are not directly applicable to the Jacobian system,
because some rows in the Aww block of the matrix may vanish. This problem of point-
wise smoothers can be circumvented by using a point-block ordering and block variants
of the smoothers. This approach was used in Bastian (1999); Bastian and Helmig (1999).
We order the unknowns belonging to one vertex together, resulting in an ordering

(69) z̃ = (pw,1, Sn,1, . . . , pw,N, Sn,N)T
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which corresponds to a permutation of z with the permutation matrix Q,

(70) z̃ = Qz.

Q transforms the system into the equivalent system

(71) Ãz̃ = ẽ

with

(72) Ã = QAQT , z̃ = Qz, ẽ = Qe.

The matrix A has a block structure with N×N blocks Ãij of size 2× 2,

(73) Ã =

 Ã11 · · · Ã1N

...
...

ÃN1 · · · ÃNN

 .

Iterative schemes can now be applied because blocks Ãij can only become singular at
boundaries where ρwvw · n = φw and Sn(x, t) = 1, but this boundary condition is not
physically meaningful, since no water phase exists at points where Sn = 1 holds, and
consequently no condition can be imposed on the water flux.

3.9 Implementation issues

The simulator is implemented based on the numerical software toolbox UG (Bastian et al.,
1997). The large number of features (adaptivity on hybrid grids in 3D, parallelization)
could otherwise not be achieved.

The implementation of finite volume codes often uses a loop over all elements and
calculates the contribution of the dual grid skeleton from inside each element. The imple-
mentation of the presented method for rock matrix and fractures can be done based on a
volumetric element code without the need to introduce the notion of lower-dimensional
elements into the code, if fractures are represented as inner boundaries and if each element
calculates not only the contributions from Γm

int, but also from Γf
int. Calculation of the con-

tribution to the stiffness matrix and the defect from γe,f,b,b′ is done by element Ωe and
Ωf which each contribute half of the value. This approach is advantageous, because it stays
within the element-wise implementation paradigm and doesn’t require data communica-
tion if the method is implemented on parallel computers with a domain decomposition
approach.

Numerical simulations of multi-phase flow in fractured porous media rely on accurate
knowledge about the material properties and domain geometry. In fractured systems the
exact location of the fractures is often not known, but a good approximation of the fracture
network is crucial for the simulation process. In these situations a fracture generator can be
employed to generate fracture networks based on prescribed geological data. An example
for a fractured domain generator is FRAC3D (Silberhorn-Hemminger, 2002), which was
used to generate the example presented in section 4.2.
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3
2

1

4

Figure 7: Four domain features which are difficult for automatic mesh generation (left)
and possible elements of good quality (green) and poor quality (red) for parallel
and almost parallel fractures (right).

The automatic generation of meshes has persisted as one of the most challenging tasks
of the simulation process. The mesh generation for fractured porous media has to treat
four configurations which are especially difficult. They are depicted in figure 7 for a two-
dimensional domain, but the even more severe difficulties for three-dimensional domains
can be traced back to these fundamental configurations:

1. Fracture intersections, where one fracture end protrudes only slightly from the inter-
section. A fine mesh is required in the vicinity of this region, which should coarsen
rapidly outside this region. In three-dimensional domains, the protruding fracture
end can have a “difficult” shape, e. g. a very flat triangle.

2. Almost meeting fractures, where one fracture ends in close proximity to the other.
The mesh should also possess a fine resolution only near this region.

3. Parallel fractures very close to each other should be meshed with quadrilaterals in
two space dimensions and with hexahedrons or prisms in three space dimensions,
because they can cause the generation of elements with large inner angles.

4. Fractures intersecting at a very small angle can lead to the generation of elements
with very large angles.

In both latter cases, automatic mesh generation is especially susceptible if the grid vertices
are placed by a penalty functional which aims at an even distribution of vertices. In the
case of parallel or almost parallel fractures this necessarily leads to large angles, where two
vertices on the two fractures, placed close to each other, would produce preferable ele-
ments. This is illustrated on the right in figure 7. Even if the green quadrilateral elements
are divided into triangles, their largest angles are still close to 90◦, while the largest angles
of the red elements are close to 180◦. Grids for the examples in the following section were
created with the mesh generator ART (Fuchs, 1999).

Finally, the visualization of fractured porous media requires rendering of values on hy-
perplanes and separate data sets for saturation values in fractures and matrix. Visualizations
in the following section were done with OpenDX (OpenDX).
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Figure 8: Sketch of the domain for the vertical water-gas flow example and Sg and uw at
t = 70 s.

4 Examples

Both following examples are taken from Reichenberger (2004).

4.1 Validation of the model

The first numerical experiment is chosen to assess the difference between a lower-dimen-
sional fracture approach and a fracture with volumetric elements. The setup includes one
vertical fracture inside a domain of 1[m] × 1[m]; a sketch is displayed in figure 8. The
fracture is located along the line from (0.5m, 0.2m) to (0.5m, 0.8m). We consider inflow
of a compressible gas phase at the south boundary.

The parameters of the simulation are artificially chosen but give a representative picture
of fracture-matrix interaction. The parameters are

ρw = 1000 [kg/m3] ρg =
pn

84149.6
[kg/m3]

µw = 10−3 [Pa s] µg = 1.65 · 10−5 [Pa s]

Φf = 0.3 Φm = 0.1

Kf = 10−8 Km = 10−12

Sf
wr = 0 Sm

wr = 0

Sf
gr = 0 Sm

gr = 0

λf = 2 λm = 2

λf = 1000 [Pa] λm = 2000 [Pa]

The fracture width b is chosen as 0.005 [m]. Boundary conditions are Sg = pw = 0 on
the north boundary, and Neumann boundary conditions elsewhere. At the south bound-
ary the value of the Neumann boundary condition for the saturation is −2.5·10−5 [kg/m2],
all remaining Neumann boundary condition values are 0.
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Figure 9: Comparison of the gas saturation along the vertical line at times t = 74s and
t = 100s for b = 0.005 on level l = 4.

Without the fracture, the problem would be quasi one-dimensional, but a look at the
flow field reveals how the influence of the fracture affects the solution behavior (figure 8,
right). We choose a vertical fracture in order to exclude as much grid dependent phenom-
ena as possible from the experiment.

Two different coarse grids are employed. The first grid employs the mixed dimensional
finite volume method and models the fracture by one-dimensional elements. The sec-
ond grid resolves the fracture with two-dimensional elements, using only quadrilateral
elements. The number of elements and nodes in the grids for each refinement level is
given in table 1. For the simulation we employ the backward Euler scheme with fixed time
step size. The nonlinear equations are solved by the inexact Newton method with line
search. The linear systems are solved with the V(2,2)-cycle multigrid method with ILU
smoothing, accelerated by Bi-CGSTAB.

We compared the discretization schemes by plotting the value of Sg at different time

one-dimensional two-dimensional
Level l ∆t [s] #E #N #E #N

2 2 153 128 221 192
3 1 561 512 825 768
4 0.5 2145 2048 3185 3072
5 0.25 8385 8192 12513 12288
6 0.5 33153 32768
7 0.25 131841 131072

Table 1: Time step ∆t, number of elements #E and nodes #N for grids of the vertical gas
flow problem.
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steps along the line from (0.5, 0) to (0.5, 1). The time steps are chosen as t = 74 s, 100 s.
At t = 74 s gas has entered the fracture and at t = 100 s the gas has reached the fracture
end and has penetrated the matrix. In figure 9 we display the shape of the saturation curve
for the two discretizations at t = 74 s and t = 100 s. This is an interesting comparison,
because it compares the mixed-dimensional model with a “trusted one”, the model with
only two-dimensional elements.

The difference in the location of the gas front arises from the different inflow behav-
ior between the models and is not (only) caused by numerical inaccuracies—a grid re-
finement study reveals that the saturation curves converge to different solutions. In the
equi-dimensional model, the gas phase can enter the fracture over the lower horizontal
edge of the fracture in addition to inflow of gas into the fracture over the vertical fracture
edges. This difference accounts for more inflow of gas into the fractures. The example
must be considered very challenging for the lower dimensional fracture model, because
it introduces large difference between the mixed-dimensional and the equi-dimensional
models.

Note that the total mass in the system is the same in both realizations. A contradicting
impression could arise because the saturation curve resembles a one-dimensional model
problem and seems to reveal that in the lower-dimensional case less mass is present. This
is not the case—only the mass in the fracture is different. Apparently, the fracture geometry
has a notable influence on the solution. Triangular or rounded shapes of the fracture
ends lead to yet different solutions. The difference are small enough to be of relatively
small significance when compared to other uncertainties associated with the modeling
and simulation process.

We compared the results also for a domain where the fracture extends up to the south
domain boundary and gas flows directly into the fracture. In this case, no differences
between the saturation curves is visible. This implies that in the case of direct inflow of
gas into the fractures, the differences are smaller than in the model example.

We also note that grid convergence for the mixed-dimensional model can be observed
with further refinement (mesh details are given in table 1). For the equi-dimensional
model, a solution on finer grids could not be obtained with reasonable time step sizes.

The differences in obtaining the solution are quite remarkable. In figure 10 we plot the
number of linear multigrid cycles necessary for the simulation with 400 time steps. The
systems in the lower-dimensional realization are easier to solve and require less iterations
than the two-dimensional realization. The curves also reveal that the system solution only
starts to get demanding when the gas has reached the fracture and the nonlinearities in the
constitutive relations from the discontinuous material properties make the systems more
difficult to solve.

4.2 3D example

We demonstrate the capability of the numerical simulator with an example of a complex
fracture network. The enclosing domain for the gas-water flow simulation has a size of
12×12×18 [m] and contains an interconnected fracture network with eight fractures. The
domain and the initial coarse grid is shown in figure 11. Two fractures are connected to
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Figure 10: Linear and nonlinear iterations for vertical infiltration problem with b = 0.005

on level l = 4.

Figure 11: Domain with eight fractures and the initial grid.

the south domain boundary. It is through these fractures that the compressible gas phase
enters the system.

The parameters of the simulation are (some of them taken from Wu et al. (2002))

ρw = 1000 [kg/m3] ρg = pg/84149.6 [kg/m3]

µw = 10−3 [Pa s] µg = 1.65 · 10−5 [Pa s]

Φf = 0.084 Φm = 0.114

Kf = 2.41 · 10−12 Km = 3.86 · 10−15

Sf
wr = 0.04 Sm

wr = 0.18

Sf
gr = 0 Sm

gr = 0

λf = 1.13 λm = 0.684

pf
d = 3186.78 [Pa] pm

d = 15559 [Pa]

We prescribe a hydrostatic pressure at the boundaries with pw = 9810 at the north bound-
ary. The boundary condition for the saturation is Sg = 0, except for the south boundary
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with Neumann boundary conditions φ = 0 except for the lines where the fractures inter-
sect the domain boundary. There we set φ = −2.4 · 10−4.

We consider two cases of grid refinement. In the case of uniform refinement 37 million
elements exist on level 5; this grid does not fit into the memory of a single processor
computer. The computation was carried out on the HELICS cluster (HEidelberg LInux
Cluster System) consisting of AMD Athlon 1.3 GHz processors connected by a Myrinet
2000 interconnect. An alternative configuration is reached by local refinement. After one
step of uniform refinement we refine only elements which contain a fracture node. The
resulting grid is then suitable for typical workstation computers; the sequential results
were obtained on a 1.8 GHz PowerMac G5 with 2 GB DDR SDRAM main memory. The
exact number of elements and nodes is shown in table 2. The series of locally refined grids
is depicted in figure 12.

The simulation uses the finite volume scheme with full upwinding and the fractional-
step-θ scheme. In each Newton step a defect reduction of 10−5 is prescribed, and a linear
defect reduction of 10−5. The multigrid method uses a V(2,2)-cycle with symmetric Gauß-
Seidel smoothing. The smoothing is damped with a factor 0.8. The time step size changes
depending on the number of required nonlinear iterations.

Figure 13 shows the gas saturation in the fracture network and the matrix for three time
steps obtained with the locally refined mesh. The gas fills the fracture rapidly and enters the
rock matrix when the entry pressure is reached. The fluid velocity in the fractures depends
on their orientation and is fastest for the almost vertical fractures. At fracture intersections,
the gas distribution is also influenced by the fracture orientation and most gas enters into
fractures with vertical or almost vertical orientation.

uniform refinement local refinement
Level l #E #N #E #N

0 1.143 300 1.143 300
1 9.144 1.943 9.144 1.943
2 73.152 13.833 52.782 9.584
3 585.216 104.033 224.747 40.413
4 4.681.728 806.145 848.863 152.319
5 37.453.824 6.345.473 3.199.899 573.632

Table 2: Grids with uniform and local refinement for the 3D simulation.

#P T [s] ∆t [s] nnl nlin steps TD [s] TA [s] TL [s]
∑

T [s]

16 4.5 0.125 291 1934 36 17.9 40.53 9.44 35260
256 4.5 0.0625 575 4204 72 9.19 19.77 5.01 37714

Table 3: Results from the parallel computation. All times are measured in seconds. Note
that one step of the time stepping scheme consists of three one step θ sub-steps.
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Figure 12: Local grid refinement of the fractured domain.

Figure 13: Saturation in fractures and rock matrix. Saturation in the matrix corresponds to
the isosurface for Sg = 0.01.

The parallel simulation was carried out on 16 and 256 nodes with the uniformly refined
grids. With this configuration, the results in table 3 are obtained. We show the number
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of processors #P, the simulated time T , the time step size ∆t, the number of nonlinear
solution steps nnl, the number of linear solution steps nlin, the number of time steps, the
average execution times for nonlinear defect calculation TD, assembling of the Jacobian TA

and one linear cycle TL and the total computing time
∑

T for obtaining the solution (nnl ·
(TD+TA)+nlin·TL). Note that for one refinement step the number of elements increases by
a factor of eight and that the time step size is halved. This implies that for perfect speedup,
the total execution time

∑
T would be the same for both configurations. Instead, the run

time is only larger by a factor of 1.07. The additional runtime is explained by the longer
time for each multigrid solution cycle and the larger number of nonlinear and linear steps
necessary in the refined computation. The results also show that the method is appropriate
for large Courant numbers (see also Reichenberger (2004)). Note that the time stepping
scheme uses one implicit Euler step and then the fractional θ scheme, which consists of
three one step θ steps. This means that when calculating the average number of Newton
steps in one time step, nnl/(steps), one should divide the number by 3. Rather than eight
Newtons steps (575/72 ≈ 8) for the 64 processor case, the method needs less than three
Newton step on average in each sub step.

5 Conclusion

We presented a fully couple, fully implicit, mixed-dimensional vertex centered finite vol-
ume method for the discretization of multiphase flow problems on unstructured hybrid
grids. The discretization scheme uses multigrid methods for the fast solution of the lin-
earized systems and it’s solution is accelerated by using a parallel implementation. A
comparison for a model problem in 1D showed that the differences between the mixed-
dimensional discretization and a fully volumetric discretization are small. The mixed-
dimensional discretization yields systems which are far easier to solve than fully volumet-
ric discretization approach. In 3D we showed the simulation of compressible gas flow in
a complex fracture network. Through local grid refinement, a suitably fine mesh can be
employed for the fractures, while the problem still fits into memory of a typical desktop
computer.

An extension to the case of multiphase, multicomponent would be very interesting for
long-term nuclear waste repository safety analysis. The flexibility of the simulator also
allows for the simulation of problems from oil reservoir engineering.
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Notation

Upper case latin

Bh Dual grid

Eh Mesh

J Jacobian matrix

K absolute permeability [m2]

Sα saturation of phase α

Sαr residual saturation of phase α

Vh conforming finite volume basis space

Wh finite volume test space

Lower case latin

b box volume (dual grid)

d space dimension (2 or 3)

e, f finite element

g gravity vector [m/s2]

pα phase pressure, α = n,w [Pa]

pc capillary pressure [Pa]

pd entry pressure [Pa]

n normal [-]

vα Darcy velocity of phase α [m/s]

v basis function

w test function

x position in Rd]

Upper case greek

Ω Domain

Ωf Domain of volumetric fractures

Ωm Domain of rock matrix

Ωe Domain of finite element e]

Λ Projection into fracture space

Π Mapping into saturation space

Γint interior grid skeleton

Γext interior grid skeleton

γe,f Side between elements e and f

Lower case greek

α phase n or w

ρ density [kg/m3]

Φ effective porosity [-]

p pressure [Pa]

λ Brooks-Corey parameter [−]

φ Value of Neumann boundary condi-
tion [kg/m2]

µ viscosity [-]

θ time discretization parameter

∆t time step size

Subscript symbols

g gas phase related quantity

n non-wetting phase related quantity

w wetting phase related quantity

Superscript symbols

f A fracture related quantity

m A rock matrix related quantity

n time step
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