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1 INTRODUCTION 
The understanding of the multi-phase flow and transport processes in the environmental problems 

is of capital importance since groundwater is the main source of drinking water supply, agriculture 

and industry in many places of the world.  

The fractured porous media is composed of an interconnected network of fractures and blocks of 

porous medium. The practical applications are important as many natural formations are fractured, 

and accurate models are required for predicting the fate of pollutants in aquifers contaminated by 

industrial, agricultural and radioactive waste. 

Fractures occur in different length scale and have a strong influence because most of the flow is 

concentrated along them. Nevertheless, the rock matrix plays a major role in retarding the 

migration of the contaminants. It can be asserted that transport in fractured systems is characterized 

by advection dominating in the fracture and diffusion in the matrix.  

Numerical simulation of single and multi-phase fluid flow in fractured media is a challenge for the 

engineers and researchers. In the study of contaminant transport in fractured porous media, the bulk 

of the research effort has been devoted to the transport in discrete fracture network models.  

 

Structure of this work 

This study starts with an overview of the different fracture-matrix models, describing their strong 

and weak points, in Chapter 2.   

Further on, Chapter 3 discusses the various mathematical models of subsurface flow and the 

underlying concepts.   

Chapter 4 presents an overview of the different numerical methods and then concentrates on the 

discretization of the two-phase flow equations. For the discrete fracture model approach, a vertex 

centered finite volume scheme has been chosen due to its monotone behavior and applicability to 

unstructured multi-element type meshes in two and three space dimensions. The most suitable time 

discretization is the fully implicit one. For the computation of the single- and two-phase flow 

equations it was used the modeling system MUFTE-UG. Additionally, Chapter 4 describes the 

numerical framework UG and the main components that are required by the numerical simulator. 

Comprehensive numerical results for three different realistic problems involving single- and multi-

phase flow in fractured media are then presented in Chapter 5. Finally, the conclusions for the 

numerical results are drawn in Chapter 6. 
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Objectives of this work 

The first goal of this work is to make a review and compare the different mathematical and 

numerical models that govern the single and the multi-phase flow systems. In that case, by running 

the numerical applications which use these theoretical notions we get a quantitative and a 

qualitative feeling of the processes.  

The second goal is to test the capability of the MUFTE-UG flow simulator with regard to the 

implementation of the lower-dimensional model concept both in two- and three-dimensional 

domains for one- and two-phase flow problem. Moreover, the capability is tested by comparing the 

results to the ones given by other flow simulators. 

One important aspect that has to be kept in mind is the implementation of the interface conditions 

into the discretization.  

For this it was developed a set of three numerical experiments. All simulations were performed, as 

it was already mentioned, with MUFTE-UG flow simulator.  

The first numerical example belongs to a wider international hydrologic code intercomparison 

project (HYDROCOIN 1988) where is simulated the steady state flow in a fractured bedrock. The 

test case is used to verify the capability of MUFTE-UG and to asses the performance of the 

different representation of the zones.  

The second example tests the capability of MUFTE-UG to model two phase flow in 2D fractured 

porous media using the HYDROCOIN geometry as in the one-phase problem. For the first two 

numerical simulations the geometries were created using ART (Almost Regular Triangulation) 

mesh generator.  

The third and the final example demonstrates the applicability and the computational advantages of 

the lower-dimensional fracture approach in three dimensional domain for multi-phase flow. Again, 

the example was previously investigated in several research works (Zielke et al. [1991], Barlag et 

al. [1998]). For generating the geometry ANSYS ICEM v.11.0. was used with STAR-CD 3.2.0 

solver.  
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2 FRACTURE MODELS 
This chapter introduces the basic considerations for the fracture models and describes the main 

properties and assumptions for each model.  

The topology of the fracture-aquifer systems is difficult to understand due to the fact that fractures 

occur on a variety of length scales (Figure 1). Equation Chapter (Next) Section 2 

One reasonable model for describing fractures is the fractal model since the fractures can be found 

on the whole range of scales, as shown by Bonnet et al. [2001]. A fractal is a “set without a 

characteristic length scale.  

 
Figure 1: Fractures occurring on different scales (Silberhorn-Hemminger (2002)) 

Definition 

A fracture is generated in a process of cracking where the coherence (cohesion) in the rock is 

annihilated. A fracture consists of two complementary faces created by the cracking process, the 

fracture surfaces, with an opening in between.  

Principle fracture models 

There are three principal fracture models: discrete, multi-continua and hybrid models. Figure 2 

presents a model with fractures on different scales and the different cut-outs can be described by 

the different models. (i.e. cut-out A is the undisturbed rock matrix and can be described as porous 

media; cut-out B: the highly fissured rock matrix can be considered as a continuum model with an 

equivalent flow and transport properties; cut-out C: the large fractures can be modeled with a 

discrete model; cut-out D: a hybrid models can be applied).  
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Figure 2: Fractured groundwater aquifer with different discontinuities (Kröhn (1991)) 

In the following sections, the three fracture-matrix models will be described in more detail. 

Different conceptual models have been proposed in the literature for flow and transport in fractured 

media, i.e. Juanes et al. [2002]. 

2.1 Discrete Models 
In the study of transport in fractured porous media, the bulk of the research effort has been devoted 

to the transport in discrete fracture network models. These studies have proven to be useful for 

understanding transport phenomena and discrete models are required when the continuum 

approach to the description of the transport problem is not applicable. 

In the discrete models fractures are considered as discrete structures. With such a model, we have 

the possibility to model flow and transport processes very similarly to nature (Reichenberger et al. 

[2004]). Some of the literature for the discrete fracture model has been reviewed in Sahimi [1995] 

and Bear et al. [1993].  

As the fracture aperture is very small compared to the extension of the rock blocks and as the flow 

velocities in the fractures are much higher than in the rock matrix due to the higher permeability, 

the modeling of flow in fractured porous media is very difficult. 

Fractures can be modeled as equidimensional elements (which implies very high demands on net 

generation and the numerical tools for solving the resulting equation system); or lower dimensional 

elements (also referred in literature as mixed dimensional elements). The modeling of flow 

perpendicular to the fracture orientation is more difficult to compute, thus strong assumptions are 

usually required. 

The discrete fracture model is numerically superior to the single-porosity model and overcomes 

limitations of the dual-porosity models (Hoteit.and Firoozabadi [2005]) especially because of the 
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lack of an exchange term between fractures and rock matrix which can be considered an important 

conceptual advantage (see Reichenberger et. al [2006]).However, the applicability of discrete 

models remains quite limited to field problems as they require the determination of the precise 

characteristics of the fracture network in its complete detail. Thus in many practical field problems 

it is worth using continuum models when the conditions necessary to adopt this approach are met.  

The solution for this is to use the geostatistical generated data together with the deterministic data 

for modeling. 

2.2 Multi-continua Models 
In the multi-continua models the assumption that has to be made is that the representative 

elementary volume (REV) cannot be obtained only for the porous medium – the rock matrix – but 

also for the fractured system. Averaged parameters for rock matrix and fracture system are used in 

multi-continua models.  

The transport problem is transformed from the microscopic level to a macroscopic scale at which 

the problem is expressed in terms of averages of the microscopic quantities. The need to know the 

exact local characteristics of the whole domain is circumvented by the use of these average 

quantities. 

 The size of this REV must be larger than the heterogeneity size and much smaller than the 

macroscopic length-scale. It follows that the continuum approach is applicable to a fractured 

porous medium provided that an REV can be determine (Royer et al. [2002]). 

The continuum approaches approaches can be categorized as follows:  

1) phenomenological approaches with which the form of the macroscopic model is 

postulated on the basis of physical considerations and experimental results;  

2) upscaling methods with which the macroscopic model is rigorously derived by starting 

with the physical behavior at the REV’s scale.  

Two kinds of continuous models are usually used: double-continuum models and single-continuum 

models. In the double continuum-models, the fractured porous medium is represented as two 

distinct and interacting continua, one consisting of the network of fractures and the other of the 

porous blocks. The interaction between both continua is formulated by an exchange function as 

was originally proposed by Barenblatt and Zheltov [1960].  
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In Bibby [1981] and Huyakorn [1983], double-continuum models have been employed for transport 

of contaminants. In the singe-continuum approach, the whole fractured porous domain is 

represented as an equivalent porous medium.  

Royer et al. [2002] presented a method of homogenization for upscaling by multiple scales 

expansions and obtained different macroscopic single-continuum transport models. The main 

condition for homogenization is to have a high density of heterogeneities.  

The disadvantage of the dual-porosity models in view of their strength and simplicity is that they 

can be mainly used for sugar-cube representations of fractured media (Karimi-Fard [2001]). 

Another limitation is that the method cannot be applied to disconnected fractured media and cannot 

represent the heterogeneity of such a system. Another shortcoming is the complexity in the 

evaluation of the transfer function between the matrix and the fractures.  

The single-porosity model provides the accuracy, but it is not practical due to very large number of 

grids. A large number of grids is required because of the two different length scales (matrix size 

and fracture thickness). When the ratio of the two length scales in a fractured system, as well as the 

permeability ratio of matrix and fracture are very high, the single-porosity approach becomes very 

inefficient numerically. Whereas the discrete fracture approach does not suffer from this limitation.  

2.3 Hybrid Models 
Hybrid models represent a combination of the two model types explained (discrete and multi-

continua). The fractures on the observation scale are considered discretely and the fractures on the 

lower scales, with the help of continua models. Assuming fractal properties of the fracture system 

with respect to all relevant scales, the hybrid model is the only one which is appropriate.  

Unfortunately, combining the two models also combines uncertainties. In addition to the 

difficulties in representing the discontinuities on the observation scale there are now the 

uncertainties of the model using multi-continua approach. Wu and Pruess [2000] have used this 

approach to model radio nuclide transport in partially saturated fractured rock.  
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3 MATHEMATICAL MODEL FORMULATION 
This chapter presents the most commonly used mathematical model formulations that govern the 

complex flow behavior for one and multi-phase flow fracture systems. Only, the case of the 

discrete fracture models is considered.  

3.1   Single Phase Flow in Fractured Porous Media 
This section describes the existing theories and laws valid for the single phase fluid flow in 

fractured porous media. We deal with two approaches: the first one considers fractures as filled 

porous systems and they can be treated using the Darcy’s law; the second one considers fractures 

to be open. For  the second case Stokes, Reynolds or the local cubic law could be applied.  

3.1.1   Darcy’s Law  
The generalized Darcy Law describes the movement of fluid phase in the porous media and states 

that the velocity vector v is related to the gradient of the pressure p . 

( )Kv p gρ
μ

= − ∇ −        (2.1) 

Here, μ represents the dynamic viscosity, p the pressure, and the K the absolute permeability. The 

variable g =[0,0,-g]T = -g“z is the vector of gravity with the z-coordinate pointing in the upward 

direction.  

There are a series of assumptions to be considered, as they are detailed in Bear [1972] and 

Hornung [1997], i.e. the flow is laminar and the fluid is assumed to be Newtonian, and that a non-

slip boundary condition is valid at the microscopic scale at fluid-solid interfaced.   

3.1.2   Single Phase Flow Equations in a Fracture 
Many expressions exist for the fluid flow in open fractures. These expressions are usually derived 

from the Navier- Stokes equations by making certain assumptions and simplifications. Three of 

them will be presented in the following.  
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3.1.2.1 Navier Stokes Equation 
The most general description of fluid flow in a single fracture is given by the Navier-Stokes (NS) 

equations which express momentum and mass conservation over the fracture void space (Brush 

and Thomson [2003]). 

Considering the steady laminar flow of a Newtonian fluid with constant density and viscosity 

through a fracture with impervious walls, the NS equations may be written in vector form as [Bird 

et al., 1960]: Equation Chapter (Next) Section 3 

 ( ) 2u u u pρ μ⋅∇ = ∇ −∇  ,      (3.1) 

 0u∇⋅ =    ,      (3.2) 

where ρ is the fluid density, μ is the fluid viscosity, u = (ux, uy, uz) is the velocity vector, and 

p(x,y,z) is the hydrodynamic pressure. The hydrodynamic pressure at a point in the fracture is 

simply the difference between the total and static components of pressure which can be given as: 

 Tp p d hγ γ= − =   .      (3.3) 

pT(x,y,z) is the total pressure, γ is the fluid specific weight, d(x,y,z) is the depth below the free 

surface, and h(x,y,z) is defined as the hydraulic head.  

Equation (3.1) is the momentum or force conservation equation, and equation (3.2) is the mass 

conservation equation. 

The Navier Stokes equations form a nonlinear system of partial differential equations that are 

difficult to solve in irregular geometries and even in domains with simple geometry, such as a set 

of parallel plates. 

It is a common practice to simplify the NS equations and there are three successive levels of 

simplification (Brush and Thomson [2003]) 

3.1.2.2 Stokes Equation 
The first level of simplification is to assume that the inertial forces in the flow field are negligibly 

small compared with the viscous and pressure forces. Equation (3.1) reduces to: 

 20 u pμ= ∇ −∇  ,        (3.4) 

which along with equation (3.2) forms a linear system of equations called the Stokes or creeping 

flow equations. This linear system of equations is easier to solve than the nonlinear NS equations; 

however, the inertial forces must be verified as being negligible. A common measure of the relative 



 12

strength of inertial forces to viscous forces in flowing fluids is the Reynolds number. The Reynolds 

number for flow through a single fracture may be defined as  

Re v i b Ql U Q
b W W

ρρ ρ
μ μ μ

= = =   ,      (3.5) 

where lv is the characteristic length of the viscous forces and Ui is the characteristic velocity for the 

inertial forces. lv is defined as mean fracture aperture ‚bÚ and Ui is defined as the bulk flow rate 

through the fracture Q. Experimental observations of flow through smooth parallel plates have 

shown that the critical Reynolds number marking the beginning of turbulence and the dominance 

of inertial forces in the flow field is approximately 1200 (Lomize, [1951]; Romm [1966]; Louis, 

[1969]). Considering typical values of subsurface hydraulic gradients, the value of Re in natural 

fractures will be much lower than this critical value; however, experimental observations using 

natural fracture samples have demonstrated that inertial forces may be non dominant but significant 

at Re values above 1 – 10. Consequently, there have been several theoretical attempts to quantify 

the influence of inertial forces in single fractures.  

3.1.2.3 Reynolds equation 
The second level of simplification is to approximate the three-dimensional flow field given by the 

Stokes equations with a two-dimensional description. Assuming that the variability in the fracture 

aperture is gradual, then the velocity normal to the fracture walls will be approximately zero (un º 

0) and the viscous forces in the flow field will be dominated by the shear forces acting normal to 

the fracture wall (“2u º ∑2u/∑n2). Incorporating these velocity conditions into equation (3.4) and 

assuming that the fracture walls are approximately normal to the z-axis gives 

 
2

20 u p
z

μ ∂
= −∇

∂
 ,        (3.6) 

where u=(ux,uy,0) is a three dimensional velocity vector with a direction parallel to the x-y plane. 

Incorporating the no-slip condition (u=0)  at the fracture walls, equations (3.6) and (3.4) may be 

integrated across the local aperture as [see Zimmerman and Bodvarsson, 1996] 

 
2

12
bU Hγ
μ

= − ∇  ,        (3.7) 

 ( ) 0bU∇⋅ =   ,        (3.8) 

where U=(Ux ,Uy) is the average in-plane velocity vector, H(x,y) is the average hydraulic head, and 

b(x,y) is the local aperture parallel to the z-axis.  
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3.1.2.4 Local Cubic Law (LCL) 
By combining equations (3.7) and (3.8) we obtain: 

 
3

0
12
b Hγ
μ

⎡ ⎤
∇ ∇ =⎢ ⎥
⎣ ⎦

 ,        (3.9) 

which is commonly known as the local cubic law (LCL) for fluid flow in a rough-walled fracture, 

since the magnitude of fluid flow through the subdivided or local fracture voids is proportional to 

the cube of the local aperture.  

Although, the LCL is widely used for simulating fluid flow in rough-walled fracture there are more 

constraints and assumptions as described in Brush and Thomson [April, 2003].  

Extensions to the local cubic law which incorporate fracture surface roughness can be found in 

Singhal, Gupta [1999]. 
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3.2   Multi-phase Flow in Fractured Porous Media 
3.2.1   Multi-phase Flow Equations 

The equations that govern the multi-phase flow will be described in this section.  

The flow of a single fluid phase is driven by pressure forces due to pressure differences and 

gravitational forces only. On the other hand, in two or multi-fluid phase systems, a new force is 

introduced - the capillary force at the interface between the fluid phases. The capillary force has a 

significant influence on the fluid behavior.  

A good explanation of the processes at the pore scale (microscale) together with the transition to 

the macro-scale is given in Helmig [1997] and Reichenberger [2004].  

Conservation of mass for multi-phase flow with respect to volume can be formulated as 

( ) ( ) 0=−⋅∇+
∂

∂
αααα

αα ρρφρ qv
t

S  ,       (3.10) 

where f is the porosity, Sα is the saturation of phase α, ρα the density, t is the time, vα is an average 

microscopic pore velocity vector and qα represents the source term. The porosity f is defined as the 

ratio of the volume of the pore space over the total volume of a representative elementary volume 

(REV). The saturation 
V
VS α

α = are defined as the ratio of the pore space of an REV occupied by 

phase α over the total volume of the pore space within this REV.  

As for the one fluid phase flow the velocity vector vα is related to the gradient of the phase pressure 

pα by the generalized Darcy law:  

( )gpKkv r
α

α

α
α ρ

μ
−∇−=  ,        (3.11) 

Here, krα represents the relative permeability, μα the dynamic viscosity, pα the pressure of phase α, 

and the K the absolute permeability. The variable g = [0, 0, -g]T = -g“z is the vector of gravity with 

the z-coordinate pointing in the upward direction.  

These equations are valid in the matrix and in the fracture if the flow is laminar in both regions. If 

the fracture is open, the local cubic law (see section 3.1.2.4) can be employed to define the absolute 

permeability for the flow of a single incompressible fluid phase. The absolute permeability is then 

K=b2/12 where b is the distance of the two parallel plates.  

The general form of the multi-phase flow equation is obtained by inserting (3.11) into (3.10): 
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 ( ) ( ) 0rS k K p g q
t

α α α
α α α α

α

φρ
ρ ρ ρ

μ
∂ ⎛ ⎞

−∇ ⋅ ∇ − − =⎜ ⎟∂ ⎝ ⎠
.     (3.12) 

For a two-phase flow model of a wetting fluid phase ‘w’ and a non-wetting fluid phase ‘n’ in a 

porous medium the equations are: 

 ( ) ( ) 0w w rw
w w w w

w

S k K p g q
t
φρ

ρ ρ ρ
μ

∂ ⎛ ⎞
−∇ ⋅ ∇ − − =⎜ ⎟∂ ⎝ ⎠

 ,     (3.13) 

( ) ( ) 0n n rn
n n n n

n

S k K p g q
t
φρ

ρ ρ ρ
μ

∂ ⎛ ⎞
−∇ ⋅ ∇ − − =⎜ ⎟∂ ⎝ ⎠

 .     (3.14) 

The coupling of the saturation and pressure is made by: 

 1w nS S+ =  and n w cp p p− =  .       (3.15) 

The model has to be complemented by appropriate boundary conditions and initial conditions 

which have to be chosen consistent with equation (3.15).    

In conjunction with equation (3.15), the equations (3.13) and (3.14)  form a coupled dynamic 

system of differential equations which has a strong nonlinear behavior because of the nonlinear 

dependence of the saturation on the capillary pressures and on the relative permeabilities. This 

nonlinearity is reinforced by the fact that the constitutive relationships, as well as the flow behavior 

in porous media, can vary strong (Helmig [1997]). 

There are different ways to formulate the two phase flow equation. For an introduction to different 

formulations of the multiphase flow equations see also the books by Peaceman [1977], Chavent 

and Jaffré [1978], Aziz and Settari [1979] and Helmig [1997] The three more representative ways 

are the following:  

- pressure formulation having pressures as unknowns (primary variables); 

- pressure-saturation formulation having the pressure of the fluid with the highest affinity 

and the saturation of the other phase as unknowns; 

- saturation formulation having the phase saturations as unknowns. 

Helmig [1997] presents these formulations considering a two-phase system with constant porosity 

in time under isothermal conditions. He concludes that the pressure formulation for the case of 

fractures or heterogeneous media is very difficult to use due to the fact that the capillary pressure 

gradient must be greater than zero. Contrary to the pressure formulation, the formulation of the 

pressure-saturation formulation has the advantage that it can be applied to systems with 

subdomains of small capillary pressure gradients because the capillary effects are explicitly 
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included in the system of equations. Nevertheless, Bastian [1999] successfully applied both the 

pressure and pressure-saturation formulations and concluded that the second gives qualitatively and 

quantitatively better results on coarser meshes and lead to easier to solve linear and nonlinear 

systems. As for the saturation formulation, a good description is given also in Helmig [1997]. 

Ersland et al. [1998] used the fractional flow formulation, (as it is also called global pressure 

formulation Bastian [1999]) for fluid flow in media with heterogeneities.  

For the simulations that will presented later in this work it was used the phase pressure-saturation 

formulation.  

3.2.2   Phase Pressure – Saturation Formulation 
In the phase pressure –saturation formulation, or PPS formulation, two out of the four variables pw , 

pn , Sw  and Sn  in the multi-phase flow equations (3.13) and (3.14) can be chosen as independent 

variables.  

For example to obtain the (pw, Sn) formulation the following substitutions are made: 

 1w nS S= −  and ( )1n w c np p p S= + −  .      (3.16) 

The formulation based on pw assume that the water phase exists everywhere in the domain.  

( )( ) ( )
1

0n w rw
w w w w w

w

S k K p g q
t
φρ

ρ ρ ρ
μ

∂ − ⎛ ⎞
−∇ ⋅ ∇ − − =⎜ ⎟∂ ⎝ ⎠

,    (3.17) 

( ) ( )( ) 0n n rn
n w c w n n n

n

S k K p p S g q
t
φρ

ρ ρ ρ
μ

∂ ⎛ ⎞
−∇ ⋅ ∇ +∇ − − =⎜ ⎟∂ ⎝ ⎠

 .   (3.18) 

The equations are considered in (0,T) x W. dΩ⊂ \ , (d=2,3) is a domain with polygonal or 

polyhedral boundary or d = 2 and d =3, respectively. The equations are complemented with initial 

conditions and boundary conditions of Neumann or Dirichlet type on the boundaries Gan and Gad  

( ) ( )0,0w wp x p x= , ( ) ( )0,0n nS x S x=  x∀ ∈Ω  ,     (3.19) 

( ) ( ), ,w wdp x t p x t= on Gwd, ( ) ( ), ,n ndS x t S x t=  on Gwd ,    (3.20) 

( ),w w wv n x tρ φ⋅ =  on Gwd,  ( ),n n nv n x tρ φ⋅ =  on Gnn ,    (3.21) 

If both phases are incompressible no initial condition for pw is required. p
wdΓ should have positive 

measure to determine pw uniquely.  

The following dependencies are assumed: 

 g = constant ,         (3.22) 
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 ( ),q q x tα α=  ,         (3.23) 

( ),c c wp p x S=  ,         (3.24) 

( ),r rk k x Sα α α=  ,         (3.25) 

( )pα α αρ ρ=  ,         (3.26) 

 ( )pα α αμ μ=  ,         (3.27) 

 ( )xΦ = Φ  .         (3.28) 

The influence of fractures on the fluid flow is included through the dependency of the quantities in 

equation (3.28) on the position.  

3.2.3   Constitutive relationships 
The secondary variables pc and krα are related to the primary variables pw and Sn through 

constitutive relationships. Various functionals describing these relations can be found in the 

literature. The widely used capillary pressure - saturation relationships and relative permeability –

saturation relationships are given by Brooks and Corey [1964] and Van Genuchten [1980].  

3.2.3.1 Brooks-Corey Relationships 
Even though the primary variable is Sn the constitutive relationships can be formulated in terms of 

the wetting phase saturation Sw as it is the more common notation. The capillary pressure-

saturation relationship is: 

 ( )
1

c w d ep S p S λ
−

=  ,        (3.29) 

 
1

w wr
e

wr

S SS
S
−

=
−

  .        (3.30) 

Where Swr is the residual saturation of the wetting phase and Se the effective saturation. The 

parameters pd and λ for a given material are determined in fitting the functional to experimental 

data. λ is related to the pore size distribution. Materials with small variations in pore size have a 

large λ value while materials with large variations in pore sizes have small λ values. Usually λ is in 

the range [0.2; 3]. 
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For a wetting phase saturation of 1, pc – Sw relationship yields the entry pressure pd of this material. 

This entry pressure has to be exceeded to displace the wetting phase from the largest occurring 

pore. 

The relative permeability – saturation relationships given by Brooks and Corey can be formulated 

as: 

 
2 3

rw ek S
λ

λ
+

=  ,          (3.31) 

 ( )
2

21 1rn e ek S S
λ

λ
+⎛ ⎞

= − −⎜ ⎟
⎝ ⎠

 .        (3.32) 

Across the interface between the wetting and the non-wetting phase a jump discontinuity occurs in 

the pressure, because the pressure pn in the non-wetting phase is larger than the pressure pw in the 

wetting phase. This jump is the capillary pressure pc  

 0c n wp p p= − ≥ .         (3.33) 

3.2.3.2 Van Genuchten Relationships 
The Van Genuchten capillary pressure function is formulated as follows: 

 ( )
1/11 1

n

m
c w ep S S

α
−⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 ,        (3.34) 

where 11m
n

= −  and a is related to the entry pressure.  

3.2.4   Interface Conditions at Media Discontinuities 
The governing equations for two-phase fluid flow in porous media are only valid if the media 

properties are subject to slow and smooth variation. At media discontinuities with sharp changes in 

properties like permeability or porosity it is necessary to introduce interface conditions which 

model the correct physical behavior.  

The approach of van Duijn et al. [1995] for the treatment of media discontinuities has been adapted 

to the case of fractured media. 

 It is known that the capillary forces are responsible for trapping and pooling at media 

discontinuities. For this reason the effects of capillary force are very important to capture. 

The partial differential equations for two-phase flow are of second order in space. Therefore an 

interface condition at an inner boundary has to consist of two conditions Helmig [1997]. 

1. Continuity of flux: the flux of both phases across the interface has to be continuous  
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2. Continuity of intensive state variables: the capillary pressure is continuous at the interface 

To derive the second condition we consider two parts of the domain, a fracture fΩ  and the matrix 
mΩ . A mobile wetting phase in both matrix and fracture is being assumed, hence pw is continuous 

across the fracture matrix interface G. The absolute permeabilities in their respective domains are:  

( )
( )
( )

f f

m m

K x if x
K x

K x if x

⎧ ∈Ω⎪= ⎨
∈Ω⎪⎩

  .      (3.35) 

Accordingly, the porosity f depends on the domain as well as the capillary pressure function pc(Sw) 

and the relative permeability functions krα. The capillary pressure functions pc(Sw) are shaped like 

in Figure 3. Niessner et al. [2005] presented a case applying the interface condition in a one 

dimensional column. 

Two assumptions are essential without taking into consideration the blocking fractures (e.g. 

fractures filled with clay): 

• The absolute permeability in the matrix is smaller than the absolute permeability in the 

fractures, Km(x) < Kf(y) for all x,y e Ω. 

• The capillary pressure function values in the matrix are larger than the capillary 

pressure function value in the fractures for the same saturation (the entry pressure of the 

rock is larger than the fractures). 

For the Brooks-Corey capillary pressure relation results the following interface condition: 

 
( ) ( )( )

*

1

0 f
w wm

w m f f
c c w

if S S
S

p p S if else
−

⎧ >⎪= ⎨
⎪⎩

 .     (3.36) 

The interface condition is graphically represented in Figure 3 and is called extended capillary 

pressure condition.   

 
Figure 3: Continuity of the capillary pressure, discontinuity of saturation across the interface. Extended 

capillary pressure condition  
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3.2.5   Summary of model assumptions 
Contrary to the classical approach to fracture modeling by double porosity models that require 

different equations for different regions and coupling between the domains is handled by the 

introduction of exchange terms, the model equations differentiate only in terms of material 

properties between fractures and matrix.  

The first assumption is that the flow regime in both domains is laminar and that an REV can be 

found for fracture and matrix, therefore, the multi-phase fluid flow equations are valid in the rock 

matrix and the fractures. The multi-component and non-isothermal behavior of the fluids is not 

considered. 

Another assumption is that the fracture width is orders of magnitude smaller than the fracture 

length which means that in a 3D domain fractures are of essentially planar geometry. For each 

point of the fracture the aperture has to be associated.  

Going further, it is assumed that the absolute permeability of the fractures is larger than the 

absolute permeability of the rock matrix. The blocking fractures are not considered, only the open 

and the filled ones.  

Relative permeability functions and capillary pressure functions exist for fractures and matrix. The 

capillary pressure function is assumed to be strictly monotone decreasing, and it is assumed that the 

capillary pressure functions for rock and matrix do not intersect.  

A last assumption is that the wetting phase exists and is mobile in fractures and rock matrix 
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4 NUMERICAL MODEL  

4.1 Classification of the numerical methods 
Hoteit and Firoozabadi [2005] give a good classification of the numerical methods according to 

spatial approximations. After them the classical finite element methods can be divided into two 

categories:  

1. vertex based methods: methods that use nodal or vertex-based representation for the 

unknowns like Galerkin finite element (FE) and vertex-centered control volume methods 

2. cell-based methods like cell-centered finite volume (FV), finite differences (FD), 

discontinuous Galerkin (DG) and mixed finite element (MFE)  

According to the spatial approximation of the unknowns each method can be adapted to represent 

the linear representation of the fractures. Unlike the methods of the first category (Bastian et al. 

[2000], Karimi-Fard and Firoozabadi, [2003]; Monteagudo and Firoozabadi, [2004]) all methods 

in the second category face difficulties and therefore need special treatments to handle the hybrid 

spatial approximations (Slough et al. [1999b], Karimi-Fard et al., [2004]; Granet et al., [2001]).  

The cell based methods require computing the fluxes across the cell edges.  

 
Figure 4: Classification of numerical methods according to spatial approximations 
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When choosing the numerical model the following considerations have been made: 

• The simulator should be applied to problems in fractured porous media from the laboratory 

scale to the field scale. Thus, the capillary pressure effects have to be captured in 

accordance to the extended capillary pressure condition of van Duijn.  

• The unstructured meshes are absolutely necessary due to the complex geometries we 

encounter 

• The numerical scheme has to be stable, consistent, monotone and mass conservative.  

• The stability of the scheme is guarantied for the implicit time discretization, therefore the 

backward Euler method is going to be employed 

• For an efficient implicit scheme a fast solution of the nonlinear systems of equation has to 

be obtained. Therefore the inexact Newton scheme is being used. The scheme is inexact 

because it solves the arising linear systems of equations up to a given tolerance. The global 

convergence of the Newton method is achieved by a line-search algorithm. The linear 

systems of equations are solved with the multigrid method. 

For all these considerations, all the numerical simulations performed with MUFTE-UG used the 

vertex-centered finite volume method. The method has a monotone behavior, it is locally mass 

conservative, and can easily be applied to unstructured grids. Thus, it is important to understand the 

vertex centered finite volume method and it will be described in the following section. A good 

description of it for the phase-pressure-saturation formulation and with the implementation of the 

lower-dimensional fracture model concept can be found in Reichenberger et. al [2006]. In the same 

time finite vertex centered finite volume methods are presented in Helmig [1997]. Applications of 

the vertex centered finite volume method are found in Bastian [1999], Gebauer et. al [2002], 

Niessner et al. [2005], Reichenberger et al.[2004] and [2006].  

4.2 The Vertex Centered-Finite Volume Method  
This section will be presents the spatial discretization schemes for the discrete fracture model 

concept. Equation Chapter (Next) Section 4 

The vertex centered finite element method is found in the engineering literature as control volume 

FEM (Reichenberger et al.[2004]), box method or subdomain collocation finite volume method 

(Helmig [1997]).   
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For the numerical solution of the multi-phase fluid flow equation one important simplification is 

made by employing lower dimensional elements or Indshell. The models are then called lower-

dimensional models or mixed-dimensional models.  

4.2.1   Fracture geometry formulation 
The assumptions on the fracture network are essential for the discretization method. In the 

following, superscript ‘m’ denotes entities in the volumetric rock matrix and superscript ‘f’ denotes 

entities in the fracture network. 

For beginning, dΩ⊂ \  is defined as a polygonal (d =2) or polyhedral (d = 3) domain and it 

contains a non-empty set of fractures {f1 …. fF}. Each fracture fi  is a (d – 1) – dimensional object. 

Each fracture fi is identified by its middle surface and has width δi associated with it, which may be 

variable in the fracture. For simplicity the fractures are assumed to have a planar geometry: in two-

dimensional domain the fractures are line segments and in a three-dimensional domain they have 

polygonal shapes.  

The fracture network is constituted by the union of all fractures 
1

F
f

i
i

f
=

Ω = ⊂ Ω∪ , whereas, the 

domain of the rock matrix Wm is the whole domain mΩ = Ω . The domain of the fracture network 

overlaps with the rock matrix. 

4.2.2   Finite volume grids and the dual grids 
Primary Mesh – Finite element mesh 

The discretization method requires a mesh for Wm and Wf. For the volumetric mesh a subdivision 
m
hE  of Wm into Km elements is considered, { }1 ,...,m m m

h KE = Ω Ω with m m
ee

Ω = Ω∪ and 

'
m m
e eΩ ∩Ω =∅ for e ∫ e’. m

eΩ is the open subdomain covered by the element with index e. h denotes 

the diameter of the largest element. The subdivision has to resolve the geometry of the fractures 

comparable to domains with inner boundaries.  

To get a better understanding how the vertex-centered finite volume method is implemented, a 

two-dimensional mesh for a fractured domain is given in Figure 5. The volumetric elements m
eΩ of 

m
hE  are triangles or quadrilaterals in two dimensions. Hybrid grids (grids of lower-element type) 
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are admissible, but require that m
hE is a triangulation, which is that no vertex of an element lies in 

the interior of a side of another element.  

 
Figure 5: Example domain with fractures and mesh resolving the fracture network geometry 

Lower- and equi- dimensional approach 

In the lower-dimensional approach, the volumetric elements are complemented with lower 

dimensional elements on the fractures which are line elements for two-dimensional problems and 

triangles or quadrilaterals for three-dimensional problems. The fractures appear as inner boundaries 

to the domain where material properties change. The fracture elements constitute a mesh 

{ }1 ,..., f
f f f

h K
E = Ω Ω which is conforming with the volumetric mesh; i.e. each f

eΩ  is an element face 

or face for the two-dimensional and three dimensional case, respectively.  

For the equi-dimensional approach both fracture and matrix elements have the same 

dimensionality, being triangles or quadrilaterals for two-dimensional problem and tetrahedral and 

prisms for three-dimensional problem (Figure 7).  

Secondary mesh – Finite volume mesh 
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The vertex centered finite volume method requires the construction of a so-called secondary mesh 

which is done by connecting element barycenters with edge midpoints as shown in Figure 6 in two 

dimensions. In three dimensions, first the element barycenters are connected to face barycenters 

and then the grids are denoted by vi and their corresponding coordinate vector by xi. By 

construction each control volume contains exactly one vertex vi is denoted by m
ib , thus 

{ }1 ,..., m
m m m
h N

B b b= For two-dimensional fractures, the dual grid is generated in a similar manner. 

One-dimensional elements are simply divided into parts of equal length. This construction results 

in a conforming dual mesh for volumetric and fracture elements. The fracture dual mesh is 

denoted { }1 ,..., f
f f f

h N
B b b= .  

The fracture and matrix control volumes are related via f m f
i ib b= ∩Ω  (Figure 6).  

e6

e5

e4

e2

e3e1

n bi+1
mmbi

γ
e3,i, i+1

m

xi xi+1

 
Figure 6: Mesh, dual grid and fracture elements/volumes  
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Figure 7: Lower- and equi-dimensional approach for vertex centered finite volume method 

With each interface between control volumes a fixed unit normal n is associated. The sign of n is 

chosen arbitrarily, but fixed – a possible choice is to let n point from the element with the larger 

index to the element with the lower index.  

For any function f defined on mΩ or fΩ , which may be discontinuous on the interfaces between 

rock matrix and fracture the jump of f at point x is defined:  

 [ ]( ) ( ) ( )
0 0

lim limv x v x n v x n
ε ε

ε ε
→ + → +

= + − −  ,      (4.1) 

where n is the normal to the interface between the control volumes .   

For the discretization, the standard conforming, piecewise linear finite element spaces are being 

introduced in the matrix and fracture domains as in Reichenberger [2004] and afterwards the basis 

functions are defined. In Figure 8 is represented an example for two basis functions.  
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Figure 8: Basis functions for volumetric elements and fracture elements (Reichenberger (2004)) 

In the case of mixed Dirichlet and Neumann boundary conditions it is necessary to employ separate 

function spaces for water pressure and non-wetting phase saturation, which adhere to the respective 

boundary conditions.  

The phase saturations Sn and Sw are discontinuous at interfaces between media with different 

properties as well as at all vertices f
iv ∈Ω , because these vertices are shared by the rock matrix 

and the fracture network. A discontinuous saturation cannot be represented by the standard 

conforming finite element spaces so instead the discontinuous saturation spaces have to be chosen.  

By means of the mappings, which employ the extended interface conditions it is possible to 

formulate the discretization by the conforming finite element functions, but to employ the correct 

discontinuous saturation function wherever appropriate. For more details see Bastian [1999], 

Reichenberger [2004].   

To implement the transition condition in the vertex-centered finite volume method to each node of 

the finite element mesh is associated a minimum capillary pressure pc min(xi). If the node is not on 

the interface then pc min(xi) = pc (Sw,i) but if it is on the interface then the pc min(xi) is the minimum 

over all domains having xi on its boundary.  

Assuming that hv  is the finite element function representing non-wetting phase saturation the nodal 

values e
iS in element m

eΩ are found by 

 

( ) ( )( ) ( )
( ) ( )

( ) ( )

min

min

min

,1

0 ,1

1 , ,

e
i c i c i

e e
i c i c

e
c c i

v x if p x v x p x

S if p x p x

S else with S from p x S p x

⎧ − =
⎪⎪= <⎨
⎪
− =⎪⎩

.    (4.2) 

Here the minimal capillary pressure function ( )minc ip x  it is employed with nodal values defined as  
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 ( )
( )

( )( )min min ,1
e i

e
c i c iE x

p x p x v x
Ω ∈

= −        (4.3) 

and the barycenters of element e are denoted as xe. E(xi) is the set of all elements which contain xi 

in their closure.  

For fractures the same construction is employed, only that the fracture basis functions are used 

instead of matrix basis functions. 

   

By defining projections the matrix and fracture finite element spaces can be connected. Let the 

projection of the test spaces be defined as in Reichenberger [2006], ( ) ( )f m
h i h iw x w x= .  

4.2.3  Weak formulation 
The weak formulation of equations (3.17)(3.18) for the rock matrix is found by multiplying with 

the test functions and integration by parts. We employ the following forms in the formulation of 

the weak form for the rock matrix: 

 ( ) ( ), , : 1
m

m m
h

m m m m m m
w wh nh wh w nh whb

b B

m p S w S w dxφρ
∈

= −∑ ∫  ,     (4.4)(a) 

 ( )
int

, , :
m

m m

m m m m m m
w wh nh wh w w wha p S w v n w ds

γ
γ

ρ
∈Γ

⎡ ⎤= ⋅ ⎣ ⎦∑ ∫   

m
m m

ext wn

m
w whw ds

γ
γ

φ
∈Γ ∩Γ

+ ∑ ∫   

m
m m

h

m
w w whb

b B

q w dxρ
∈

− ∑ ∫          (4.4)(b) 

 ( ), , :
m

m m
h

m m m m m m
n wh nh nh n nh whb

b B

m p S w S w dxφρ
∈

= ∑ ∫  ,      (4.4)(c) 

 ( )
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, , :
m

m m

m m m m m m
n wh nh wh n n nha p S w v n w ds

γ
γ

ρ
∈Γ
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m
m m
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m
n nhw ds

γ
γ

φ
∈Γ ∩Γ

+ ∑ ∫   

m
m m

h

m
n n nhb

b B

q w dxρ
∈

− ∑ ∫  .         (4.4)(d) 

where m
whp belongs to a standard conforming piecewise linear finite element space in the matrix, 

m
nhS belongs to a discontinuous saturation space and ,m m m

wh nh hw w W∈  are test functions. mγ are the 

interfaces between two control volumes and int
mΓ represents the matrix volumetric dual grid. 
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The terms in mmα are called accumulation term and the terms maα are called internal flux term, 

boundary flux term and source and sink term, respectively. For the numerical evaluation of the 

accumulation term a midpoint rule is employed, which corresponds to the mass lumping approach 

in the finite element method.  

The Darcy velocities in the interior flux terms are evaluated with an upwind scheme. For the water 

phase this is for a given control volume face , , 1
m
e i iγ + .  

 [ ] [ ]
, , 1

, , 1 , , 1

*
m
e i i

m m
e i i e i i

mm
ww w h w hw

v n w ds v n w ds
γ

γ γ

ρ ρ λ
+

+ +

⋅ = ⋅∫ ∫ �  ,     (4.5) 

with the upwind evaluation of the mobility 
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x else
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+

+

+

⎧ ⋅ ≥⎪= − + ⋅⎨
⎪⎩

�
 ,    (4.6) 

and the directional part of the velocity 

 ( ) ( ) ( )( ), , 1 , , 1
m m
e i i e i ie

m wv K x p x x gγ γρ+ += − ∇ −�       (4.7) 

, , 1
m
e i ixγ + is the barycenter of , , 1

m
e i iγ +  and xi is the grid vertex inside control volume m

ib . The source and 

sink terms and the boundary flux terms are evaluated by the midpoint rule. The analogous 

evaluation scheme is employed for the non-wetting phase saturation. The parameter β controls the 

upwinding strategy. For β =1 full upwinding is achieved, while β =0 results in a central 

differencing scheme.  

 The corresponding forms ( ), ,fmα ⋅ ⋅ ⋅ and ( ), ,faα ⋅ ⋅ ⋅ for the fractures are derived by replacing 

superscript ‘m’ with ‘f’ 
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f f f f f f
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b B

m p S w S w dxφρ δ
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Here function δ(x) denotes the width of the fracture. In the evaluation of these terms the lower 

dimensions of the integrals has to be taken into account by using appropriate integral 

transformations and in the evaluation of the directional velocity. 

4.3  Time discretization  
The traditional approach to the numerical solution of time-dependent partial differential equations 

is by the method of lines. First, a spatial discretization is applied to the problem (i.e. the finite 

volume method) which leads to a system of ordinary differential equations. This system is then 

solved by a time differencing scheme which can be chosen from the wide range of available 

methods. The arising system of ordinary differential equations is stiff and should be treated by 

implicit methods. 

The time interval (0,T) is divided into discrete time steps 

 00 ,..., Mt t T= =  

of variable or fixed size and the superscript n notation is employed for functions and coefficient 

vectors denoting values at time step tn: 

 ( )n n
wh whp t p=  and ( )n n

nh nhS t S=  . 

The standard (multi)-linear nodal finite element basis is employed and this introduces a unique 

relationship between the discrete functions pwh , Snh and their coefficient vectors pw and Sn.  

The application of the finite volume discretization scheme leads to the semi-discretization 

 ( ) ( )( ) ( ) ( )( ), , 0w w n w w nM p t S t A p t S t
t
∂

+ =
∂

 ,     (4.9) 

 ( ) ( )( ) ( ) ( )( ), , 0n w n n w nM p t S t A p t S t
t
∂

+ =
∂

  ,     (4.10) 

where M corresponds to m and A corresponds to a. The system can be written as 
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with submatrices 
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This results in a system of differential algebraic equations (DAE) of index 1 in implicit form. The 

matrix M,  

 ww wn

nw nn

M M
M

M M
⎛ ⎞
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⎝ ⎠

 ,         (4.13) 

is singular in the incompressible case. An analysis for the incompressible case shows that a discrete 

form of the elliptic equation has to be satisfied. This is called the implicit constraint. For this 

reason explicit methods cannot be used for the fully coupled system. One backward Euler step 

guarantees the validity of the implicit constraint. Time steps computed with other choices than θ =1 

in the one step θ method below do not fulfill this property, but they leave the implicit constraint 

fulfilled if it is satisfied in the preceding time step. For this reason, we always employ one 

backward Euler step as the first time step, regardless of the time differencing scheme of the 

subsequent steps. 

The time step scheme in the one step θ notation reads as follows.  

For n = 0,1, …,M -1 find n
wp , n

nS  such that for a = w,n  

 ( ) ( )( )1 1 1 0n n n n n nM M t A t Aα α α αθ θ+ ++ + Δ + Δ − =  .     (4.14) 

For θ=1 this yields the backward (or implicit) Euler scheme, θ=1/2 yields the Crank-Nicholson 

scheme. The implicit Euler scheme is first-order accurate and has very good stability (strongly A-

stable) 

Equation (4.14) results in a large system of nonlinear algebraic equations. This system is solved 

using Newton’s method and the arising linear systems are solved with a geometric multigrid 

method.  

For MUFTE-UG application 

The time discretization used for solving the examples in this work is the implicit finite difference 

scheme (backward Euler). There is no limit to the time step size considering the stability of the 
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solution (Hinkelmann [2003]). On the other hand, the time step should not be chosen to big 

considering the accuracy of the solution.  

   ( )du f u
dt

=  , 

   ( )
1

1
n n

nu u f u
t

+
+−

=
Δ

 . 

The implicit time discretization generates large nonlinear systems of equations. The highly 

nonlinear equation system is handled using the inexact Newton-Raphson algorithm. The linearized 

systems in the Newton method is solved efficiently by multigrid methods, accelerated by Bi-

Conjugate Gradient Stabilized solver (Bi-CGSTAB or referred as bcgs in the script file in MUFTE) 

which is a a Krylov-subspace method.  

The performance of the numerical simulator in a vertex-centered finite volume method by using 

different linearization schemes was investigated in Niessner et al. [2005].  

4.4   Computer Program MUFTE-UG 
The numerical simulator used to compute the results of this work is MUFTE-UG. It can be applied 

to simulate single and multi-phase flow in fractured porous media and requires several software 

components which need to interact.   

The geometry of domains in the subsurface can be resolved, in all but the simplest cases, only by 

unstructured grids. The occurrence of sharp front suggests that adaptive grid refinement is 

employed. A combination of unstructured grids, adaptivity and parallelization introduces 

complexity into the code development which is by orders of magnitude greater than for structured, 

uniformly refined grids on a single processor computer. Since it is not reasonable to implement this 

functionality individually for each application domain, the framework UG was developed, which 

provides the mentioned functionality in a problem-independent way. The code developed for the 

solution of the two-phase equations is part of a larger simulation environment, which contains 

different models for subsurface flow and transport.  

In this section will be described some core features of the framework UG and explained how the 

implementation of the module for fractured porous media is done based on this framework. 
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4.4.1   MUFTE-UG 
The modeling system MUFTE-UG, especially the processing part, is introduced as an example of a 

numerical simulator in environmental water. MUFTE-UG is a combination of MUFTE and UG. 

MUFTE stands for Multi-phase Flow, Transport and Energy model, and this software toolbox 

mainly contains the physical model concepts and discretization methods for isothermal and non-

isothermal multi-phase-multicomponent flow and transport processes in porous and fractured-

porous media. UG is the abbreviation for Unstructured Grids, and this toolbox provides the data 

structures and fast solvers for the discretization of partial differential equations based on parallel, 

adaptive multigrid methods. MUFTE is implemented based on UG.  

4.4.2   The Numerical Framework UG 
UG was written to provide a framework on which state-of-the-art simulation environments can be 

built. Many components that are required for the finite element or finite volume simulation of 

processes described by partial differential equations are independent of the problem, but are so 

complex that they cannot be implemented by one developer alone. With a framework like UG, 

developers can focus on modeling, discretization or solvers and don’t need to know how load 

balancing, parallel load migration work in detail. 

Domain module: 

The domain module can represent two-dimensional and three-dimensional geometries. With the 

domain manager module domain boundaries can be defined by means of boundary patches and 

domains can be split into several subdomains (with different material properties). It also handles 

the treatment of boundary conditions, so that for given nodes or element sides of the grid the user 

program can determine which boundary condition is valid in a given location. This works also if 

the grid is distributed over several processors. Inner boundaries are used to describe fractures and 

to associate a virtual width with each point on the fractures.  

Grid manger 

UG can handle triangles and quadrilaterals for two-dimensional geometries and tetrahedrons, 

pyramids, prisms and hexahedrons for three-dimensional geometries. This variety of element types 

is necessary to maintain consistent grids in adaptive refinement (i.e. no hanging nodes will occur). 

The different element types also offer flexibility in the triangulation of complicated geometries. 
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Local grid refinement greatly reduces storage requirements for problems where sharp fronts or 

singularities in the solution require grid refinement only in certain regions of the domain.  

Grids are stored in hierarchical fashion. The hierarchical viewpoint is maintained throughout all 

components of the UG framework and is used to ensure scalability of all components. 

Automatic Grid Generation 

Interfaces to different grid generator softwares exist as well as two grid generators which are 

included with UG, one for two-dimensional domains and one for three-dimensional domains. 

Additionally there are interfaces to several other grid generators. 

User Data Manager 

The basic vector matrix data structure is very flexible and allows for the attachment of degrees of 

freedom with nodes, edges, faces or elements. Based on the user data managers functionality, finite 

element methods and finite volume method can be implemented from simple node based schemes 

to complex higher-order methods.  

Numerical Algorithms 

The numerical algorithms for the solution of linear and non-linear systems as well as the time-

stepping schemes are organized in a class hierarchy. The object-oriented approach makes designs 

of solutions schemes possible which are structurally clear, easily configurable and extensible. The 

algorithms are implemented in a problem-independent way. Components of a solution scheme can 

be chosen form a wide range of implemented classes.  

Script Language 

UG applications are driven by a script language. Its syntax is similar to C. UG applications can 

either be run in batch mode by executing scripts, or interactively. 

Visualization module 

The visualization module of UG was designed in a scalable way, so that large parallel simulations 

can be visualized in an efficient way. It employs the hierarchical data structure and is parallelized, 

thus avoiding unnecessary calculations in the process. Output can be drawn to the screen or to 

PostScript or PPM files (as well as to a native picture format) 

For more sophisticated visualization it is possible to write data in several visualization program 

formats: OpenDX/ Data Explorer, TecPlot, GAPE and AVS. 

Tecplot1 

                                                 
1 Tecplot is not a part of UG framework but the code in MUFTE is written to generate result files especially to be 
visualized with Tecplot.  
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The simulation results are visualized with Tecplot 360. Tecplot 360 is a CFD & Numerical 

Simulation Visualization Software that allows 2D and 3D visualization.  

I/O and restart 

In long simulations runs it is often necessary to save intermediate results from which the 

calculation can be restarted if a hardware error occurs and prevents the simulation from finishing. 

On parallel computers with several hundreds of processors, this event is much more common than 

scientists would hope, and on many large computers there is a time limit for individual jobs which 

is easily exceeded by large simulation runs. In both cases the restart functionality is necessary.  

Message Passing Parallelization  

UG is parallelized by a domain decomposition approach. An underlying framework, DDD 

(Dynamic Distributed Data) is responsible for the consistency of the data structures during all 

stages of the lifetime of an application, especially after modification and distribution of the grid. 

DDD is also responsible for packing messages, sending them to processors and unpacking them. 

The passing of messages is done with the functionality of the underlying Parallel Processor 

Interface (PPIF), which uses MPI, PVM or vendor-dependent message passing mechanisms.  

Software Engineering 

The large complexity of UG results in a code basis of over 350.000 lines which were written in 

more than twelve years by seven main developers and numerous other contributors.  

All these components work regardless of the underlying physical problem. If solver components 

are not suitable for the underlying problem it is usually easy to extend the concerning module by 

inheriting from the solver class and then modifying or extending its functionality. 

Knowledge about the physical problem is part of the problem classes. These modules are 

implemented on top of UG and contain one or several discretizations of the mathematical 

description of the physical problem along with problem specific functionality like e.g. constitutive 

relationships.  

4.4.3   Mesh Generation 
ART (Almost Regular Triangulation) 

ART is an automatic grid generator developed by Fuchs [1999] in close collaboration with the 

research groups in Heidelberg and Stuttgart to meet the special demands required.   
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The amount of work to create meshes by hand is prohibitive and therefore in the case of complex 

geometries the multigrid method is inefficient. For this reason it is necessary to use an automatic 

grid generator.  

The lower-dimensional modeling of the fractures is advantageous in the grid generation process 

because fractures have only to be treated like inner boundaries. This is much easier than the mesh 

generation for fracture-matrix systems which are represented as thin layers. In the latter case, grid 

refinement along fractures has to be employed to avoid the creation of excessively many elements 

in the surrounding rock matrix.  

A specific format of the domain is required for ART. First are declares the total number of vertices, 

edges, faces and elements. For a 2D domain the “Element Number” is zero.  

Afterwards are defined:  

• the coordinates of the vertices 

• the edge numbers  

• the face numbers 

The number of vertices, edges, faces can be divided into two different types: the user defined 

number and the automatically generated number. The user defined numbers are later used in 

MUFTE for assigning different boundary condition, whereas, the automatically generated numbers 

are used only in the input file for ART and they start always with zero. 

Normally when we deal with fractures they are numbered with negative numbers and the other 

edges with positive ones.  

The executable file for ART is called ‘artpoly’. The command file for ART is called ‘default’ and 

specifies the density of the refinement and gives the possibility to refine the elements of interest. 

The location of the specific refinement is given in the file ‘dens.func’.  



 37

5 NUMERICAL SIMULATIONS 
As it has been previously stated, for all the simulations that will be shown here the discrete fracture 
model concept is being used.  
The simulations are divided into two categories: single-phase flow and two-phase flow. Besides, 
the simulations are further on divided regarding the fracture representation (lower- or equi- 
dimensional).  
In this chapter two kinds of simulations are going to be performed. At first, the implementation of 
the box-fracture method with regard to the finite element method is being tested for single phase 
flow in fractured porous media in a two dimensional representation. The same geometry is being 
later used for the implementation of a two phase flow simulation. 
The last example is represented by a 3D geometry that is being used to exemplify the lower 
dimensional fracture implementation for a two phase flow.  

5.1   Single Fluid Phase Flow in Fractured Porous 
Media: Hydrocoin Level 1 Case 2 (1988) (Löfman 
[2007]) 

5.1.1   Introduction 
In the international hydrologic code intercomparison project (HYDROCOIN) a case with steady-

state flow in a two-dimensional slice of a fractured bedrock was considered as Case 2 of Level 1. 

The case is used to verify the capability of MUFTE code to model heterogeneous flow problems 

with large permeability contrasts. In addition, the test case is employed to assess the performance 

of different representations of zones in the finite element mesh. At the same time, the results will 

be compared with the ones given by the FEFTRA numerical simulator which already showed good 

results compared to the HYDROCOIN groups.   

FEFTRA is a finite element program package developed at VTT for analyses of groundwater flow 

in site evaluation program that seeks a final repository for spent nuclear fuel in Finland. The code 

is capable of modeling steady-state or transient groundwater flow, solute transport and heat transfer 

as coupled or separate phenomena.  

As in Löfman, Vesa & Meszaros [2007], we represent both rock matrix and fracture zones by 2D 

elements. This case will address from now on as the 2D fracture model (see 5.1.6). MUFTE allows 

elements of different dimensions to be used in the same mesh, i.e. 1D elements for fracture zones 

and 2D elements for rock matrix (this case will be invoked from now on as 1D fracture model) 

Like MUFTE, FEFTRA code has the capability of combining elements of different dimensionality.  
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5.1.2   Definition of the problem 
The problem is an idealization of the hydrogeological conditions encountered at a potential site for 

a deep repository in bedrock. The case concerns steady-state flow in a two-dimensional slice of a 

fractured bedrock intersected by two fracture zones with different widths (10 m and 15 m) and 

inclinations Figure 9. The fracture zones intersect deep in the modeled 2D cross-section of rock 

and meet the surface in two valleys. A simple and symmetric topography consisting of straight 

lines is assumed. The surface near the top corners is horizontal for the first ten meters to define an 

unambiguous horizontal derivative at the top corners. Flow governed by Darcy’s law is influenced 

by the asymmetry of the fracture zones. Both the zones and the rock matrix are homogeneous and 

isotropic. The rainfall is assumed to cause the water table to be coincident with the surface. The 

vertical and bottom boundaries are impermeable to flow. 

We considered the origin of the system in the lower left corner of the domain in Figure 9.  

 
Figure 9: Schematic description of the problem Hydrocoin Level 1 Case 2 (HYDROCOIN 1988). The 
coordinates of the numbered points are given in Table 1 and  
 
Table 1: Coordinates for 1D fracture model 

1D fracture 
Point x [m] y [m] 

1 0 1150 
2 400 1100 
3 800 1150 
4 1200 1100 
5 1600 1150 
6 1600 0 
7 1500 0 
8 1000 0 
9 0 0 
10 1076.9231 423.0769 
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Table 2: Coordinates for 2D fracture model 
2D fracture 

Point  x [m] y [m] 
1 0 1150 
2 10 1150 
3 395 1100 
4 405 1100 
5 800 1150 
6 1192.5 1100 
7 1207.5 1100 
8 1590 1150 
9 1600 1150 

10 1600 0 
11 1505 0 
12 1495 0 
13 1007.5 0 
14 992.5 0 
15 0 0 
16 1071.35 433.65 
17 1084.04 420.96 
18 1082.5 412.5 
19 1069.81 425.19 

5.1.3   Boundary Conditions 
The boundary conditions for the one phase one dimensional and two dimensional fracture flow are 

given in Figure 10 :  

1. North Boundary: DIRICHLET Boundary Condition with the hydraulic head h(X,Y) = Y-1000 
representing the elevation of the water table.  

2. Lateral (X = 0 and X = 1600): NEUMANN (no flow) Boundary Condition 
3. Bottom (Y = 0): NEUMANN (no flow) Boundary Condition 

 
Figure 10: Boundary conditions of the problem Hydrocoin Level 1 Case 2 (HYDROCOIN 1988). 

5.1.4   Input parameters. General steps 
The input parameters for the 2D model are given in Table 3.  
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Table 3: Input parameters for the problem Hydrocoin Level 1 Case 2 (HYDROCOIN 1988)  
Symbol Parameter Value 
Kf Hydraulic conductivity of the fracture zones 1.0 x 10-6 m/s 

Km Hydraulic conductivity of the matrix zones 1.0 x 10-8 m/s 

w1 Width of fracture 1 10 m 
w2 Width of fracture 2 15 m  
 
The general steps performed were: 

1. constructing the geometry by declaring the total number of points, edges and faces 
2. discretization of the domain using ART algorithm 
3. development of the numerical model in MUFTE 
4. application of the numerical model MUFTE and running the simulations using MUFTE-

UG 
5. extraction of the head distribution at different Y altitudes 
6. interpretation of the results 

For having a insight into the development of the one phase numerical model in MUFTE (called k1 
problem) see the Appendix.  

5.1.5   1D Fracture Model 
The 1D fracture model case represents the rock matrix using 2D elements and the fracture zones by 

1D elements.  

The user defined numbers of the data format required by ART in order to generate the refinement 

(as described in section 4.4.3) are shown in Figure 11.  Being a 2D domain the element number is 

set to zero. As the fractures are elements of lower dimension (1D) and are dealt as inner boundaries 

when creating the geometry there is no need to define more than one face (which is the entire 

domain).  

The exterior boundaries and fractures are numbered with green color numbers. In order to be able to 

extract more easily the results at given depths we constructed horizontal inner lines. They are 

numbered with violet color numbers and when ART is generating the grid these inner lines will 

facilitate the formation of vertexes on them.  

On the left hand side of the graphic are given the altitudes of the lines for the origin of coordinates 

in the lower left corner. On the right hand side of the graphic are given the altitudes of the inner 

lines for the coordinate system chosen like in Löfman, Vesa & Meszaros [2007].  
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Figure 11: Implementation in ART of the problem Hydrocoin Level 1 Case 2 1D fracture model.  Points are 

numbered with orange and blue color, edges with green (exterior boundaries and fractures) and violet (inner 
boundaries) 

Figure 12 shows the pressure distribution for the 1D fracture model computed using the MUFTE 

application k1 (see Appendix). 

 

 
Figure 12:  Pressure distribution for 1D fracture model in Hydrocoin Level 1 Case 2 at steady state. 

5.1.6   2D Fracture Model 
The 2D fracture model case represents both the rock matrix and the two fracture zones using 2D 

elements.  

Similar to the 1D fracture model the geometry file data input do be discretized with ART is shown 

in Figure 13. In this case we deal with 9 faces, which are represented by red numbers in squares.   

The exterior boundaries and fractures are numbered with green color numbers. In order to facilitate 

the extraction of the results at given depths horizontal inner lines have been constructed. These lines 

are numbered with violet color numbers.  
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Figure 13: Implementation in ART of the problem Hydrocoin Level 1 Case 2 2D fracture model.  Points are 

numbered with orange and blue color, edges with green (exterior boundaries and fractures) and violet (inner 
boundaries) and faces with red 

 
The computed pressure distribution for the 2D fracture model is shown in Figure 14.  

 
Figure 14: Head distribution for 2D fracture model in Hydrocoin Level 1 Case 2 at steady state. 

The Tecplot representations of the permeabilities are plotted in Figure 15. Tecplot is interpolating 

the values of the absolute permeabilities of fractures and matrix.  
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Figure 15: Distribution of the intrinsic permeability in the Hydrocoin Level 1 Case 2 at steady state. Zoom on the 
two 2D fracture intersection point with their refinement and the permeability distribution according to Tecplot 
(matrix refinement of 50, fracture refinement 5, resulting in 17293 nodes and 34271 elements)  
 
The ART automatic grid generator was used to compute several grid discretizations. The time 

necessary for the grid generation is increasing with the increase in the number of elements as Figure 

16 shows. 
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Figure 16: The user time needed to generate in ART the discretizations for the Hydrocoin Level 1 Case 2  

5.1.7   Result comparison HYDROCOIN (1988) Level 1 Case 2 
Due to the complex geometry finding the analytical solution is almost impossible. For this reason, 

the results computed with MUFTE-UG were compared to the numerical solutions given by 
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HYDROCOIN (1988) groups, Grunfelt [1984] and to the ones of Löfman, Vesa & Meszaros [2007] 

where they used FEFTRA numerical simulator (Figure 18).  

However, the comparison with the FEFTRA numerical simulator will be discussed in greater detail 

in the following.  

In order to compare two different numerical simulators one important aspect is to use the same mesh 

discretization. As the different simulators have certain geometry file formats or even they have their 

own mesh generating programs, we tried to reproduce the grid discretizations and to have as much 

as possible the same numbers of element as Löfman, Vesa & Meszaros [2007].  

Figure 17 shows the 2D mesh in the 1D and 2D fracture model, both having the same grid 

refinement of 37 meters which is very close to the meshes used by Löfman, Vesa & Meszaros [2007] 

in the base case (see Figure 18). The elements for rock matrix were approximately of uniform size 

and the zone elements followed exactly the given geometry.  

On the other hand, in Figure 17 can be compared side by side the hydraulic head distributions obtain 

with MUFTE-UG for the two cases.  

Löfman, Vesa & Meszaros [2007] used three different approaches to construct the element mesh as 

can be seen in Figure 18. In the base case, which is similar to our 2D fracture model, both rock 

matrix and fracture zones were represented by triangular 2D elements.  

Like our 1D fracture model, in the quadtree (Figure 18 (b)) and diagonal (Figure 18 (c)) cases the 

elements of different dimensions were used in the same mesh. One thing to keep in mind is to define 

correctly the thickness of the fractures because the 1D elements have no physical thickness.  

The computed hydraulic heads along the horizontal lines are presented in Figure 19 and Figure 20.  

The results obtained with MUFTE for 1D fracture model are nearly identical to the ones computed 

with FEFTRA for the quadtree and diagonal case.  

For 2D fracture model the results obtained are nearly identical to the base case in FEFTRA and to 

Grunfelt (1984).  

The 1D fracture model gives slightly lower heads than the 2D fracture model especially deeper in 

the bedrock (Y=200m). One explanation is that when fractures are simulated as 1D elements there is 

a small error introduced because the physical space is taken by rock matrix and receives the rock 

matrix properties. It means that in this case we have another 10 meters for the first fracture, 

respectively 15 meters, for the second that become rock matrix.  

One important difference between MUFTE-UG simulator and FEFTRA is the numerical scheme 

utilized for solving the partial differential equations. The FEFTRA group solved the partial 

differential equations describing groundwater flow employing the conventional Galerkin technique 

(Huyakorn and Pinder [1983]) while in my model was used the vertex centered finite volume 
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scheme. The matrix equation resulting from the finite element formulation was solved employing 

the conjugate-gradient method (Atkinson [1988]). The flow paths (in 3D cases only) were computed 

with the algorithm that uses the continuous Darcy velocity field obtained by treating q as an 

unknown variable and applying the finite element method (Yeh [1981]) 
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     a)                  b) 
Figure 17: Finite element meshes and pressure distribution for  a) 1D fracture model (1559 nodes, 2966 

elements) and b) 2D fracture model (1662 nodes, 3164 elements) 
 

 

  
 a) base case (1554 nodes, 2957 elements)  b) quadtree case (1450 nodes, 2940 elements) 

 
         c) diagonal case (1537 nodes, 1520 elements) 

Figure 18: Finite element meshes for the problem Hydrocoin (1988) Level 1 Case 2 used in FEFTRA numerical 
simulation from Löfman, Vesa & Meszaros [2007].  
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   c)      d) 

Y = 600 m
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   e)      f) 
Figure 19: Comparison of the computed hydraulic heads along horizontal lines. The results computed by 
MUFTE-UG are presented in subfigures a), c), e) whereas subfigures b), d), f) present the heads computed by 
FEFTRA and Grundfelt (1984)  
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   a)      b) 
 

 
   c)      d) 
Figure 20: Comparison of the computed hydraulic heads along horizontal lines. Subfigure a) presents the results 
computed by MUFTE-UG, subfigure b) presents the results computed by FEFTRA and Grunfelt (1984) and subfigures c) 
and d) show the heads computed by the HYDROCOIN (1988) groups with the finest meshes. 

After comparing the hydraulic heads another comparison performed was for the flow paths.  

One important feature of Tecplot is to allow the computation of the trajectories of massless particles in a 

steady-state velocity field. These trajectories are called streamtraces.  

Taking advantage of this feature by using the Darcy X and Darcy Y flow components the pathlines were 

plotted for the two cases: 1D and 2D fracture model (Figure 21, Figure 22). 

The flow path passing through (X = 100 m, Y = 800 m) is used as reference for comparison with FEFTRA 

and with the HYDROCOIN (1988) results.  
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      a)                  b) 
Figure 21:  Path lines (streamtraces) in the modeled region of  a) 1D fracture model ; b) 2D fracture model 
 

   
                                 a)                  b) 
Figure 22:  Path lines passing through the point (X=100 m; Y = 800 m) for a) 1D fracture model b) 2D fracture model 

 
Figure 23: Path lines passing through (X = 100, Y=800) for the 1D and 2D fracture model computed with MUFTE-UG 

and for quadtree, diagonal and base cases computed with FEFTRA 
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Figure 24: Flow path by the HYDROCOIN (1988) groups 

The comparison of MUFTE to FEFTRA results and to the analytical, semianalytical and/or other numerical 

solutions proves the capability of MUFTE to simulate such problems. 

5.1.8   Grid Convergence Test 
Simulations with too coarse grids result in numerical diffusion but on the other hand simulations with very 

fine grids require longer computational time. Therefore, a grid convergence test is necessary to decide 

which grid size is acceptable considering the amount of numerical diffusion. 

Several grid discretizations were tested. The discretizations are listed in Table 4 for 1D fracture model and 

Table 5 for 2D fracture model together with the time necessary for generating them, their number of 

vertexes, edges and elements, and the corresponding refinement. 

The last columns of the table exhibit the time required to run the MUFTE-UG with the respective geometry 

discretization.  

To run these simulations a Pentium III (Coppermine) processor with 1 GHz and a 512 MB RAM memory 

were used.  

The real time – is the elapsed time from the beginning to the end of the program. 

However, the CPU time is divided into user and sys. The user value is the time used by the program itself 

and any library subroutines it calls. The sys value is the time used by system calls invoked by the program. 

(directly or indirectly) 

The sum of user+sys is the total direct CPU cost of executing the program. This does not include the CPU 

costs of parts of the kernel that can be said to run on behalf of the program, but which do not actually run 

on its thread.  



 51

 
Table 4: Discretization and computation for 1D fracture model  

Computational time MUFTE [min]

real  user sys Name of the ART file  
Matrix 

Refinement  
[m] 

Fracture 
Refinement  

[m] 

Artmesh 
Time     
[min] 

  
Vertex 

Number

  
Edge 

Number

  
Face 

Number
min sec min sec min sec 

q.net_1Df_500_r000 500 0 0.006667 34 79 46 0 35.1 0 1.93 0 0.826

q.net_1Df_500_r100 500 100   492 1414 923 0 35.7 0 9.641 0 0.363

q.net_1Df_500_r050 500 50   992 2896 1905 1 12.1 0 23.151 0 0.971

q.net_1Df_400_r000 400 0 0.031833 39 93 55 0 23.7 0 1.278 0 0.288

q.net_1Df_400_r100 400 100   662 1907 1246 0 39.5 0 13.207 0 0.412

q.net_1Df_400_r050 400 50   1246 3643 2398 1 3.2 0 33.37 0 0.468

q.net_1Df_300_r000 300 0 0.0315 52 130 79 0 22.8 0 1.103 0 0.231

q.net_1Df_200_r000 200 0 0.031833 69 176 108 0 23.8 0 1.224 0 0.222

q.net_1Df_100_r000 100 0 0.135667 263 730 468 0 39.3 0 4.836 0 0.36 

q.net_1Df_075_r000 75 0 0.161 441 1239 799 0 43.1 0 7.606 0 0.36 

q.net_1Df_050_r000 50 0 0.561167 924 2653 1730 0 54.1 0 16.844 0 0.427

q.net_1Df_050_r005 50 5 17.4968 14389 42879 28491 184           

q.net_1Df_050_r003 50 3 60.5828 27294 81585 54292 1229 13.7 1207 43.801 1 26.7 

q.net_1Df_045_r015 45 15 11.9823 7045 20801 13757             

q.net_1Df_040_r000 40 0 0.697667 1359 3936 2578             

q.net_1Df_0375_r000 37.5 0 0.748167 1514 4396 2883             

q.net_1Df_037_r000 37 0 0.493167 1559 4524 2966 1 7.94 0 30.349 0 0.83 

q.net_1Df_035_r000 35 0 1.03 1753 5097 3345             

q.net_1Df_030_r000 30 0 1.4895 2337 6823 4487 1 31.9 0 53.742 0 0.537

q.net_1Df_025_r000 25 0 2.45367 3756 11034 7279 2 46.9 1 56.112 0 0.664

q.net_1Df_015_r000 15 0 5.56417 9354 27681 18328 9 13.6 7 56.525 0 1.57 

q.net_1Df_015_r005 15 5 104.041 51799 154466 102668             

q.net_1Df_010_r000 10 0 18.9512 22932 68194 45263 80 36.3 76 17.898 0 5.313

q.net_1Df_005_r000 5 0 131.733 83491 249333 165843 949 22.3 783 22.479 5 44.2 

q.net_1Df_0025 2.5 0 295.375 334053 999840 665788             

Table 5: Discretization and computation for 2D fracture model  

Computational time MUFTE [min]

real  user sys 
Name Matrix 

Refinement 
Fracture 

Refinement
Artmesh 

Time     
[min] 

  
Vertex 

Number

  
Edge 

Number

  
Face 

Number
min sec min sec min sec 

q.net_2Df1000_300_r010 300 0 0.0721667 77 199 123 0 21.587 0 0.983 0 0.239

q.net_2Df1000_200_r000 200 0 0.07483 97 254 158 0 21.154 0 1.074 0 0.231

q.net_2Df1000_200_r010 200 10 13.5972 8685 25873 17189 8 45.732 7 8.935 0 1.93 

q.net_2Df1000_150_r010 150 0 0.0761667 145 390 246             

q.net_2Df1000_100_r010 100 0 0.136667 283 781 499 0 22.765 0 2.145 0 0.221

q.net_2Df1000_075_r010 75 0 0.24 489 1378 890 0 19.389 0 3.327 0 0.204

q.net_2Df1000_050_r005 50 5 27.3075 17293 51563 34271             

q.net_2Df1000_050_r003 50 3 91.4327 41255 123422 82168             

q.net_2Df1000_050_r000 50 0 0.4365 968 2781 1814 0 24.524 0 6.081 0 0.245

q.net_2Df1000_037_r000 37 0 2.10733 1662 4825 3164 0 31.315 0 10.436 0 0.318

q.net_2Df1000_030_r000 30 0 2.26183 2433 7100 4668             

q.net_2Df1000_025_r000 25 0 3.32217 3481 10210 6730 0 57.551 0 24.512 0 0.507

q.net_2Df1000_010_r000 10 0 14.6425 20896 62115 41220 11 31.343 8 24.127 0 2.779

q.net_2Df1000_005_r000 5 0 138.323 83810 250268 166459 138 31.888 102 49.333 0 44.187
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1D fracture model Y=200 
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1D fracture model Y=400 m
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1D fracture model Y=600m
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Figure 25: Computed hydraulic heads along horizontal lines for different grid refinements (i.e. R37) showing the grid 
convergence 

5.1.9   Computation Time  
The two different fracture models computed with MUFTE-UG require different computation times as 

shown in Figure 26. The 1D fracture model seems to require more time. This can be interpreted that the 

box fracture algorithm utilized in the 1D fracture model requires more time than the simple box method in 

2D fracture model.  
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For the case of one phase flow to apply a less dimensional fracture is not necessarily leading to an improve 

in computation time.  

Nevertheless, by using a less dimensional discrete fracture approach we will always need less number of 

elements to represent the fracture correctly and consequently we will have a faster computation.  
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Figure 26: Computation time for 1D and 2D fracture models using MUFTE-UG as a function of number of nodes 
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5.2 Two Fluid Phase Flow in Fractured Porous Media 
To demonstrate the capability of the numerical simulator MUFTE-UG we develop a two fluid phase 

problem first in a 2D domain and than in a 3D domain.  

5.2.1   2D Domain for Two Fluid Phase Flow in Fractured Porous 
Media: Hydrocoin Level 1 Case 2 (1988) Geometry 

The purpose of the first numerical experiment for the two phase fracture-flow is to asses the difference 

between a lower- and an equi-dimensional fracture approach. The same geometry as used in the one phase-

flow simulation is set up. (see section 5.1.2) 

Similar to the one phase flow, the rock matrix is represented by 2D elements and the fracture by 1D 

elements.  

The boundary conditions for the two phase fracture flow in two-dimensional domain are represented in 

Figure 27.  

 
Figure 27: Boundary conditions for the two phase fluid flow problem on Hydrocoin Level 1 Case 2 geometry 

 
The input parameters for the two media, matrix and fracture, and for the two fluid phases are given in 

Table 6 and Table 7. The capillary pressure function given in the Brooks-Corey and Van Genchten 

formulations is shown in Figure 28. The two phase parameters of the simulation are artificially chosen but 

give a representative picture of the fracture-matrix interaction.  
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Table 6: Input parameters for the two phase fracture-flow problem in 2D domain 

  matrix fracture 
BC lambda 3.5 2 

BC Pd 1000 200 
Swr 0.08 0.05 
Snr 0 0 

VG_alpha 0.00085 0.0037 
VG_n 5.65 4.7 

Porosity 0.4 0.4 
Abs. permeability 1.32518E-13 1.32518E-09

 
Table 7: The two fluid properties for the fracture-flow problem in 2D domain 

  Water DNAPL 
Density [kg/m3] 1000 1600 
Dyn. Viscosity 

[kg/m.s] 1.00E-03 5.70E-03 
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Figure 28: Capillary pressure functions after Brooks Corey and Van Genuchten for Hydrocoin Level 1 Case 2 geometry 

in two phase flow problem 

It has to be reminded that, for all cases, the porosity of both materials (fracture and matrix) is equal to 0.4.  

We compared the results obtained with different formulations of the capillary pressure (Brooks-Corey and 

Van Genuchten) and in the same time we investigated the influence of the fracture absolute permeability on 

the saturation front movement. The permeability values given in Table 6 are considered as initial values 

and will be used to compare the results obtained with the two capillary pressure- saturation formulations. 

For the 1D fracture model was conducted a simulation for comparing the influence of the fracture width on 

the non-wetting saturation front.  

During the simulations I vary only one parameter at the time and keep the other constant.  
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For, both the1D and 2D fracture model for two phase flow simulation I employed a mesh discretization 

generated with ART (see section 4.4.3) with a constant refinement of 30 m.  

The vertex-centered finite volume scheme or the box scheme was used to calculate the flow equations. For 

the simulation we employ the backward Euler scheme with fixed time step size. The nonlinear equations 

are solved by inexact Newton linearization. The solver used to solve the inexact Newton algorithm is the 

Bi-Conjugate Gradient Stabilized solver (Bi-CGSTAB) (see Bastian [1999]). 

In each Newton step a defect reduction of 1.0E-10 is prescribed and a linear defect reduction of 1.0E-05.  

 

For the two phase flow simulation we didn’t investigate the influence of the discretization length on the 

performance.   

As in the case of the one-fluid phase fracture flow Hydrocoin Level 1 Case 2 (see section 5.1) this 

numerical simulation was developed in several steps:  

1. constructing the geometry by declaring the total number of points, edges and faces 

2. discretization of the domain using ART algorithm 

3. development of the numerical model in MUFTE 

4. application of the numerical model MUFTE and running the simulations using MUFTE-UG 

5. extraction of the saturation distribution  

6. interpretation of the results 

The geometry construction (step 1, 2) are the same as in the one-phase flow (see section 5.1). Step 3, the 

development of the numerical model, would take too much to detail in the space of this study.  

5.2.1.1 Comparison BC and VG Formulations in the 2D Fracture 
Model 

First, we compare the Brooks-Corey (BC) and Van Genuchten (VG) formulations for capillary pressure – 

saturation formulation using the parameters in Table 6. We see that there is a good agreement between the 

two formulations (Figure 29). Here only the results for the 2D fracture model will be presented while for 

the 1D fracture model we get the same positive agreement.  

5.2.1.2 Influence of the Absolute Permeability in Fractures on the 
Saturation Distribution 

The second numerical experiment is to assess the effect of the fracture permeability on the non-wetting 

saturation front.  The results are plotted for the 2D fracture model and can be seen in Figure 30. 
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T1=10x3600                     

T2=20x3600               

T3=40x3600     

T4=100x3600    
a) Brooks Corey formulation     b) Van Genuchten formulation 

Figure 29: Comparison between the DNAPL saturation front s for  2 phase flow in the 2D fracture model  for  a) Brooks-
Corey formulation and b) Van Genuchten formulation for time steps T1, T2, T3 and T4  
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T=10x3600      

T=20x3600      

T=40x3600      

T=100x3600    
     a)      b) 
Figure 30: Comparison between the DNAPL saturation fronts for 2 phase flow in the 2D fracture model for a constant 
matrix permeability Km = 1.33E-13 and tow different fracture permeabilities a) Kf1 = 1.33E-10 and b) Kf2 = 1.33E-10 
for    T1= 10*3600 s; T2= 20*3600 s;  T3= 40*3600 s and T4= 100*3600 s; 
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The first value of the fracture’s intrinsic permeability is Kf1 = 1.32518E-09 and the second one is Kf2 = 

1.32518E-10.   

5.2.1.3 Comparison 1D and 2D fracture model  
Considering a Van Genuchten formulation for the capillary pressure-saturation relationship (see Table 6) I 

compare the 1D and the 2D fracture model for two phase flow (Figure 32).  

In Figure 31 it is displayed the shape of the saturation curve for the two models at time T=100x3600 s by 

making a cut at Y = 600 m. This is a very interesting comparison since the mixed-dimensional model (1D 

fracture model) is evaluated with a “trusted one”,  the model with two-dimensional elements (2D fracture 

model).  

When examining the mass of the system, it is known that this is the same for both realizations. A 

contradicting impression could arise because the saturation curve for the 1D fracture model seems to 

comprise less mass. The differences are however small. The causes for this my be in the upper boundary 

line definition which is not considering the 10 m and respectively 15 m of the fracture width in the 1D. 

Also the fracture width in the 1D model is taken by matrix property.  
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Figure 31: DNAPL saturation at Y=600m and T = 100x3600 for 1D and 2D fracture model for a Van Genuchten capillary 

pressure formulation. 
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T=10x3600      

T=20x3600      

T=40x3600      

T=100x3600    
     a)      b) 
Figure 32: Saturation comparison between 1D and 2D fracture models for two phase flow using at given time steps and 
using a Van Genuchten capillary pressure –saturation formulation.  
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5.2.1.4 Influence of the fracture width in the 1D Fracture Model 
In this section we will investigate the influence of the fracture width in the lower-dimensional 

representation of fractures.  In Figure 34 the saturation fronts are plotted at given time intervals (T1 = 

20x3600sec; T2=40x3600sec; T3=100x3600sec). The fronts are compared two by two on the same scale of 

saturations.  The capillary pressure – saturation relationship is given in a Van Genuchten formulation.  We 

considered a fracture 10 times smaller (1m) than the one specified in Hydrocoin Level 1 Case 2 geometry 

(10 m for the left fracture and 15 for the right one).   

Fractures dominate the flow, therefore when one parameter of the two (fracture width and fracture 

permeability) is changed the distribution of the saturations will be more affected. From the saturation fronts 

we see clearly that in the case with wider fractures the saturation front moves faster which can constitute 

another proof that the numerical simulator gives trustworthy results.  

The differences in the saturation can be compared in Figure 33 where we made a cut at Y=600m. We 

distinguish two saturation peaks corresponding to the position of the two fractures. In the “original” case 

(when we have the left fracture width 10 m and the right width 15 m) we see that the between the two 

peaks saturation is going to 0. In the second case when we assume the 1m fracture width, the influence of 

the matrix is seen more pregnant, as the DNAPL is forced to infiltrate more in the matrix.  
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Figure 33: DNAPL saturations at Y=600m and T = 100x3600 for 1D (width 1m and 10m) and 2D fracture model for a 

Van Genuchten capillary pressure formulation 
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T1 = 20*3600 s  a) width = 1m    b) width = 10m  

 
T2 = 40*3600 s  c) width = 1m    d) width = 10m  

 
T3 = 100*3600 s  e) width = 1m    f) width = 10m  
Figure 34: Saturation comparison between different fracture width in 1D fracture models at time T1 = 20x3600 sec, T2 
=40 x 3600 sec, T3 =40 x 3600 sec 
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5.2.1.5 Computation Time  
In contrast to the one-phase fracture flow simulation where we obtained similar computation times between 

the two fracture models, in the two phase fracture flow we have big differences in the computation time. 

The 1D fracture model is calculated much faster. For instance the computation time in Brooks-Corey 

formulation for 1D fracture model is 4.6 times faster than in 2D fracture model. 
Table 8: Computation time comparison for 1D and 2D fracture models in two phase flow  

1Df 2Df 
real user sys real user sys Formulation Km 

[m2] 
Kf 

[m2] 
min sec min sec min sec min sec min sec min sec 

BC 1.33E-13 1.33E-10 59 22.962 54 53.885 0 5.218 257 17.951 249 10.338 0 12.229
VG 1.33E-13 1.33E-10 71 19.643 68 11.429 0 6.614 236 46.051 228 58.997 0 10.491

 

A fully coupled, fully implicit, mixed-dimensional vertex centered finite volume method for the 

discretization of two-phase flow problem on unstructured grids was tested. 

A comparison for a 1D fracture model showed that the differences between the lower-dimensional 

discretization and the equi-dimensional discretization are small. In contrast to the equi-dimensional 

discretization, the lower-dimensional discretization produces systems which are far easier to solve. 
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5.2.2   3D geometry 

5.2.2.1 Definition of the problem 
The third numerical simulator demonstrates the applicability of a lower-dimensional fracture approach in a 

three dimensional domain for multi-phase flow.  

The example shown in Figure 35 was investigated in several research works concerning mesh generation 

and numerics (Zielke et al. [1991], Barlag et al. [1998]). Barlag et al.[1998] analyzed the heat transport 

which is characterized by poor advection in the fracture and high diffusion in the matrix. 

It consists of a 3D matrix volume with an intersecting 2D fracture. The matrix is subdivided into three 

blocks with different absolute permeabilities.  Km1 = Km2 = 1.32518E-13 m2 and Km3 = 1.32518E-12. 

The fracture’s absolute permeability is Kf = 1.23907E-07.  

 
Figure 35: 3D geometry (Zielke et al. [1991]) 

The boundary conditions for the two-phase fracture flow in the three-dimensional domain are represented 

in Figure 36.  

The geometry is generated in ANSYS ICEM v.11.0 and exported using STAR-CD 3.2.0 solver.  The way 

the geometry is created and the mesh is generated is different than in ART mesh generator.  
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More characteristics of the generated geometry are specified in Table 9 (i.e. the number and name of the 

constituent parts and the number of elements for each part). A finer refinement is being created along the 

fracture.  

 
Figure 36: Boundary conditions and the finite element meshes for the 3D domain  

 
Table 9: Geometry information for 3D domain. Number of elements for the different parts of the geometry.  

 Part name Number of 
elements 

1 BODY1 : 74090 
2 BODY2 : 73281 
3 BODY3 : 2003 
4 FRACT : 9357 
5 GEOM : 506 
6 INFLOW : 252 
7 INTERIOR : 346 
8 NEUMANN : 3986 
9 OUTFLOW : 28 
 Total elements : 163849 
 Total nodes : 26506 

 

The input parameters for the two fluid phases are given in Table 10 and Table 11 and the capillary 

pressure-saturation curves are represented in Figure 37. 
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Table 10: Input parameters for the two phase fracture-flow problem in 3D domain 
  matrix 1, 2 matrix 3 fracture 

lambda 2 2 3
pd 500 500 200
Swr 0.1 0.1 0.1
Snr 0.01 0.01 0.01
alpha_VG 0.00158 0.00158 0.0045
n_VG 3.5 3.5 4.3
porosity 0.4 0.5 0.6
Kabs 1.33E-13 1.33E-12 1.24E-07

 
Table 11: The two fluid properties for the fracture-flow problem in 3D domain 

  Water DNAPL 
Density [kg/m3] 1000 1600 
Dyn. Viscosity 

[kg/m.s] 1.00E-03 5.70E-03 
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Figure 37: Capillary pressure functions after Brooks Corey and Van Genuchten for 3D domain in the two phase flow 

problem 
 

The three matrix blocks have the same entry pressure and parameters that determine the capillary pressure-

saturation relationships both in Brooks-Corey and in Van Genuchten formulation.  
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5.2.2.2 Simulation Results  
The simulation uses the lower-dimensional centered vertex finite volume method (box fracture method). 

The time discretization is the implicit backward Euler scheme. The nonlinear equations are solved by 

inexact Newton linearization which is linearized by Bi-Conjugate Gradient Stabilized solver. 

The computation was carried out on parallel computers of 8 nodes. Still the simulation took more than one 

week.  We have used the Brooks-Corey formulation for the capillary pressure saturation relationships for 

the results plotted in Figure 38.  

 
T1 = 20x3600 sec    T2 = 50x3600 sec  

 
T3 = 70x3600 sec   T4 = 90x3600 sec 

Figure 38: DNAPL front infiltration at different time steps for the 3D domain. 



 68

The DNAPL is infiltrating in the upper part and is moving along the fracture. The fracture influence is 

clearly seen from the beginning of the simulation. Once the saturation front reaches the other end of the 2D 

fracture another front is starting to move backwards since it cannot surpass the entry pressure of the matrix.  

This is leading to problems in the convergence of the solution and consequently to high computation times.  

It is obvious that the capillary forces have in this case a dominating effect.  
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6 CONCLUSIONS 
A small summary of what has been done is given in the following. First there were presented the main 

fracture models: discrete, multi-continua and hybrid of which it has been shown that the discrete fracture 

model is numerically superior for the kind of geometries we dealt with in the simulations. 

Then there were introduced the mathematical models at the same time with the basic equations for single- 

and the multi-phase flow in fractured porous media. Due to its advantages the phase-pressure saturation 

(PPS) formulation was implemented.  

After comparing the various finite element methods, the vertex centered finite volume method was picked 

for solving the fully coupled fully implicit discretization.  A special attention was given to the interface 

conditions that represent the saturation discontinuities in lower- and equi- dimensional elements. It is worth 

reminding that the vertex-centered finite volume method combines the advantages of the cell centered finite 

volume discretization and the finite element discretization, and it is not only mass conservative but also can 

be applied to unstructured grids.  

Further on, there have been investigated three different numerical models where fractures are represented 

as discrete elements. For all experiments was used the unstructured vertex-centered finite volume scheme. 

We have tested and demonstrated the capability of MUFTE-UG numerical simulator to solve different 

ground water problems. For the one phase simulation the results were compared to the ones obtained by 

other groups in the international hydrologic code intercomparison project HYDROCOIN (1988) and to 

more recent ones obtained with FEFTRA numerical simulator. The results (i.e. pressure distribution, 

streamlines) show good agreement between our model and the HYDROCOIN groups. The numerical 

scheme utilized by FEFTRA for solving the partial differential equations is the conventional Galerkin 

technique. 

One interesting aspect of this research was to compare the results obtained with the lower-dimensional 

vertex centered finite volume method to the ones having the same dimensional elements in matrix and 

fracture for one and two fluid phase flow in two and three dimensional domains. The results showed that 

the differences between the 1D fracture model and the 2D fracture model are small and, accordingly, the 

capability of MUFTE-UG to implement this model concept both in two and three dimensional domains was 

demonstrated. Besides this, the lower-dimensional discretization yields systems which are far easier to 

solve than those from the fully volumetric discretization approach.  

In the following, the conclusions after the comparison between the lower- and equi-dimensional fracture 

models, are grouped into two categories: advantages and disadvantages.  

Numerically, the advantages of the lower-dimensional models are summarized as follows: 

- the pre-processing is simple and does not require gridding inside the fracture 
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- avoiding small two or three-dimensional elements (depending on the case) inside the 

fractures improves the conditioning of the discrete operator and also permits large time 

steps. 

The disadvantages of using lower dimensional elements and approach can be summarized in the following 

 - Though well-working in a number of applications this lower dimensional approach does not 

provide local mass conservation and does not allow to follow unambiguous streamlines in and out of the 

fracture. In some situations this might be a drawback. (Gebauer S. [2002])  

- From the numerical simulations was seen that the equidimensional approach ends up with slightly 

different results. 

- A triangulation of the fractures with reasonable number of nodes may lead to long thin elements. 

Though almost all the degenerate elements are not a problem from the approximation point of view (cf. e.g. 

Jamet [1976]), they cause severe problems in the iterative solution of the discretized problems. For 

example, classical multigrid methods usually fail for vanishing width of fractures.  

In conclusion, it was demonstrated that the lower-dimensional concept is applicable for both 2D and 3D 

systems and represents correctly the flow in the fractured porous media and the combination of the vertex-

centered finite volume method with the discrete fracture model provides a powerful tool to study the multi-

phase flow in fractured porous media.  

Future work may include the incorporation of more complex mathematical models: multi-phase multi-

component simulations or the implementation of different discretizations.  
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APPENDIX 

Structure of the Application Example for one phase flow in 1D fracture model 
(SIM_1D_frac) 

The development in MUFTE of numerical simulation of one-phase flow for the HYDROCOIN (1998) 

geometry assuming fractures as one dimensional elements is presented here. The application name is k1 

and the folder name containing the application has been given “SIM_1D_frac”. This chapter contains the 

overview of all files of the application problem k1.  

The application directory SIM_1D_frac contains the following files: 

• C-file: initall.c 
• C-file: k1_fflow.c 
• C-file: k1_ftransp.c 
• C-file: q_fbvp.c 
• Script-file: k1_ftitrp.scr 
• defaults 
• Makefile 

• Script file k1_ftitrp.scr 
The interaction between MUFTE application and the UG-library is being done by the scrip-file. All the 

commands used in the script file are defined in ug/ui/commands.c. The fracture-matrix domain is 

previously discretized using ART and the files q.bnd and q.net provide the domain and the mesh 

information.  

The script-file opens with the logon command which controls the output to a log-file. In the same way the 

file ends with a logoff command.  
######################################################## 

#open log file 

######################################################## 

logon k1_ftitrp.log; 

Afterwards are defined the main parameters of the simulation.  
######################################################## 

# some constants 

######################################################## 

BASELEVEL       = 0;          # start from this level 

MAXLEVEL        = 0;          # finest level 

DOGLS           = 0;          # plot matrix; 

DOGRAPHICS      = 1;          # plot results 

 

DOFILMS         = 1;           # do output either tecplot or dataxplorer film  

DOTECPLOT       = 1;         # do tecplot film 

DODX            = 0; 

TECPLOTINC      = 10;          # no of time-steps per frame 

 

fsteps          = 350;         # total number of time steps for flow (>1!) 

tsteps          = 10;      # total number of time steps for transport 

DTSTART         = 10;       # initial time step 
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DT        = 10;           #  

END             = 100*86400.0;  # end of simulation time 

DTMIN           = 1;         # smallest time step 

 
######################################################## 

# create coarse mesh 

######################################################## 

 

readartbnd q.bnd; 

new fractk1 $b qBVP $f FlowTIFormat $h @HEAP; 

readartnet q.net; 

 

refreshon; 

fixcoarsegrid; 

@gw; 

 

The flow and transport variables in the single-phase problem as well as the values of the boundary 

conditions are defined in the script-file. 
      ######################################################## 

# initialize input data 

######################################################## 

# BVP values 

source = 6.0E-08;  # [kg/sm^2] 

time1 = 30; 

 

thickness = 1.0;      # Set to 1.0 for 3D applications 

fract1_width = 10.0; 

fract2_width = 15.0; 

fract1_prop = -1.0; 

fract2_prop = -2.0; 

 

k_x_1 = 1.32518E-15;         # [m^2] matrix permeability  

k_y_1 = 1.32518E-15;         # [m^2]  

k_z_1 = 1.32518E-15;         # [m^2]  

 

fract1_k_0 = 1.32518E-12;    # [m^2] fracture 1 permeability 

fract2_k_0 = 1.32518E-13;    # [m^2] fracture 2 permeability 

 

flow_visc = 0.0013;      # dynamic viscosity!!! (water) 

flow_dens = 1000.0;      # water 

dens_mode = 0;           # 0=incompressible, 1=compressible 

                         # For dens_mode = 1: If not air, change  

stor_coeff = 1.0e-4;         # only needed for dens_mode = 1 

fract_stor_coeff = 1.0e-4;   # only needed for dens_mode = 1 

 

mat_poros = 0.13;         # used for transport and dens_mode = 1 

fract1_poros = 0.30;      # used for transport and dens_mode = 1 

fract2_poros = 0.30;      # used for transport and dens_mode = 1 

 

# transport values 

tracer_dens = 1.0;        # If 1 - same as fluid. Output conc [kg(subst.)/m^3(mixture)] 

mat_disp_l = 1.0e-9;      # alpha_l (minimized) 

mat_disp_t = 1.0e-9;      # alpha_t (minimized) 

fract1_disp_l = 0.0; 

fract2_disp_l = 0.0; 

mol_diff_fract = 1.0e-9;  # Deff (minimized) 

mol_diff_mat   = 1.0e-9;  # Deff (minimized) 
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The values for several parameters describing the fluid porous-medium properties or the interaction between 

fluid and matrix are set in the following. The functions will be later described in the c-files. 

For steady state: 
######################################################## 

# set up steady state discretization scheme 

######################################################## 

npcreate fk1f $c fk1f; 

npinit fk1f $p pressure; 

 

npcreate fbf $c fbf; 

npinit fbf $A MAT $x pressure $b rhs $P fk1f; 

 
######################################################## 

# set up steady state flow solver 

######################################################## 

npcreate ilu $c ilu; 

npinit ilu $damp 1.0; 

 

npcreate base $c ex; 

npinit base; 

 

npcreate basesolver $c ls; 

npinit basesolver $red 1.0E-4 $m 50 $I base $display no; 

 

npcreate transfer $c transfer; 

npinit transfer $x pressure $S 2.0; 

 

npcreate lmgc $c lmgc; 

npinit lmgc $S ilu ilu basesolver $T transfer $n1 2 $n2 2 $g 1; 

 

npcreate mgs $c bcgs; 

npinit mgs $A MAT $x pressure $b rhs $m 25 $red 1.0E-6 

           $abslimit 1.0E-15 $I lmgc $display full; 

For transient flow: 
######################################################## 

# set up transient flow discretization scheme 

######################################################## 

npcreate fbfti $c fbfti; 

npinit fbfti $FP fk1f; 

 

######################################################## 

# set up transient flow solver 

######################################################## 

 

#grid transfer numproc 

npcreate fti_transfer $c transfer; 

npinit fti_transfer $x pressure $S 2.0; 

 

#linear solver and iteration numprocs 

npcreate fti_smooth $c sgs; 

npinit fti_smooth $damp 1.0; 

 

npcreate fti_base $c ex; 

npinit fti_base; 
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npcreate fti_basesolver $c ls; 

npinit fti_basesolver $abslimit 1.0E-15 $red 0.001 $m 10 $I fti_base; 

 

npcreate fti_lmgc $c lmgc; 

npinit fti_lmgc $S fti_smooth fti_smooth fti_basesolver $T fti_transfer  

                $n1 2 $n2 2 $g 1 $b 0; 

 

npcreate fti_mgs $c bcgs; 

npinit fti_mgs $abslimit 1.0E-15 $m 40 $I fti_lmgc $display full; 

 

# nonlinear solver numproc to be used by time solver 

npcreate fti_newton $c newton; 

npinit fti_newton $abslimit 1.0E-8 $red 1.0E-10 $T fti_transfer $S fti_mgs 

              $rhoreass 0.8 $lsteps 6 $maxit 50 $line 1 $linrate 0 

              $lambda 1.0 $linminred 1.0E-5 $divfac 1.0E100 $display red; 

 

# the time solver 

npcreate fti_ts $c bdf; 

npinit fti_ts $y pressure $A fbfti $S fti_newton $T fti_transfer 

            $baselevel 0 $order 1 $predictorder 0 $nested 0 

            $dtstart @DT $dtmin @DTMIN $dtmax @DT $dtscale 1.0 $rhogood 0.001; 

 

######################################################## 

# set up transport discretization scheme 

######################################################## 

npcreate fk1t $c fk1t; 

npinit fk1t; 

 

npcreate fbt $c fbt; 

npinit fbt $FP fk1f $TP fk1t $alpha 1.0 $so 0 $calc 0; 

 

######################################################## 

# set up transport solver 

######################################################## 

 

#grid transfer numproc 

npcreate t_transfer $c transfer; 

npinit t_transfer $x sol $S 2.0; 

 

#linear solver and iteration numprocs 

npcreate t_smooth $c sgs; 

npinit t_smooth $damp 1.0; 

 

npcreate t_base $c ex; 

npinit t_base; 

 

npcreate t_basesolver $c ls; 

npinit t_basesolver $abslimit 1.0E-15 $red 0.001 $m 10 $I t_base; 

 

npcreate t_lmgc $c lmgc; 

npinit t_lmgc $S t_smooth t_smooth t_basesolver $T t_transfer $n1 2 $n2 2 

              $g 1 $b 0; 

 

npcreate t_mgs $c bcgs; 

npinit t_mgs $abslimit 1.0E-15 $m 40 $I t_lmgc $display full; 

 

# nonlinear solver numproc to be used by time solver 

npcreate newton $c newton; 
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npinit newton $abslimit 1.0E-15 $red 1.0E-5 $T t_transfer $S t_mgs 

              $rhoreass 0.8 $lsteps 6 $maxit 50 $line 1 $linrate 0 

              $lambda 1.0 $linminred 1.0E-5 $divfac 1.0E100 $display red; 

 

# the time solver 

npcreate t_ts $c bdf; 

npinit t_ts $y Concentration $A fbt $S newton $T t_transfer 

            $baselevel 0 $order 1 $predictorder 0 $nested 0 

            $dtstart @DT $dtmin @DTMIN $dtmax @DT $dtscale 1.0 $rhogood 0.001; 

The discretization scheme, the multigrid cycles, the time solver have to be initialized with their parameters.  

Also the sequence of the simulation process is defined. This includes initializing the time step, defining the 

first time step and defining the processes of the time loop.  
######################################################## 

# initialize time step 

######################################################## 

npexecute fti_ts $pre $init; 

@plotw; 

@tplflow; 

 

######################################################## 

# do FIRST time step 

######################################################## 

fstep=1; 

print "[[[ TIMESTEP ", fstep; 

resetclock; 

getbndfluxti = 2; 

npexecute fti_ts $bdf1; 

readclock; 

print "]]] TIMESTEP: ", fstep, " TIME: ", TIME, " DT: ", TIMESTEP, " RUNTIME: ", CLOCK; 

@plotw; 

@tplflow; 

if (fstep==fsteps) break; 

 

######################################################## 

# time loop 

######################################################## 

repeat { 

    fstep=fstep+1; 

    print "[[[ TIMESTEP ", fstep; 

    resetclock; 

    getbndfluxti = 2; 

    npexecute fti_ts $bdf1; 

    readclock; 

    print "]]] TIMESTEP: ", fstep, " TIME: ", TIME, " DT: ", TIMESTEP, " RUNTIME: ", CLOCK; 

    @plotw; 

    @tplflow; 

    if (fstep==fsteps) break; 

    if (TIME > END) break; 

} 

 

• Boundary condition file q_fbvp.c: 
 
At the beginning the function to initialize the domain with the given boundary conditions is being defined. 
Thus, the values of the boundary conditions defined in the script-file are read and stored. 



 78

 

/**************************************************************************/ 

/* read in constant boundary conditions and more*/ 

/**************************************************************************/ 

 

static DOUBLE  

source,time1,fract1_width,fract1_prop,fract2_width,fract2_prop; 

 

static INT FractK1ProblemConfig (INT argc, char **argv) 

{ 

 /* read a string variable */  

 GetStringValueDouble("upper_p",&upper_p); 

 GetStringValueDouble("lower_p",&lower_p); 

 GetStringValueDouble("source",&source); 

 GetStringValueDouble("time1",&time1); 

 GetStringValueDouble("fract1_width",&fract1_width); 

 GetStringValueDouble("fract1_prop",&fract1_prop); 

 GetStringValueDouble("fract2_width",&fract2_width); 

 GetStringValueDouble("fract2_prop",&fract2_prop); 

 return(0); 

} 

The boundary conditions are defined in the following. For the North Boundary the head is defined as  

h(x,y) = y  

so two functions have to be defined, respectively for the descending and ascending slope. The two 

functions are called K1ProblemInBoundary1 and K1ProblemInBoundary2.  
static INT K1ProblemInBoundary1 (void *segdata, void *conddata, DOUBLE *in, DOUBLE *outValues, INT 

*bndType) 

{ 

 

    DOUBLE time; 

    DOUBLE lambda; 

 

    lambda = in[0]; 

    time = in[IN_T]; 

     

    bndType[OUT_BNDTYP_fit]  = DIRICHLET;  

    bndType[OUT_BNDTYP_fti]  = DIRICHLET; 

 

    outValues[OUT_BNDVAL_fit]  = 9.81*1000*(150-lambda*50); 

    outValues[OUT_BNDVAL_fti]  = 9.81*1000*(150-lambda*50);  

     

    bndType[OUT_BNDTYP_trp]  = NEUMANN; 

    outValues[OUT_BNDVAL_trp]  = source; 

 

    if (time <= time1) { 

       outValues[OUT_BNDVAL_trp] = source; 

    } 

    else { 

       outValues[OUT_BNDVAL_trp] = 0.0; 

    } 

 

        return(0);  

} 

static INT K1ProblemInBoundary2 (void *segdata, void *conddata, DOUBLE *in, DOUBLE *outValues, INT 

*bndType) 

{ 
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    DOUBLE time; 

    DOUBLE lambda; 

 

    lambda = in[0]; 

    time = in[IN_T]; 

     

    bndType[OUT_BNDTYP_fit]  = DIRICHLET;  

    bndType[OUT_BNDTYP_fti]  = DIRICHLET; 

 

    outValues[OUT_BNDVAL_fit]  = 9.81*1000*(lambda*50+100); 

    outValues[OUT_BNDVAL_fti]  = 9.81*1000*(lambda*50+100);  

     

    bndType[OUT_BNDTYP_trp]  = NEUMANN; 

    outValues[OUT_BNDVAL_trp]  = source; 

 

    if (time <= time1) { 

       outValues[OUT_BNDVAL_trp] = source; 

    } 

    else { 

       outValues[OUT_BNDVAL_trp] = 0.0; 

    } 

 

        return(0);  

} 
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