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Abstract

The initial width of contaminant plumes is known to have a key influence
on expected plume development, dispersion and travel time statistics. In
past studies, initial plume width has been perceived identical to the geomet-
ric width of a contaminant source or injection volume. A recent study on
optimal sampling layouts (Nowak et al., 2010) showed that a significant por-
tion of uncertainty in predicting plume migration stems from the uncertain
total hydraulic flux through the source area. This result points towards a
missing link between source geometry and plume statistics, which we denote
as the effective source width. We define the effective source width by the
ratio between the actual and expected hydraulic flux times the geometric

source width. The actual hydraulic flux through the source area is given
by individual realizations while the expected one represents the mean over
the ensemble. It is a stochastic quantity that may strongly differ from the
actual geometric source width for geometrically small sources, and becomes
identical only at the limit of wide sources (approaching ergodicity). We de-
rive its stochastic ensemble moments in order to explore the dependency on
source scale. We show that, if the effective source width is known rather
than the geometric width, predictions of plume development can greatly in-
crease in predictive power. This is illustrated on plume statistics such as
the distribution of plume length, average width, transverse dispersion, total
mass flux and overall concentration variance. The analysis is limited to 2D
depth-averaged systems, but implications hold for 3D cases.
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1. Introduction1

Stochastic description of contaminant transport is a necessity since full2

characterization of natural porous media, such as aquifers, is an unfeasible3

task. Many past studies have provided powerful tools to predict contaminant4

transport, based on the ensemble behavior of the plume’s spatial and tempo-5

ral moments (for an extensive review see Rubin, 2003). In these studies, the6

initial width of a plume (e.g., the dimension of the contaminant source) is7

directly related to fundamental characteristics such as plume ergodicity and8

is a key parameter in predictions of plume development, dispersion, dilution9

and mixing (e.g., Rubin et al., 1994; Andricevic and Cvetkovic, 1998; Dentz10

et al., 2000).11

Up to date, the initial plume width has been perceived as identical to the12

width of a source or of an injection volume (e.g., Dentz et al., 2000; Fiorotto13

and Caroni, 2002; Schwede et al., 2008). A recent study by Nowak et al.14

(2010) has identified optimal sampling strategies for minimum variance pre-15

diction of contaminant concentrations at environmentally sensitive locations16

located downgradient of the source. In their resulting optimal designs, the17

largest number of samples is spent in order to investigate certain hydraulic18

phenomena directly at the source location rather than transport phenomena19

further down-gradient. The authors proposed that the major source of uncer-20

tainty addressed by these optimal sampling schemes is the total volumetric21

water flux passing through the source area.22

The importance of focused volumetric water flux in the spreading of con-23

taminants in saturated porous media is shown in Werth et al. (2006) and24

Valocchi and Nakshatrala (2009). These authors showed, through numerical25

and analytical approaches, how the convergence of streamlines within some26

given zone can enhance the transverse mixing of the plume. When flow is fo-27

cused within a high permeability zone, streamlines converge and then diverge28

again. While the streamlines are closer together, a higher diffusive transfer29

of solute mass is faciliated, contributing to lateral plume dilution. The op-30

posite occurs when flow is blocked by a low-permeability zone. Experimental31

evidence was also shown in Rahman et al. (2005) and recently by Rolle et al.32

(2009), where the squeezing of contaminant plumes in high permeability in-33

clusions was investigated. Based on their experimental observations, Rahman34
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et al. (2005) defined a source equivalent width which is a function of the vol-35

umetric injection rate (in similar fashion to the asymptotic catchment zone36

width of a pumping well which is defined by the ratio between background37

flow and pumping rate). Recently, Valocchi and Nakshatrala (2009) showed38

the sensitivity of transversal spreading on the contaminant source location.39

They illustrated how spreading is enhanced if the source is located within40

high- or low-permeability zones. In this paper, we will show that the effects41

of streamline convergence/divergence are much more relevant if it occurs at42

the contaminant source location, because it influences the entire transport43

regime (mass flux, plume width, etc.) farther downstream. Strong field evi-44

dence for the relevance of local field hydraulic conditions at the source zone45

my be found in Frind et al. (1999), where the plume leaving a DNAPL source46

was unexpectedly thin and could almost not be detected.47

The above evidence and discussion indicates that there is a missing link48

between a given source geometry and the resulting width of a plume. The49

basic idea of the current work is to differentiate between the actual geometric50

width of the source zone and its effective width, related by what we denote51

as the source efficiency. We define source efficiency as the ratio of actual (in52

each realization) versus the expected (ensemble mean) hydraulic flux pass-53

ing through the geometric area of the source. In real situations, the actual54

hydraulic flux through the source can be obtained by collecting head and55

hydraulic conductivity measurements around the source area. Consequently,56

this data could be used to condition simulations, see Ch. 3 of Rubin (2003).57

The effective source width is an uncertain quantity that results from the58

stochastic nature of total discharge through the cross-sectional area where59

the contaminant source is located. Hence, its theoretical statistical moments60

can be derived from the integral statistics of specific discharge within the61

source volume.62

The results by Nowak et al. (2010) indicate that effective source width is63

a key parameter in the prediction of contaminant transport. In their work64

on concentration probability functions, Schwede et al. (2008) conceptualized65

the uncertainty of flow rate in the source, but approximated it by point-66

scale velocity statistics. However, velocity at a single point has different67

statistics than the integral discharge over the cross-sectional area of a non-68

point source. Hence, further efforts are necessary to investigate the properties69

of source hydraulics. We hypothesize that, if the effective source width at a70

given site was known, predictions of contaminant plume development (i.e.,71

total mass flux, plume length, width, dispersion, dilution and concentration72
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variance) would increase in predictive power. The aim of the current work73

is to support this hypothesis through the use of closed-formed analytical74

expressions for effective source width derived from the governing equations75

of flow. We verify its validity with high-resolution numerical Monte-Carlo76

flow and transport simulations of characteristic plume statistics depending77

on the effective source width in a 2D depth-averaged setting.78

Section 2 introduces the concept of effective source width along with79

its mathematical formulation. We also define a parameter denoted source80

efficiency η, which according to our definition, absorbs all randomness of ef-81

fective source width. Section 3 derives of the statistical moments of source82

efficiency. The effects, significance and implications of the results with re-83

spect to plume prediction and its spatial moments are illustrated in Section84

4. Finally, conclusions are given in Section 5.85

2. The Concept of Effective Source Width86

2.1. Mathematical Formulation87

In the following, we will differentiate between the geometric width of the88

source zone (wsz) and its effective width (weff). We consider an incompress-89

ible, fully saturated, two-dimensional steady-state flow within a confined,90

depth-averaged aquifer. Let x = (x1, x2) represent the cartesian coordinate91

system with velocity field v satisfying Darcy’s Law. The mean flow is taken92

along the direction x1. Consider a contaminant line source (width equal to93

wsz) perpendicular to the direction of mean flow with fixed concentration co94

(other release conditions are discussed in Section 4.5). The effective source95

width, weff , is defined with the aid of the continuity equation:96

weff = wsz
Qsz

〈Qsz〉
, (1)

where Qsz is the volumetric water flux passing through the source zone:97

Qsz =

∫

wsz

q1(x1, x2)bdx2 . (2)

Here, b denotes aquifer depth, q1 (x1, x2) the specific discharge passing through98

the source zone and 〈·〉 the ensemble expectation. Taking the geometric99

source width as a given quantity in equation (1), the randomness lies in the100

source efficiency denoted as η:101
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η =
Qsz

〈Qsz〉
. (3)

For an unbounded two-dimensional aquifer with uniform-in-the-average102

flow, 〈Qsz〉 is given by:103

〈Qsz〉 = JTGwsz , (4)

where J is the mean hydraulic gradient in the x1 direction and TG is the104

geometric mean of transmissivity. Equation (4) applies because TG is the105

effective transmissivity for infinite, two-dimensional aquifers (for a quick ref-106

erence, see Ch. 5 of Rubin, 2003). In addition, we can express Qsz in terms107

of the stream function values that bound the edges of the geometrical source108

(namely, ψs and ψi, see Bear, 1972). The subscripts “s”and “i”corresponds to109

the superior and inferior streamlines bounding the contaminant source area.110

The relationship between the Darcy flux and stream function can be found111

in Bear (1972) and is reproduced for completeness in Appendix A. Now we112

can re-write equation (3) as follows:113

η =
ψs − ψi
JTGwsz

. (5)

The stochastic moments of η will follow in section 3 as well as its verification114

with Monte-Carlo simulations.115

2.2. Illustrative Example116

In order to establish the importance of source efficiency for predicting117

contaminant concentrations, we first demonstrate, visually, its general im-118

pact on transport problems by performing a Monte-Carlo transport analysis119

with 20,000 realizations. The physical-mathematical formulation, boundary120

conditions and numerical implementation details are provided in Appendix121

A with parameter values given in Table 1. For each realization, we com-122

puted the total volumetric flux passing through the source zone to obtain123

the respective source efficiency η and the effective source width weff . From124

that ensemble, we extracted two subsets, one with effective source width125

weff > 3/2wsz and another with weff < 1/2wsz (in terms of source effi-126

ciency: η >3/2 or η >1/2). The respective concentration mean and variance127

fields of the total Monte Carlo set and extracted subsets are shown in Fig-128

ures 1.a-c and 2.a-c.129
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Figure 1: Impact of effective source width, see equations (1) and (3), on ensemble mean
concentration (base case scenario). Simulation results for an isotropic exponential co-
variance model and parameters summarized in Table 1: (a) Concentration mean of the
unconditional simulation. (b) Concentration mean of all realizations with source efficiency
larger than 3/2. (c) Same for source efficiency smaller than 1/2. For parameter values,
refer to Table 1. The black bar in the figure denotes the contaminant source. Contours
in the upper half represents streamlines. Contours in the lower half represents isolines of
mean concentration.
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Figure 2: Same as in Figure 1 but for concentration variance. For parameter values, refer
to Table 1.

Parameters Used in Simulation

Domain Size L×W 2500 m×400 m
Grid Size:(∆x1,∆x2) (2, 0.5)

Dispersivities: (α11, α22) (2.5, 0.25)
Geostatistical Correlation Length: λ 10 m

Variance of Y : σ2

Y 2
Geometric Mean for Conductivity: K 0.0004 m/s

Head Gradient: ∇h 0.0008
Source Width: wsz 25 m

Molecular Diffusion: Dm 10−9 m2/s
Geostatistical Covariance Function CY Isotropic Exponential

Effective Porosity ne 0.35

Table 1: Parameter values used in simulation

7



The concentration mean of the unfiltered ensemble, as shown in Figure130

1.a, follows the classical macro-dispersive transport equation with travel-131

time dependent dispersion coefficients (e.g., Gelhar and Axness, 1983; Dagan,132

1988). The result in Figure 1.b depicts the statistics with sources situated in133

areas of high volumetric flow rate. It illustrates the mean of all realizations134

that have an effective source width of weff > 3/2wsz (or η > 3/2 ). On135

average, the realizations with weff > 3/2wsz, as shown in Figure 1.b, have a136

higher transmissivity in the source zone than the global mean. Before pass-137

ing through the source zone, the streamlines are squeezed, to diverge again138

downstream of the source. Hence, the average plume is wider than would139

be expected from the geometric source width regardless of source efficiency,140

see Figure 1.a. Sources placed within high-volumetric flux zones will emit a141

larger total contaminant flux ṁ. This is because, in the advection-dominated142

case, the total mass flux is directly proportional to the total volumetric flux143

through the source:144

ṁ = coQsz. (6)

In addition, known from previous studies, a wider plume is less prone145

to ensemble dispersion (for a review on this matter, see Rubin, 2003), since146

the uncertainty in transverse position relates to the plume width. It is also147

less prone to dilution of the peak concentration along the centerline, since148

transverse effective dispersion (Dentz et al., 2000) takes more time to reach149

and diminish the peak concentration at the plume’s center. Combined, this150

leads to an overall longer persistence of high concentrations along the plume’s151

centerline in Figure 1.b.152

The opposite case is illustrated in Figure 1.c (weff < 1/2wsz or η < 1/2):153

In this case, the resulting plumes are more narrow on-the-average, are more154

affected by ensemble dispersion and dilution, emits a smaller total flux and155

are shorter on average. Given this illustrative example, we conclude that156

effective source width is a singular and highly significant parameter that157

controls (1) actual plume width, (2) contaminant dispersion and dilution,158

(3) the total mass flux leaving the source and (4) plume length.159

Figure 2 depicts the concentration variance field for the unconditional and160

conditional simulations. The results show how the behavior of the streamlines161

at the source location also affect the bimodal characteristics of the concen-162

tration variance: Source efficiency influences the magnitude and persistence163

of the two peaks of high concentration variance at the fringe of the plume164
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throughout the domain. This characteristic of the concentration variance at165

the plume’s fringes (especially at early travel distance) is of importance when166

quantifying uncertainty in transport (and risk assessment) and has been sub-167

ject of study in the past (see works by Rubin, 1991; Kapoor and Kitanidis,168

1997; Fiori and Dagan, 2000; Fiorotto and Caroni, 2002) and recently by169

Dentz et al. (2009b) and Dentz et al. (2009a). More details of the Monte170

Carlo analysis are shown and discussed in subsequent sections.171

3. Stochastic Moments of Source Efficiency172

3.1. Analytical Development173

From equation (5), the source efficiency η results from the stochastic na-174

ture of total discharge Qsz (defined in terms of the bounding stream function175

values) through a finite cross-sectional area of extent wsz perpendicular to176

the mean flow.177

In two-dimensional (depth-averaged) aquifers, the statistics of the bound-178

ing stream function values offer a mathematically straightforward way to ob-179

tain analytical first-order approximations to the first and second stochastic180

moment of effective source width. As shown in Appendix B, the mathemat-181

ical development is straightforward, since well-known methods used for the182

stochastic groundwater flow equation can be transferred to the corresponding183

streamline equation.184

Since weff is proportional to η, we now focus on the stochastic moments185

of η. We start by taking the expected value of η:186

〈η〉 =

〈

Qsz

JTGwsz

〉

= 1. (7)

It follows that, of course, the geometric source width is the best estimate187

of initial plume width in absence of site-specific data. The variance of η is188

expressed as:189

σ2

η =
1

J2T 2

GW
2
sz

V ar [ψs − ψi]

=
2

J2T 2

Gw
2
sz

Γψsψi
, (8)

where Γψsψi
is the stream function variogram value for the bounding values ψs190

and ψi. The stream function variogram Γψsψi
is evaluated at the longitudinal191
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and transversal lag-distances r1 and r2 such that Γψsψi
≡ Γψ(0, wsz). A192

formal derivation for the stream function variogram, along with the necessary193

assumptions that includes statistical and temporal stationarity, is given in194

Appendix B and leads to:195

Γψ (r1, r2) = T 2

GΓh (r2, r1) , (9)

where Γh correponds to the hydraulic head variogram. Equation (9) reflects196

a rotation of Γh by ninety degrees with a scaling factor given by T 2

G. For the197

given lag distances (dictated by wsz), this leads to:198

σ2

η =
2

J2w2
sz

Γh(wsz, 0) . (10)

After replacing Γψ by the head variogram Γh, we can draw on existing199

analytical solutions. In our case, we will use (for demonstration) the first-200

order approximation given by Dagan (1985a, 1989), derived for the isotropic201

exponential covariance model. Figure (3) illustrates how the variance of η202

decays with increasing values of wsz. Equation (10) quantifies to what degree203

small sources are more affected by the uncertainty in weff than wide sources.204

It indicates the transition to ergodic hydraulic conditions within the source205

cross-sectional area (rather than ergodic plume width), where effective and206

geometric source width become almost identical (when the variance becomes207

negligible), to be around 100 transverse integral scales.208

3.2. Verification by Monte-Carlo Simulation209

Dagan (1985a) found that first-order approximations for hydraulic head210

covariances are quite accurate even for higher variances of log-conductivity211

σ2

Y . Since our solution is based on the head variogram, we also expect it212

to be robust even for high values of σ2

Y . For comparison and verification213

purposes, we performed an accompanying numerical evaluation by Monte-214

Carlo analysis of the streamline equation. The results are taken from 20,000215

realizations in a domain sized 100λ× 100λ, at a grid spacing of 10 elements216

per λ, thus easily satisfying the requirement given by Bellin et al. (1992) and217

Rubin et al. (1999) to adequately resolve heterogeneity on numerical grids.218

Results were obtained for different values of σ2

Y in order to detect the range of219

vailidity in σ2

Y . The volumetric fluxes were evaluated at hypothetical source220

zones with varying width, placed in the center of the domain to minimize221

boundary influences.222
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The numerical results are included in Figure 3 as a gray-scale series of223

lines. The agreement between the analytical and numerical curves for the224

limiting case of σ2

Y → 0 is perfect (σ2

Y = 0.0001, results not shown here).225

Overall, the analytical solution is very robust even at values of σ2

Y > 1.226

The deviations with increasing σ2

Y are conform with recent head and velocity227

statistics published in the literature: A higher variance of η for small geomet-228

rical width coincides with the fact that the local variance of specific discharge229

scales more than linearly with σ2

Y (e.g., Englert et al., 2006; Nowak et al.,230

2008). Englert et al. (2006) demonstrated that the transverse correlation of231

specific discharge degenerates with increasing variance of conductivity. This232

effect explains why the high variance curves again approach our analytical233

solution with increasing geometric source width. The sudden drop to zero234

close to 100 integral scales is an artifact of the bounded numerical domain235

used in our Monte-Carlo analysis. The analytical result for the variance of236

source efficiency reaches an asymptotic value of zero only for wsz → ∞.237

The results in Figure 3 lead to another fundamental question: Over what238

range of source width does the source efficiency remain the dominant ex-239

planatory variable for solute transport prediction? In other words: Over240

what range of wsz does η display correlation with downstream plume char-241

acteristics? Similar to the ergodicity of large domains for the effective flow242

problem, we expect its impact to fade with increasing geometric width of the243

source. This question will be pursued in Section 4.3.244

3.3. Empirical Probability Density Function for η245

In absence of higher-order moments, the maximum entropy assumption246

would be that η follows a Gaussian distribution (Jaynes, 1982; Singh, 1997).247

This contradicts with the fact that source efficiency should mostly be non-248

negative for physical reasons: Negativity would occur only if flow is reversed249

due to high contrasts in Y (see Englert et al., 2006; Nowak et al., 2008).250

Therefore, a Gaussian distribution can only be assumed for small variances,251

where the lower bound at η = 0 does not yet have a significant influence on252

the shape of the distribution. The suggestive distribution for η at hand is the253

log-normal one, accounting for non-negativity. From the above Monte-Carlo254

analysis for σ2

Y = 1, we evaluated an empirical probability density function255

(PDF) using a Gaussian Kernel estimate technique with Kernel width equal256

to 2.56×10−4 (Parzen, 1962; Wasserman, 2004). At the same time, we used257

our analytical first-order results for the mean and variance of η and fitted a258

log-normal distribution to these two moments. Figure 4 shows good visual259
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Figure 3: Dependence of source efficiency standard deviation on normalized geometric
source width, comparison of analytical first-order expression and results from Monte-Carlo
analysis. For parameter values, refer to Table 1.
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agreement between the two. For quantitative analysis, we also computed260

the empirical cumulative distribution function (CDF) from the same Monte-261

Carlo analysis and evaluated the difference between the empirical CDF and262

the moment-based log-normal CDF obtained by moment-matching with our263

analytical first-order moments. The typical maximum difference, measured264

as in a Kolmogorov-Smirnov test, is in the order of 5%. When repeating the265

same analysis with a log-normal CDF fitted to the moments obtained from266

the Monte-Carlo analysis, the maximum difference is in the order of 2% over267

the entire range of wsz. In conclusion, we recommend to approximate η as a268

log-normal quantity.269

4. Effects, Significance and Implications270

4.1. Relation to Plume Length271

In many practical applications, hydrogeologists are interested in predict-272

ing the extension of a given contamination in order to meet with environmen-273

tal regulations, for instance risk assessment. In this subsection, we wish to274

illustrate how source efficiency can be used to better estimate the extent of a275

concentration isoline as a measure for plume length (denoted by LP ). Figure276

5 shows the dependency of LP on η for different dimensionless concentrations277

(c/co= 0.1, 0.2, 0.4 and 0.8) as a scatter plot. Results were obtained from278

the Monte-Carlo simulation presented in Section 2.2.279

By fixing a value for η, we can predict the length of the plume defined280

by a given isoline (for example, c/co= 0.1). Larger values of η imply a larger281

extent of the plume (as already shown in Figure 1). The results shown282

here are limited to a steady-state release condition. However, with increased283

computional power, one may obtain similar plots for the transient regime.284

We observe that all fitted curves have the same slope of 2 in log-log scale,285

implying a quadratic law. In order to make this point clear, consider an286

idealized situation, similar to the phyisical scenario used to obtain Figure287

5, of a steady-state release within a 2D setting with uniform longitudinal288

velocity U and transversal dispersion D22. Recalling the analytical solution289

from Domenico and Palciauskas (1982) (which neglects longitudinal disper-290

sion D11) and substituting the effective source width in lieu of the actual291

geometrical source width we have:292

c

co
= erf

[

η wsz
√

x
U
D22

]

. (11)
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Figure 4: Probability density of source efficiency η and its dependency on geometric source
width wsz : (a) estimate from MC analysis with 20,000 realizations and (b) log-normal PDF
fitted to the first-order expressions of the mean and variance. The high-valued distribution
tail for small wsz/λ is cut-off for better visibility of the overall behavior. For parameter
values, refer to Table 1.
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Further manipulation of Equation (11) and inserting x ≡ LP leads to the293

expression found in Rahman et al. (2005), who substituted the source width294

with the injection rate divided by ambient flow. Adapted for our work, the295

expression given in Rahman et al. (2005) reads:296

LP =
U

D22





ηwsz

4 erf−1

(

c

co

)





2

. (12)

The above result shows, theoretically, the quadratic law between LP and297

η for the physical case analyzed in this work (with a slope equal to 2 when298

applying the logarithm). As for the statistical distribution of LP , Monte-299

Carlo results again suggest a skewed distribution (not shown here), which is300

confirmed by the scaling with η2 in Equation (12). In fact, one may re-write301

the above equation as Lp = Aη2 where A accounts for all the other parameters302

present in Equation (12). By transformation of variables, we can obtain a303

PDF fL for Lp from the assumed log-normal PDF fη of source efficiency η304

with our analytical first-order moments (see Section 3.3):305

fL(Lp) =
1

2
√

ALp
fη(

√

Lp/A). (13)

Figure 6 displays the comparison between Equation (13) and the empirical306

PDF of Lp obtained from numerical Monte Carlo simulations for c/co= 0.2.307

The Monte Carlo results show a larger variance of Lp because effective source308

width is not the only source of uncertainty.309

Equation (12) also implies that the significance of η as a explanatory vari-310

able for LP vanishes with increasing wsz, because its variance decreases with311

wsz as indicated by equation (12) and other sources of uncertainty down-312

stream of the source start to dominate.313

4.2. Plume Spatial Moments314

Here, we quantify some of the aspects observed in Figures 1 and 2. Fig-315

ures 7.a-b shows how the spatial moments of the plume depend on the source316

efficiency under the parameter values provided in Table 1. Results are ob-317

tained through numerical Monte-Carlo simulations. Here, we analyze the318

mass flux mo,flux, relative transversal dispersivity αt,eff and the macroscopic319

15



0.1 0.2 0.5 1 2 4

10
1

10
2

10
3

L p [m
]

source efficiency η [−]

c/c
0
 = 0.1

0.2

0.4
0.8

Figure 5: Plume length (LP ) versus source efficiency obtained through numerical Monte
Carlo simulations. Results conditional on c/co= 0.1, 0.2, 0.3 and 0.5 with simulation
parameter values in Table 1.
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Table 1.

transversal dispersivity αt,var of meandering. The later is solely due to the320

variance of the transverse centroid position of the plume, i.e., it quantifies321

meandering. The sum of αt,eff and αt,var yields the classical macrodisper-322

sivity. The following equations were used to estimate the above-mentioned323

quantities:324

mo,flux(x1) =

∫

A

[q(x)c(x)]·ndA; (14)

αt,eff (x1) =
1

2Umo,res

∂

∂x1

[〈m22,c(x1)〉]; (15)

αt,var(x1) =
1

2Umo,res

∂

∂x1

[〈m2(x1)〉], (16)

where m22,c denotes the second central spatial moment (around individual325

plume centroids in individual realizations), m2/mo,res is the plume’s centroid326

position in x2, and mo,res is the total resident mass integrated over x2 (Rubin,327

2003). U is the mean velocity in the longitudinal direction and A is the cross-328

sectional area.329

For Figure 7.a, we observe how the amount of resident mass (at the cross330

section of the domain perpendicular to the mean flow direction) increases331

with travel distance for η > 3/2. This is due to divergence of streamlines332

after the source location, leading to a wider plume on average. Evidentely,333
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the opposite occurs when streamlines converge (η < 1/2) after the source334

zone (see eq. 6). The constant curves in Figure 7.a display the mass flux335

throughout the longitudinal distance.336

Figure 7.b displays some characteristics of the dispersive behavior of the337

plume conditional (and unconditional) on the flow regime at the contami-338

nant source. For instance, Figure 7.b depicts the plume’s relative transversal339

dispersivity αt,eff (see Andricevic and Cvetkovic, 1998), or effective disper-340

sion as termed in Dentz et al. (2000). The curves account for the plume341

spread without meandering, while the remaining curves for αt,var represent342

the macroscopic tranversal dipersion due to the sole variance of the plume’s343

transversal centroid position. For η > 3/2, the focusing of streamlines at the344

source lead to higher αt,eff since the streamlines are squeezed. For η < 1/2,345

αt,eff is less pronounced. As expected, the unconditional curve lies in be-346

tween the conditional cases. To measure the intensity of plume meandering347

conditional on η, we refer again to Figure 7.b (αt,var curves): It can be seen348

that larger η implies wider plumes, thus less prone to the effect of meander-349

ing. The opposite behavior is observed for smaller η.350

In all plots in Figure 7, a characteristic distance can be observed in which351

the local effect of conditioning fades away. Eventually, after this characteris-352

tic distance, the curves become parallel except for the artifact of Monte-Carlo353

simulation. However, the global inferred effect on plume statistics prevails354

for all traval distances.355

4.3. Significance356

The power of source efficiency as explanatory variable for concentra-357

tion can be visualized by mapping their Pearson’s correlation coefficient358

r=r[c(x), η] throughout the domain. The corresponding map, obtained from359

our Monte-Carlo transport simulation, is shown in Figure 8. Correlations of360

η with logconductivity and hydraulic heads are given Figure 8.a-b. The cor-361

relation of η with concentration (see Figure 8.c-e) is always positive, because362

a higher source efficiency leads to a larger total mass flux and wider plume363

emitted by the source. The correlation is highest, about 0.9, along the plume364

center line: The effective source width dictates the persistence of high con-365

centrations along the plume’s center line, see Figure 5. Correlations of about366

0.5 prevail throughout most regions of the plume. Only locations outside367

the plume fringes show almost no correlation. In those regions, only extreme368

transverse (secondary) flow effects, not linked to the hydraulic circumstances369

at the source, can have an effect.370
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Figure 8: Correlations (absolute values) of (a) Y = lnT , (b) heads and (c)-(e) concentra-
tion with source efficiency η. Correlations between η and concentrations are obtained for
(c) wsz=2.5 λ, (d) wsz= 0.5 λ, and (e) wsz= 10 λ (as depicted in the plots). Numerical
result from Monte-Carlo analysis with 20,000 realizations. For parameter values, refer to
Table 1.
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The area with high correlation mostly coincides with the area of high371

expected concentrations, stressing the potential of effective source width to372

effectively reduce the coefficient of variation of concentration within wide373

areas of the plume. The fact that source efficiency controls the large-time374

persistence of peak (high) concentrations along the plume’s center line, with375

high correlations found especially at large distances, unambiguously under-376

lines the surprising importance of near-source sampling for far field prediction377

shown in Nowak et al. (2010). In addition, Figure 8.c-e illustrates how the378

correlation map changes according to wsz. Results are plotted for wsz= 0.5λ,379

2.5λ and 10λ. Wider source width leads to a down-gradient shift of the380

iso-lines present in the correlation map (for instance, see the 0.9 isoline for381

wsz= 0.5λ and wsz= 10λ). This result is in agreement with the physical382

insight given in Equation (10), summarized in Figure 3: As wsz increases,383

thus approaching ergodicity in the sense that the volume average of the spe-384

cific discharge equals the ensemble average (thus making the total discharge385

Qsz through the source a deterministic quantity), the explanatory strength386

of source efficiency for downstream plume characteristics becomes less pro-387

nounced. However, its significance prevails for longer travel distances.388

4.4. Implications for Site Investigation389

Nowak et al. (2010) have identified optimal sampling strategies for min-390

imum variance prediction of contaminant concentrations at an environmen-391

tally sensitive location located downgradient of the source. Their results392

showed that large portion of the samples were located around the source393

zone and that the uncertainty in plume prediction was reduced by sampling394

hydraulic conductivities and heads near the source. They hypothesized that395

the major source of uncertainty addressed by these optimal sampling schemes396

is the total volumetric water flux passing through the source area. This hy-397

pothesis is confirmed theoretically and numerically in the current work.398

The correlations depicted in Figure 8.a-b confirm that hydraulic conduc-399

tivities and head measurements are informative for the effective source width,400

and hence for far-field prediction. In other words, a small set of measure-401

ments (heads and conductivities) located around the source helps to identify402

the actual value of effective source width and improve prediction power as403

discussed in the previous sections.404
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4.5. Alternative Release Conditions405

The results shown in this work are under the assumption of a line source406

with fixed concentration co. Relevant physical scenarios leading to the results407

shown here may be, for example, a fast dissolution process (e.g., of a DNAPL408

contamination with finely dispersed residual saturation) that installs solubil-409

ity limit. However, other scenarios can occur such as: (I) Fixed mass flux410

release of a contaminant (e.g., a leaking tank with instance dissolution) or (II)411

a slow kinetic dissolution process (e.g., diffusion of remaining contaminant412

out of low-conductivity regions after an incompleter source remediation).413

In both cases, all considerations in plume width and dispersion hold be-414

cause they are linked to the geometrical characteristics of the contaminant415

source. Equation (6) can apply, in the re-arranged form cf = ṁ/Qsz, to case416

(I). Here, cf denotes the flux-averaged concentration determined from a fixed417

mass flux ṁ. In this scenario, η will be connected with the uncertainty of418

the concentration leaving the source since Qsz = η 〈Qsz〉 (see Equation 3).419

Therefore, in that case, the statistics of concentrations are linked with the420

statistics of η.421

In case (II), the flux-averaged concentration leaving the source will depend422

on the resident time of water flowing through the source (τsz). In this case,423

one may assume η ∝ 〈τsz〉/τsz, where 〈τsz〉 denotes the ensemble expectation424

of residence time within the source area.425

In summary, even under other contaminant and release conditions, similar426

effects, as discussed in previous sections, will still lead to the same importance427

of source hydraulics for downstream plume predictions.428

5. Summary of Conclusions429

In this paper, we have shown that better understanding of the flow regime430

through the source zone can provide better contaminant predictions. We for-431

mally introduced the concept of the effective source width weff and source432

efficiency η, and we illustrated and analyzed how knowledge of these quanti-433

ties can better help quantify contaminant transport. We define the effective434

source width via the actual, rather than the expected, hydraulic flux through435

the source area and source efficiency as a factor that absorbs all randomness436

of the effective source width. In the current work, we highlight the following437

points:438

1. An analytical solution for the statistics of η was formally derived up439

to first-order. The solution was succesfully compared with numerical440
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Monte-Carlo simulations. We showed how the variance of η decreases441

with the geometrical source width and reaches ergodicity when wsz is442

equal to approximately 100 transversal integral scales. The obtained443

closed-form solution proved robust for values of σ2

Y far above unity.444

2. The PDF shape for η was computed numerically and we showed that445

it can reasonably well approximated by a log-normal distribution.446

3. It was shown that (and how) source zone release conditions impact447

the concentration mean and variance fields. In particular attention, we448

point out its role in defining the bimodal behavior of the concentration449

variance with strong implications in risk assessment.450

4. The relationship between η and plume length LP was also addressed.451

For the physical scenario analyzed, LP scales with η2. Therefore, effec-452

tive source width can be used to better predict the extent of contami-453

nation at a prescribed concentration level within the field. This shows454

how η can be used in applications that are of interest in risk assessment,455

for example, determining maximum contaminant levels (MCL) or for456

driving sampling campaigns within a health risk-driven approach as457

highlighted in de Barros and Rubin (2008) and de Barros et al. (2009).458

5. The impact of conditioning plume spatial moments on source charac-459

teristics is also investigated. We quantified how both mass fluxes and460

relative dispersion increases and centroid variance descreases with in-461

creasing source efficiency η.462

In summary, local hydraulic conditions in the area of contaminant release463

have a strong impact on plume characteristics. As shown throughout this464

work, knowing the hydraulics near the contaminant source is of high im-465

portance even for far-field predictions of contaminant transport, e.g., when466

dealing with practical problems, such as estimating human health risk due to467

groundwater contamination. Moreover, the current paper provides a simple468

approach to increase the predictive power of existing analytical solutions.469

As an outlook of future work, the analytical solution, as well as the results470

given here, could be particularly useful to quantify the additional dilution471

effects due to inclusions of high- (or low-) permeability materials at later472

travel distances. This would help to theoretically underline the results pub-473

lished by Rolle et al. (2009), where the impact of inclusions on dilution of474

contaminants was shown experimentally.475
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Appendix A. Flow and Transport Formulation482

In our illustrations, we limit the solute transport problem to a steady-483

state continuous line source in a depth-integrated, divergence-free 2D, ground-484

water flow at steady-state within a domain Ω = L ×W (length × width,485

respectively). The domain boundary ∂Ω is divided into two parts: ∂Ωi with486

prescribed head ĥ and the remaining parts ∂Ω\∂Ωi with prescribed flux (q̂):487

∇ · [T (x)∇h] = 0 , ∀x ∈ Ω (A.1)

h = ĥ , ∀x ∈ ∂Ωi

−n · [T (x)∇h] = q̂ , ∀x ∈ ∂Ω \ ∂Ωi,

where T (x) [L2/t] is the locally isotropic, spatially heterogeneous transmis-488

sivity and h [L] is hydraulic head. We can relate each component of the the489

Darcy flux q [L/t] with the stream function by using the following expressions490

(Batchelor, 2000; Bear, 1972):491

q1 = −
∂ψ

∂x2

q2 =
∂ψ

∂x1

, (A.2)

where isolines of stream functions and hydraulic heads are always orthogonal492

to each other, forming a potential flow net, in absence of sources and sinks.493

The corresponding governing equation for the stream function ψ and494

boundary conditions are given as (Bear, 1972):495

∇ ·

[

1

T
∇ψ

]

= 0, ∀x ∈ Ω (A.3)

n · ∇ψ = 0 , ∀x ∈ ∂Ωi

ψ = ψ̂ , ∀x ∈ ∂Ω \ ∂Ωi,
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with ψ̂ being a boundary fixed value for the stream function (determined by496

integration over q̂). Steady-state concentration is given by:497

v · ∇c−∇ · (Dd∇c) = 0, ∀x ∈ Ω , (A.4)

where c [M/L3] is concentration, v =q/ne [L/t] is velocity, ne [−] is porosity,498

and Dd [L2/t] is the local-scale dispersion tensor. Uncontaminated ground-499

water with c = 0 enters at x1 = 0, and the outflow boundary at x1 = L is500

unrestricted. The lateral boundaries are closed. We solved these equations501

using the same numerical implementation as in Nowak et al. (2008).502

Appendix B. Relation between Stream Function Statistics and503

Head Statistics504

In order to derive the stream function statistics, we make use of the head505

correlation structure expressed here in terms of the head variogram Γh. A506

first-order approximation to Γh has been provided by Dagan (1985b, 1989).507

Assumptions in the derivation were unbounded domain, mildly heterogeneous508

porous media, absence of sources and sinks, and geostatistical stationarity.509

Much less attention has been given to stream function statistics with a few510

exceptions such as Cirpka et al. (2004), who used linear error propagation and511

adjoint-state sensitivities to obtain the variance of stream function differences512

in the hydraulic design of a funnel-and-gate system.513

Our starting point is equation (A.3), which is formally identical to the514

groundwater flow equation. To obtain the stream function variogram, we515

follow the same formal steps taken by Dagan (1985b) for the head variogram516

and provided in more detail in Dagan (1989) and Rubin (2003). Let Y = lnT517

such that Y (x) = 〈Y 〉 + Y ′ (x). Substituting these expressions in equation518

(A.3) and using 1/T = exp (−Y ) = exp (−Y ′) /TG, we have:519

∇ ·
[

e−〈Y 〉e−Y
′

∇ψ
]

= 0;

⇔ ∇2ψ −∇ψ · ∇Y ′ = 0. (B.1)

By expanding the stream function into a polynomial of conductivity fluc-520

tuations Y ′, we obtain:521

∇2(ψo + ψ1 + . . .) −∇(ψo + ψ1 + . . .) · ∇Y ′ = 0. (B.2)
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Solving the equation for each order separately yields:522

(n = 0) : ∇2ψo = 0;

(n = 1) : ∇2ψ1 = ∇ψo · ∇Y
′, (B.3)

where the solution of (n = 0) for uniform-in-the-average flow must satisfy:523

−
∂ψo
∂xi

= γi . (B.4)

Due to their orthogonality (see Batchelor, 2000), heads and stream functions524

are coupled as:525

−TG
∂h

∂x1

=
∂ψ

∂x2

= −γ2;

−TG
∂h

∂x2

= −
∂ψ

∂x1

= γ1, (B.5)

which implies:526

γ1 = J2TG

γ2 = −J1TG

γ =
√

γ2

1
+ γ2

2
= TGJ , (B.6)

with J =
√

J2

1
+ J2

2
. There are two differences between the stream function527

formulation and the pressure head formulation: (1) comparing the right-hand528

side in equation (B.3) for n = 1 to Equation 3d of Dagan (1985b), we observe529

that they have opposite signs due to the appearance of T−1 in the stream530

function equation; and (2) the solution for n = 0 contains a gradient of γi531

instead of Ji. Now we duplicate the first-order equation (n = 1) for space532

coordinates x and y. Multiplying these two equations leads to:533

∇2

x∇
2

yψ1(x)ψ1(y) =
d

∑

i=1

d
∑

j=1

γiγj
∂Y ′(x)

∂xi

∂Y ′(y)

∂yj
, (B.7)
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where d is the physical dimension. Taking the expected value yields the534

generating equation for the stream function covariance:535

∇2

x∇
2

yCψ (x,y) =

d
∑

i=1

d
∑

j=1

γiγj
∂

∂xi

∂

∂yj
CY (x,y) . (B.8)

The opposite sign has vanished now and the generating equation is iden-536

tical to that for the head covariance, except that γi 6= Ji. This allows to537

use the analytical solutions derived for the head variogram with substituted538

coefficients (γi), thus leading to a rotation by ninety degrees and scaling by539

T 2

G.540

For the isotropic exponential covariance model, CY (r) = σ2

Y exp [r/λ]541

with variance σ2

Y and correlation length λ, the first-order head variogram for542

lag distances r along the mean flow direction is (see Dagan, 1985b):543

Γh(r, 0) = σ2

Y λ
2J2

1

2
ζ(r), (B.9)

with:544

ζ(r) =
1

2
+
e−r/λ

[

(

r
λ

)2

+ 3
(

r
λ

)

+ 3
]

− 3
(

r
λ

)2
−Ei

(

−
r

λ

)

+
( r

λ

)

+ e−r/λ− 0.4228.

(B.10)
Due to rotation and scaling, we arrive at the stream function variogram545

for transverse lag distances as:546

Γψ(0, r) = T 2

GΓh = σ2

Y λ
2J2T 2

G

1

2
ζ(r). (B.11)

In summary, the required assumptions necessary for the derivation of547

equation (9) are: (i) unbounded domain, (ii) uniform-in-the-average steady-548

state flow, (iii) mildly heterogeneous porous media (σ2

Y . 1) with absence of549

sources and sinks, (iv) 2D depth-averaged, and (iv) statistical stationarity.550
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