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Abstract. Intrinsic heterogeneities influence the multi-phase flow behavior of a dense non-aqueous
phase liquids (DNAPL) infiltrating into a natural soil. Typically, we cannot resolve the scale of these
heterogeneities so that upscaling techniques are required. The choice of the appropriate upscaling
method depends on the averaging scale, since the relative importance of capillary and gravity forces
change with scale. We present an easy and quick upscaling approach for cases in which the flow on
the length-scale of heterogeneities is dominated by capillary forces.

The approach is based on a percolation model and a single-phase flow-averaging method. We apply
the upscaling approach to experimental data of a DNAPL infiltration into a sandbox with artificial
sand lenses. The anisotropy of the structure results in anisotropic flow which is amplified by the non-
linear behavior of multi-phase flow. The residual saturation depends on the direction of flow, and the
anisotropy ratio of the effective permeability is a function of the DNAPL saturation. Furthermore,
it appears necessary to regard the relative permeability—saturation relationship as a tensor property
rather than a scalar. The overall flow behavior simulated by the upscaled model agrees well with
simulations accounting for the distinct lenses and the experimental data.

Keywords: two-phase flow, upscaling, saturation dependent anisotropy, porous media, macroscopic
residual saturation, anisotropic relative permeabilities

1. Motivation

Multi-phase flow and transport processes in porous media play an important role
in the remediation of non-aqueous phase liquids (NAPL) in the subsurface. These
flow processes are affected by heterogeneities on all scales. Spatial variability
ranges from single pores to geological structures, thereby spanning length scales
from pm to km (see Figure 1).

Although the term pore scale is unambiguous, all other terms describing scales
like micro or macro scale are not necessarily consistently used. For example,
the typical length scales considered in petroleum engineering differ significantly
from those in environmental engineering. While oil fields extend over hundreds
of meters to kilometers, the typical scales for environmental problems range from
meters to tens of meters (see Figure 2).

Different forces are likely to dominate on different scales. While on smaller
scales capillary effects are more pronounced, the gravity effects and the viscous
effects become more important at larger scales. For an environmental engineer,

therefore, both the capillary and the gravity forces may be important. The dom-
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Figure 1. Scales in subsurface hydrology (after Kobus, de Haar, 1995)
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Figure 2. Different scales for different applications.

inating forces need to be determined prior to choosing a particular upscaling
method.

In our example, we analyze an experiment carried out by (Allan et al., 1998;

Kobus et al., 2000) at the research facility for subsurface remediation, VEGAS, at
the University of Stuttgart. In the experiment, a dense non-aqueous phase liquid
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(DNAPL) was infiltrated into a small sandbox. Figure 3 shows the distribution of
sand types and the dimensions of the domain. The typical length scale is on the
order of centimeters to decimeters, where gravity forces as well as capillary forces
have to be considered.
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Figure 3. Distribution of the sand types in the experiment.

It is well known that small-scale structures, such as small-scale sand lenses,
can influence multi-phase flow and transport significantly. Many laboratory exper-
iments have shown that capillary forces have a large impact on the two-phase flow
behaviour in porous media on almost all scales (Jakobs et al., 2003; Illangasekare
et al., 1995) .

This paper focuses on heterogeneities within larger-scale structures as seen in
Figure 3. As is commonly known, the NAPL cannot penetrate a region of finer
material as long as the capillary pressure has not yet exceeded the entry pressure.
Thus, small-scale layering can lead to significant lateral spreading of the NAPL.

In spite of increasing computational power, the simulation of multi-phase flow
in porous media is still restricted to comparably coarse grids, prohibiting the res-
olution of small-scale features. In the simulation of multi-phase flow on larger
scales, it is therefore necessary to parameterize the effects of small-scale het-
erogeneities on the large-scale flow behavior. A variety of techniques have been
developed and applied to transfer the information from the process scale to the
simulation scale. These techniques are commonly referred to as upscaling. The
upscaling techniques may be classified into the following categories:

— A-posteriori methods (effective parameters are derived from the analysis of
highly resolved computation or measurement) [e.g. (Christie, 1996; Pickup
and Sorbie, 1996; Dale et al., 1997; Chang and Mohanty, 1997)]

— Stochastic methods (determination of the effective parameters through as-
sumptions of the statistical distribution of the heterogeneities and a stochas-
tical averaging of the equations) [e.g (Desbarats, 1995; Yeh et al., 1985; Man-
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toglou and Gelhar, 1987; Chang et al., 1995; Neuweiler et al., 2003; Efendiev
and Durlofsky, 2003)].

— Analytical methods (computation of the effective parameters for simple con-
figurations, volume averaging) [e.g. (Quintard and Whitaker, 1988; Ahmadi
and Quintard, 1996; Saez et al., 1989; Bourgeat and Panfilov, 1998)]

— Analogy methods (transformation of upscaling-approaches from other scopes
of research to multi-phase flow) [e.g. (Wu and Pruess, 1986; Pruess, 1994;
Pruess, 1996)]

— Equilibrium methods (simplification of the systems by assuming an equi-
librium of forces) [e.g. (Corey and Rathjens, 1956; Smith, 1991; Ekrann
et al., 1996; Yortsos et al., 1993; Kueper and Girgrah, 1994; Green et al.,
1996; Pickup and Stephen, 2000; Braun et al., 2005)]. The focus here lies on
the reduction of variables by assuming an equilibrium of (capillary) forces.
This assumption allows for the application of a percolation model which, to-
gether with an appropriate averaging method, results in effective constitutive
relationships for the macroscale.

The purpose of our upscaling approach is to compromise between two goals. First,
we want to develop a relatively easy method, which is not restricted to a certain set
of boundary and flow conditions and therefore applicable to different scenarios.
Second, we want to reproduce the most important physical effects.

This paper is organized as follows. In Section 2, we present the experimental
model set-up. We evaluate the validity of the capillary-equilibrium assumption by
a dimensional analysis in Section 3. In Section 4, we introduce our upscaling ap-
proach. We compare the results of different models and the experiment in Section
5. In Section 6, finally, we draw conclusions and give an outlook to future studies.

2. Physical Model Setup

The physical experiment that we use as a reference was carried out by (Allan et
al., 1998; Kobus et al., 2000).

2.1. PROPERTIES OF THE Porous MEDIUM

A DNAPL is infiltrated into a water-saturated sandbox of dimensions
(LxWxH) 1.2 m x 0.08 m x 0.5 m. The porous medium comprises three different
sands, a fine, a medium, and a coarse one. The medium sand is the background
material, while the other two are incorporated as lenses with a width of 0.2 m and
a height of 0.01 m, see Figure 3. The properties of the sands are listed in Table 1.
The medium sand occupies 80% of the domain whereas the fine and coarse sand
take each 10%. The lenses are randomly distributed.
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Table 1. Properties of the sands used in the experiment.

sand fine medium coarse
permeability k [m?] 6.38-107""  122-107'% 2.55.1071°
entry pressure P, [Pa] 882.9 539.55 353.16
form factor A [-] 3.0 3.0 3.2
residual saturation wetting phase S ,,, [-] 0.06 0.06 0.06
residual saturation non-wetting phase S, [-] 0.10 0.15 0.10
porosity ¢ [-] 0.38 0.38 0.38
volume w; [%] 10 80 10

2.2. BounpARY AND INITIAL CONDITIONS

Initially, the entire domain is fully water-saturated, and there is no flow. This
results in a hydrostatic pressure distribution. Over the entire course of the ex-
periment, the left and the right faces of the domain are connected to a water
reservoir ensuring constant pressure conditions at the boundaries. Water that is
replaced by the infiltrating DNAPL can leave the system over these boundaries.
The bottom and top boundaries are non-permeable for both liquids, except for a
small stretch of two centimeters in the top, where the DNAPL infiltrates with a rate
of 0.4833 - 1076 m3/s for 2970 seconds. The initial and the boundary conditions
are depicted in Figure 4.

TCE-infiltration: 29ml/min
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Figure 4. Initial and boundary conditions.

eichel_esf.tex; 14/12/2004; 11:03; p.5



6 Eichel et al.

3. Mathematical Model and Dimensional Analysis

Our upscaling approach is based on capillary equilibrium. This means, that capil-
lary forces are dominant on the small scale. In the following, we test this assump-
tion by a dimensional analysis.

The system of the two-phase flow equations expresses the conservation of
mass and generalized Darcy’s Law of both fluids. We assume a rigid solid phase
and incompressible fluids. The following equations describe the flow on the local
scale.

aSW =) krw SWa vl 4
002 9 (52D (920 4 0,8) = M
aS , = kyn(S ns Vi 7
pH—=+ V- (—Mk(i) (VP + Qng)) = Gn 2)
Mn

where ¢, o, S, u, g, P, and g are the porosity, the density, the saturation,
the viscosity, the acceleration constant due to gravity, the phase pressure and the
source/sink term, respectively. & is the intrinsic permeability, k, is the relative per-
meability of the respective phase, and k¢ s = k.k is the effective permeability. The
subscripts n and w denote the non-wetting and the wetting phase. For a detailed
derivation of this formulation see, e.g., (Marle, 1981; Helmig, 1997).

These two equations are coupled by the two following relations. First, the
two saturations sum up to unity. Second, the capillary pressure, defined as the
difference between the pressure of the non-wetting and the wetting fluids, is a
unique function of the saturation.

Sn"‘Sw:]’ Pc(Sn):Pn_Pw- (3)

In the dimensional analysis, we assume that the source/sink terms, ¢,, and g,
are zero. We sum up the two equations and introduce the total Darcy velocity
Uotal = Uy +1,,. In that way, we eliminate the phase pressures and the phase Darcy
velocities from the equation. The two-phase continuity equation reads:

GOuS 1 + ileoat - Vf(S) + ¥ (g £ A(Sn)ez) -v. (M—A(SH)VPC) =0. @
n n
The fractional flow function f(S,) of the non-wetting fluid is defined as:
kr.n(Sn)
fSn) = : ; %)
T k(S w) + Bk (S )
and A(S) stands for
Z_:kr, n(Skrw(Sn)

A(Sn) = = _kr,wf(Sn)- (6)

(S ) + B2 (S) b
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The density difference is defined as Ap = p, — py,.

As a first approximation we assume that we can neglect horizontal total flow
velocities due to pooling and have therefore only capillary forces acting in hori-
zontal direction.

We introduce typical scales for time, length, and capillary pressure. The time
is scaled with gravity. Typical length scales are the dimensions of the domain, X
and Z, and the capillary pressure is scaled by the entry pressure P,

x _ tkdpg
Z py
in which the star denotes dimensionless variables. Thus, we obtain the follow-
ing dimensionless form of equation 4:

, 7 =z/Z, x* = x/X, PY =P./Py (N

Op S+ Gr 19 f(S 1) + 0 AS ) — B, Dx A(S )0+ PE(S ) )
—Bo 10+ A(S )0+ PX(S,) =0

with the inverse gravity number Gr~! and the inverse Bond numbers Bo~! in

the x direction and in the z direction.

_ viscous forces u-u
Gr!l:= = 9
' gravity forces Ap-g-k ©
Bo-l capillary forces Py (10)
* 7 gravity forces Ap-g-Z
Bo;l _ capillary forces ~ Py-Z (11

gravity forces ap-g-X?

The capillary effects are accounted for by the Bond numbers. As an alternative,
one may use the capillary number Ca, which is related to the Bond number by:

_ capillary forces  Gr
~ viscous forces  Bo’

Ca (12)

We evaluate these quantities on the large (domain) scale. Considering the typ-
ical parameter values for the background sand material k = 1.22 - 10710 m?,
P, = 540 Pa, the length scales of the domain Z = 0.5 m, X = 1.2 m, and the
liquid properties Ap = 460 kg/m>, u, = 5.7 - 10™* kg/(ms), the only quantity
that we have to evaluate is the characteristic velocity u. A rough estimation is
given by assuming only the vertical component. The injected volumetric flux is
Q = 48 - 1077 m?/s, the width of the inlet is 2 cm, and the box is 8 cm
thick. This yields a maximum vertical darcy velocity of uyy = 3 - 1074 m/s.
We assume that the velocity of the wetting phase is negligible. If we insert these
values into equations 9 — 11, we get the following values of the three characteristic
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dimensionless numbers.

Gr1 =031, Bo,!=024, Bo.'=0.04 (13)

For the detailed flow process we have to consider the small length scale, given
by the dimension of the inclusions. If we introduce the ratio between the length
scales of the inclusions and the domain (Duijn et al., 2002),

€vert. = % =0.02, €horiz. = ﬁ—; =0.17, (14)
the spatial derivatives on the small and large scales can be separated. Having
chosen the base system to be the large (domain) scale, the spatial derivatives on
the small scale are multiplied by a factor of 1/e. Since the expressions accounting
for “diffusive” processes have second-order spatial derivatives, they are scaled by
1/€? on the small scale, whereas the “advective” processes are scaled by 1/€ on
the small scale. In this way, the capillary processes are “magnified” on the small
scale, and their impact is higher than on the large scale. If the respective inverse
Bond numbers are small (the same order as €), the “magnification™ of the capillary
processes on the small scale cancels out and advective and diffusive processes
contribute on the small scale to the same extent.

If the capillary number is of order 1 and large compared to €, the diffusive pro-
cesses on the small scale are weighted by 1/e compared to the advective processes.
In this case, the small scale is dominated by capillary forces, and the viscous and
gravity forces on this scale can be neglected.

In order to meet the criterion for capillary dominance, a clear separation of
scales must be given:

e<Bo !« l/le e<x Ca!l < 1/e. (15)

In our case, the separation criterion is met in the vertical direction, € = 0.02 <
Bo,! = 0.24 < 1/e = 50. As the inverse gravity number is between 0.1 and 1, the
criterion (15) is also met for the inverse capillary number.

Although the criterion for capillary equilibrium is met in the experiment con-
sidered here, the following points should be considered:

— The analysis holds only when the inclusions are placed in distances in the
same range as the length scale of the inclusion. Otherwise we get the aver-
age distance of the inclusions as an additional intermediate scale. Also, the
contrast of the parameter properties, such as permeability and capillary entry
pressure has to be large compared to € and small compared to 1/e. Obviously
the difference of the function A(S,) in the different materials should also not
be large, in order to keep the scales separated.
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—  We could also use the small scale as the base system and scale all numbers
accordingly with the small length scales. By this, we would obtain identical
results.

— The actual experimental setup is more complex. The influx is not placed
over the whole width of the tank. The estimation for the resulting vertical
and horizontal total flow velocities is therefore not trivial.

4. Upscaling Method

In this section, we describe the different underlying assumptions and the steps
comprising the proposed upscaling approach, used to derive effective parameters
on the macroscale for the simulation of two—phase flow processes. This is done
by a percolation model and a small-scale flow-averaging method.

4.1. ASSUMPTIONS

As outlined above, we assume that capillary effects dominate the processes on the
small scale. Changes of variables on the large scale are very slow compared to
changes of variables on the small scale. From the perspective of the large scale,
this implies that the small-scale reaction on a change of large-scale variables is
quasi instantaneously. Thus, we can neglect the dynamics on the small scale and
assume, on that scale, that the system is in capillary equilibrium. We make use
of that property in a percolation model for the small-scale features. Here, we
assume that, given a large-scale capillary pressure, the non-wetting phase enters
instantaneously all cells of the small-scale model in which the entry pressure
is exceeded. Therefore hysteresis does not play a role in this model. The fluid
distribution in the small-scale model is given from the local P. — S relations that
are represented by Brooks-Corey type functions (Brooks and Corey, 1966), with
no residual saturation (S ;) on the local scale. By this means, we can construct the
functional relation between the capillary pressure and the large-scale saturation.

4.2. PERCOLATION MODEL

In our application, we know the exact distribution of the materials with their
parameters and constitutive relationships. Applying the capillary equilibrium as-
sumption to a distribution of local P, — S,, relationships, we can determine the
saturation distribution for a given capillary pressure. We do this by applying a
static site—percolation model (Stauffer, 1985). The arithmetic mean of the satura-
tion distribution gives one point on the macroscopic capillary pressure—saturation—
relationship. In Figure 5, three different capillary pressure levels and the associ-
ated macroscopic saturations are shown. The three resulting points on the macro-
scopic curve are shown in Figure 6.
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Figure 5. Steps in the percolation model.

Cycling through this procedure with different capillary pressures, one can de-
termine the complete macroscopic capillary pressure—saturation relationship.
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Figure 6. Macroscopic capillary pressure — saturation relationship
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In Figure 6, four different P — ¢ - S relationships are shown. The three dashed
curves indicate the relationships for the three individual sands, while the solid
line is the determined macroscopic P.-S-relationship. The P, - S relationship
resembles the curve of the medium sand quite closely (Figure 6). Only at high
saturations of the wetting fluid, the upscaled curve shows a dip that does not exist
in the retention curve of the medium sand. At this saturation the entry pressure of
the background sand is exceeded.

4.3. RENORMALIZATION

As a first upscaling approach for the relative permeabilities, we test the renor-
malization approach as suggested by Williams and King (Williams, 1989; King,
1996). For a quadratic domain the effective horizontal conductivity kj; can be
computed by a finite difference method. The indices are shown in Figure 7.

_ 2 (ky + ko) - (ks + kg) - (KT, + kL)

"= 1 . (16)
3'(k1+k3)-(k2+k4)+§'(k1+k2+k3+k4)-(k12+k34)
2k ks

ith k= ——. 1

with &, P (17

y ko | kg

X

Figure 7. Indices used in the renormalization method.

For the effective vertical conductivity, the indices “2” and “3” have to be ex-
changed. After determining the effective conductivity of a block of four cells, one
proceeds to a higher scale on which the conductivities of four blocks are averaged.

For every specific global saturation, there exists a local saturation distribution
computed by the percolation model. The local k.rr = k(S )k is thus known. The
renormalization is performed for the effective permeability. On the highest level,
the procedure results in a single effective permeability for each phase in each
direction. As the relative permeability kr is defined by

keﬁfii(S )

krij = ————,
! Kefrii(S =1)

with i = x,y, (18)

the renormalization yields one point on the upscaled relative permeability - sat-
uration relationship. Repeating this procedure with different capillary pressures,
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and thus different saturations, yields the two upscaled kr,, — S ,,-relationships. This
procedure is carried out for both spatial dimensions and both fluids.

It may be noteworthy that the strong anisotropy on the small scale and the har-
monic weighting in the renormalization procedure yields artefacts, as can be seen
in Figure 8. Here, the dashed lines indicate Brooks-Corey parameterized curves
(Brooks and Corey, 1966) used as parameterizations for all materials. The solid
lines represent the vertical kr — S -relationships computed by the renormalization
method. The horizontal kr — S -curves, which are not shown here, are closer to the
Brooks-Corey parameterizations.

The renormalization method leads to extremely high macroscopic residual sat-
urations caused by zones of relatively low permeabilities. This may be explained
by the illustrative example shown in Figure 9. In this example, a preferential,
curvilinear flow path exists. The unfortunate choice of the first renormalization
blocks, however, cuts the preferential flow path off. Thus, effective permeability
on the highest level is strongly underestimated.

k vertical

prefere
Howpal

Figure 9. Renormalization techniques for anisotropic systems.
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4.4. SINGLE-PHASE FLOW-AVERAGING METHOD

The upscaled relative permeability - saturation relationship can be computed by
solving the pressure equation for a single phase (Dykaar and Kitanidis, 1992).
Periodic boundary conditions are chosen, so that the pressure fluctuations match
on opposing sides. Imposing a large-scale pressure gradient onto the system, the
pressure at the inflow boundary has a higher value than that at the outflow bound-
ary. This is accounted for by a uniform jump. The general setup of periodic cells
used for upscaling is well described by (Durlofsky, 1991).

Our procedure is as follows. For a given capillary pressure, the local saturation
distribution is known from the percolation model. This together with the known
local kr-S relationship and the permeability distribution, yields the local effective
permeability. We now solve the pressure equation for a single phase, imposing a
unit pressure gradient. It is assumed that the motion of one fluid has no impact on
that of the other fluid. From the pressure distribution of the single fluid we can de-
termine its velocity field. Then, the effective permeability of the phase considered,
keyy, can be calculated from the mean velocity and the applied pressure gradient.

Since the relative permeability is defined as the ratio between k. ¢ (S = 1) and
kerr (S), the single-phase flow simulation yields a single point on the upscaled
relative permeability - saturation relationship. Repeating the analysis for different
capillary pressures, and thus different saturations, we construct the entire relative
permeability curve. The procedure is carried out for both fluids independently.

The effective permeability value obtained is one diagonal entry in the effec-
tive permeability tensor. In order to get the second diagonal entry, another set
of flow simulations is carried out, now with the pressure gradient perpendicu-
lar to the first direction. Applying periodic boundary conditions without jump
along the remaining boundaries, we also determine the off-diagonal entries of the
relative-permeability tensor. In the present application, however, these terms are
comparably small and are thus neglected in the following analysis.

Figure 10 shows the relative permeabilities for the above explained single-
phase flow averaging method, applied to the data of the sandbox. The solid lines
indicate the vertical relative permeabilities, the dashed lines represent the horizon-
tal relative permeabilities, while the dotted lines show Brooks-Corey parametriza-
tions for the medium sand as comparison. It is clearly visible that the vertical
relative permeabilities are highly reduced compared to the local Brooks-Corey
curves and that the horizontal ones are slightly increased. That is, the relative per-
meability exhibits strong anisotropy. Also, the macroscopic residual saturations
differ from the residual saturation of the Brooks-Corey curve. Both findings are
in agreement with the experimental results. The lenses lead to more horizontal
spreading and delay the flow in the vertical direction. In the coarse sand lenses
DNAPL gets trapped, while the fine sand lenses can be bypassed. Although the
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macroscopic residual saturations for flow in the vertical direction increases, they
are not as high as computed by the renormalization method.

0.9 X
0.8
07 :
0.6 B £
205 " !
0.4
03
0.2
0.1

Figure 10. kr - S relationships obtained from the single-phase simulations.

Applying periodic boundary conditions in the single-phase flow simulations
implies that the domain with the small-scale features is interpreted as a unit cell of
a periodic domain, made of an infinite number of those unit cells. By construction,
the unit cell of such a system is a representative elementary volume. The peri-
odic boundary conditions also guarantee that the resulting effective permeability
tensor is symmetric and positive-definite. When the saturation of the considered
phase becomes extremely small, however, numerical errors may cause prohibited
effective-permeability tensors.

5. Comparison of Measured and Simulated NAPL Distributions

We now compare the experimental saturation distribution (see Figure 11) with
a discrete, two-dimensional simulation (see Figure 12), in which the blocks of
different permeability are resolved explicitly. We use a boxmethod as described in
(Helmig, 1997) solving the discretized equations for water pressure and DNAPL
saturation. The grid cells are 1 cm high and 2 cm wide. The experimental results
are based on photographs taken after one hour. The exact saturation values cannot
be determined, nonetheless, the picture gives a good qualitative impression of how
far the NAPL distribution infiltrated.

The detailed simulation reproduces the experiment well with respect to the
overall NAPL distribution. The experimental data are almost binary, with NAPL
found in a few coarse-sand lenses. Here, the NAPL is entrapped by capillary
forces. The simulations predict quite well which coarse-sand blocks are occupied
by the NAPL. The simulations, however, show a higher residual saturation in the
medium-sand matrix than observed in the experiment. On the macro-scale, the
residual saturation is dominated by the entrapment in the coarse-sand lenses. In the
simulations, we can also identify some fine-sand lenses by the non-wetting phase
pooling on top of them. If we take two threshold values for the saturation, namely
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Figure 11. Experimental NAPL distribution after 1 hr (from Braun, 2000).
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Figure 12. Discrete simulations. Left: full saturation distribution; right: two threshold values of 0.3
and 0.5.

0.3 and 0.5, we see how closely the numerical results match the experimental data.

After we have shown that the discrete simulation matches the experimental
results well; we now compare these results with two simulations based on up-
scaled constitutive relationships. This allows us to calculate and compare first and
second moments of the DNAPL body, which would have not been possible with
the experimental results.

The first is a simple upscaling approach, where the permeabilities and entry
pressure are just geometrically averaged to obtain the macroscopic parameters.
The absolute permeability should be anisotropic due to the different correlation
lengths but the influence is negligible. The relative permeabilities are approxi-
mated as Brooks-Corey parametrizations. In Figure 13, we see that the macro-
scopic parameters obtained by taking the geometrical average of the small scale
values, cannot capture the overall flow behaviour. In this example, the downward
velocity is overestimated dramatically, and the horizontal spreading is not repre-
sented.
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Figure 13. Saturation distribution for upscaling by taking the geometric average.

Figure 14 shows the results for two different grids using the upscaled constitu-
tive relationships from the percolation model and the single-phase flow-approach
for the relative permeabilities. The left simulation is computed on a grid which is
as fine as the one used for the detailed simulations. The results shown in right sub-
plot are obtained on a coarser grid. The predicted distributions are very similar.

For the simulations shown in Figure 14, we have upscaled the entire domain.
That is, the system is considered homogeneous with identical parameters and con-
stitutive relationships throughout the domain. Consequently, one cannot expect to
see small-scale features of the saturation distribution. However, two overall trends
are identical in the upscaled and detailed simulations as well as in the experiments.
First, the vertical velocity of the DNAPL is retarded, and second, the horizontal
spreading of the DNAPL is enhanced. The upscaled simulations reproduce those
features because the vertical relative permeability curves (solid curves) seen in
Figure 10 are well below the Brooks-Corey parametrizations indicated by the
dotted lines, and the horizontal relative permeability curve, at least of the DNAPL,
is larger. These curves reflect the effect of the lenses in the physical model that
diminish downward movement of the DNAPL.

Sn: 0.01 0.056 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Sn: 0.01 0.056 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

- -

Figure 14. Saturation distribution for the upscaled anisotropic parameters — left: Fine grid
simulation — right: Coarse (upscaled) grid simulation

In Figure 15, we overlay the numerical results of the discrete simulation with
the proposed upscaling approach. The contour lines show the saturation distri-
bution from the simulation with the upscaled values, while the gray and black
areas indicate regions where the DNAPL exceeds a saturation of 0.3 and 0.5,
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respectively.
On average, the lateral spreading is matched well. Obviously, coarse-sand lenses
extending beyond the region, that is reached by the DNAPL in the upscaled simu-

lation, cannot be captured fully. The vertical migration is slightly underestimated,
indicating an overestimation of macroscopic residual saturation by the upscaling

approach.
==
i —— -

————— e

Figure 15. Comparison between numerical results with the resolved lenses (grey scales) and the
upscaled parameters (contour lines).

In order to compare the results we calculated the first and seconds moments

for the three different set-ups at three different times. Figures 16 and 17 show
the saturation distributions after 20 and 40 minutes, respectively. The origin of
the coordinate system is located at the midpoint of the top boundary, with the
z-coordinate pointing downwards. The moments are given in Table 2. As the
geometric-average and the upscaled configuration are obviously symmetric with
respect to the z-axis the first moment in x-direction is not shown. The moments
calculated for the geometric averaging case after 40 and 60 minutes are written in
brackets, because at that time the DNAPL is already pooling at the bottom of the
domain.
Table 2 shows that the results for the upscaled simulation are better than in the
geometric averaging case. In the geometric averaging case the moments are sig-
nificantly overestimated in the z-direction and underestimated in the x-direction.
The moments for the upscaled case still underestimate all spatial moments of the
discrete case. This is expected for the second moment in x-direction, where the un-
derestimation is most pronounced, as the lenses transport DNAPL more efficiently
to boundary regions than can be captured by the effective upscaled parameters.

6. Final Remarks

We have presented a quick and simple upscaling technique for DNAPL infiltration
at the laboratory scale. We have applied the method to experimental data of a
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Sn: 0.01005 0.1 0.15 0.2 0.25 03 035 0.4 0.45 0.5 Sn: 0.01005 0.1 0.15 0.2 0.25 03 035 0.4 0.45 0.5 Sn: 0.010.05 0.1 0.15 0.2 0.25 0.3 0.35 04 045 05

Figure 16. Saturation Distribution after 20 minutes — left: discrete simulation — middle: geometric
averaging — right: upscaled parameters

Sn: 0.010.05 0.1 0.15 0.2 0.25 03 035 0.4 0.45 05 Sn: 0.010.05 0.1 0.15 0.2 0.25 03 035 0.4 0.45 05 Sn: 0.010.05 01 0.5 0.2 0.25 0.3 0.35 0.4 045 0.5

Figure 17. Saturation Distribution after 40 minutes — left: discrete simulation — middle: geometric
averaging — right: upscaled parameters

sandbox experiment. The results are promising, since the overall spatial extent of
the DNAPL plume could be approximated well.

Our approach consists of a percolation model to obtain the macroscopic P,-
S -relationship and of a single-phase flow-approach to determine the effective
permeabilities as a function of mean saturation. Currently, we use a site percola-
tion model, which should be replaced by an invasion percolation model in the near
future. The single-phase flow-model for the upscaling of relative permeability is
especially useful when the system is strongly anisotropic, and the renormalization
approach would fail. In the current application, both the single-phase flow-model
and the renormalization approach yield strong macroscopic residual saturations
and anisotropic behaviour as shown earlier by e.g. (Pickup and Sorbie, 1996).

The presented upscaling approach is subject to the following underlying as-
sumptions:

— Capillary equilibrium is assumed.

— The fluctuations of the flow velocities and the parameter functions are ne-
glected in the dimensional analysis.

— We have not upscaled the form of the equation but determined effective
parameters assuming that the form of the equation is conserved.

The approach is therefore restricted to capillary dominated systems. Also this
upscaling method is only applicable to the specific scales used in here.

Especially the capillary equilibrium assumption needs further analysis. The
method should also be compared to homogenization theory (cf. e.g. (Duijn et
al., 2002)). Further examinations of the influence of different heterogeneities on
multi-phase flow, e.g. pooling and the influence of lenses needs investigations
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Table 2. First and second moments of the DNAPL body.

time 20 min 40 min 60 min

1. moment z-direction [m]:

discrete 0.0650 0.1127 0.1582
geometric 0.1421 (02472) (0.3388)
upscaled 0.0472 0.0724 0.0993
2. moment z-direction [m?]:

discrete 0.0016 0.0039 0.0059
geometric 0.0069  (0.0195) (0.0220)
upscaled 0.0011 0.0023 0.0035

2. moment x-direction [m?]:

discrete 0.0181 0.0276 0.0381
geometric 0.0024  (0.0037) (0.0131)
upscaled 0.0087 0.0160 0.0229

which should be accompanied by more laboratory experiments.

Up to now, only the main axis of a full £, — S tensor is implemented in the
numerical code. An extension to include the full tensor is planned in the near
future.
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