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THE EQUIVALENCE OF STANDARD AND MIXED FINITE ELEMENT

METHODS IN APPLICATIONS TO ELASTO-ACOUSTIC INTERACTION

BERND FLEMISCH∗, MANFRED KALTENBACHER†, SIMON TRIEBENBACHER† , AND BARBARA I.

WOHLMUTH‡

Abstract. Two commonly used problem formulations for the description of acoustic wave propagation are
investigated, one based on the fluid displacement and the other one based on the velocity potential as primary
variable. Their equivalence under general Neumann boundary conditions is shown both on the continuous and
discrete level. To obtain the equivalence in the discrete setting, a non-standard mixed finite element formulation is
introduced. Thus, the transfer of an already available analysis for coupled elasto-acoustic problems in the displace-
ment formulation to the potential formulation can be achieved. For the applications, the potential formulation is
of special interest, because it allows the use of standard Lagrangian elements in both the stucture and the fluid
subdomain. Moreover, the approach does not require any conformity of the subdomain meshes at the interface,
which considerably simplifies the physics-adapted mesh generation. Several engineering examples demonstrate the
applicability and efficiency of the resulting numerical scheme.

1. Introduction and preliminary results. Many engineering problems deal with the in-
teraction of vibrating mechanical structures and acoustic fields. E.g., piezoelectric and capacitive
micro-machined ultrasound transducers for medical imaging and nondestructive testing, sound
transducers as electrodynamic and piezoelectric loudspeakers as well as capacitive microphones,
noise shielding and cancellation systems to mention just some [17, 14]. Since we deal with a
coupled field problem - in our case the interaction between the mechanical and acoustic field -
we have to be very careful when setting up the formulation on the continuous and furthermore
then on the discrete level. Various aspects of domain decomposition techniques come into play
like interface conditions between different types of variables and non-matching meshes.

While it is standard to use a displacement based formulation for the elastic part, a variety
of formulations depending on the choice of the primary variable exists for the acoustic part.
In particular, one can choose a formulation based on pressure, [21], displacement potential, [18],
velocity potential, [14], or on the vector-valued fluid displacements, [3]. This may result in different
Hilbert spaces for the weak formulations, namely, H1 and Hdiv, and thus different finite element
spaces for the discretizations. We base our formulation on the primary variables mechanical
displacement and acoustic velocity potential, since this choice allows us to use on both subdomains
standard Lagrange finite elements. Moreover, the coupled formulation remains symmetric [20].
In order to gain full flexibility for the discretization, we use possibly non-matching grids along
the coupling interface. Therewith, the mesh generation process gets much easier, since grids in
different sub-domains do not influence each other, and we obtain the possibility to choose the grid
size optimal for both physical fields.

However, the analysis of the coupled time-dependent problem is not straightforward, since
standard results on evolution equations cannot be applied, [9, 10, 16, 23]. In contrast, the stability
analysis for the purely displacement based formulation employing Raviart–Thomas finite elements
is already available, [3]. By showing the equivalence between these two formulations both in the
continuous and in the discrete setting, we obtain existence and uniqueness of our formulation.
This provides a sound theoretical foundation for the engineering approach used in [14].

To demonstrate the efficiency and applicability of our implementation, we present several
applications such as an electrodynamic loudspeaker as well as ultrasound wave generation by
multiple plates as used in capacitive micro-machined ultrasound transducers. The use of non-
matching grids along the coupling interface strongly improves the quality of the meshes in both
sub-domains and the overall computational efficiency. We note that our concept can be easily
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generalized to more complex subdomain models and to higher order finite elements, which we will
show in our last example of a piezoelectric loudspeaker.

The rest of the paper is organized as follows. In the rest of this introduction, we state an
elementary result for Hdiv functions based on the Helmholtz decomposition. Section 2 introduces
a potential based and an equivalent displacement based continuous formulation for the acoustic
subproblem. The main theoretical result is given in Section 3, where we introduce two equivalent
discrete schemes. While the discretization for the potential formulation is based on standard
Lagrange finite elements, the one for the displacement formulation employs non-standard mixed
finite elements. Moreover, an optimal a priori error estimate for the mixed method is shown. In
Section 4, the coupled elasto-acoustic problem formulations are given with special focus on the
interface conditions. Finally, Section 5 provides applications of the discrete coupled problems to
several engineering applications.

Let Ω ⊂ R
d, d = 2, 3, denote a bounded domain with outward unit normal ν. By (·, ·)Ω, we

indicate the L2-inner product of scalar or vector-valued functions on Ω, and set ‖ · ‖2
0,Ω = (·, ·)Ω.

Moreover, we introduce the spaces Vd by setting with V2 = H1
0 (Ω) the standard space of scalar

L2-functions with L2-gradients, and with V3 = (H1
0 (Ω))3 the corresponding space of vector fields.

From now on, our notation of function spaces will not be different for spaces of scalar functions
or vector fields. However, in general, we will distinguish elements of these spaces by using greek
letters in normal font and latin letters in bold font, respectively. Nevertheless, we will use late-
alphabet greek letters for elements in Vd which can be scalar or vector-valued, depending on the
dimension d. Additionally, we set

Hdiv(Ω) = {v ∈ L2(Ω) : div v ∈ L2(Ω)},

Hdiv
0 (Ω) = {v ∈ Hdiv(Ω) : v · ν = 0 on ∂Ω},

and the associated norm ‖ · ‖2
div,Ω = (·, ·)Ω + (div ·, div ·)Ω. We will frequently make use of the

following standard result.
Lemma 1.1. Assume that Ω ⊂ R

d is simply connected for d = 3 or that the boundary ∂Ω is
connected for d = 2. Let w ∈ L2(Ω) satisfy

(w, curl τ)Ω = 0, τ ∈ Vd. (1.1)

i) Then w = gradα for a function α ∈ H̃1(Ω) = {φ ∈ H1(Ω) : (φ, 1)Ω = 0}.
ii) If additionally w ∈ Hdiv

0 (Ω), it holds that

‖w‖div,Ω ∼ ‖ div w‖0,Ω.

Proof. For convenience of the reader, we recall the proof. The Helmholtz decomposition
admits to write w ∈ L2(Ω) as gradα+ curl τ with α ∈ H̃1(Ω), τ ∈ Vd, [27, (A.6), (A.18), (A.21)].
We note that gradH1 ⊥ curlVd, and thus

‖w‖2
0,Ω = ‖ gradα‖2

0,Ω + ‖ curl τ‖2
0,Ω.

Due to (1.1), we find

‖ curl τ‖2
0,Ω = (w − gradα, curl τ)Ω = 0,

which yields i). Moreover, if w is also in Hdiv
0 (Ω), we find that

‖ gradα‖2
0,Ω = −(div w, α)Ω ≤ ‖ div w‖0,Ω‖α‖0,Ω ≤ C‖ div w‖0,Ω‖ gradα‖0,Ω.

In the last step, we have used that the H1-seminorm restricted to H̃1(Ω) is equivalent to the
H1-norm. �

2. Continuous acoustic problem formulations. This section investigates the continu-
ous acoustic problems. We first introduce the two problem formulations in Subsections 2.1 and
2.2. Then, we state the compatibility conditions which admit the equivalence of the problems in
Subsection 2.3. The equivalence is actually shown in the final Subsection 2.4.
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2.1. Potential-based formulation. Our goal is to model the propagation of acoustic waves
inside a bounded domain Ωa with boundary Γ = ∂Ωa. One possibility is to use the linear wave
equation for the acoustic velocity potential ψ. Given T > 0 and the speed of sound c ∈ L∞(Ωa),
one seeks ψ such that

c−2ψ̈ − div gradψ = 0 in Ωa × (0, T ),

which is complemented by the natural boundary condition

gradψ · ν = −vν on Γ × (0, T ), (2.1)

and initial conditions

ψ(0) = ψ0 and ψ̇(0) = ψ1 in Ωa. (2.2)

The reason for choosing the boundary condition (2.1) is that for the coupled elasto-acoustic prob-
lem investigated in Section 4, relation (2.1) enforces the continuity of the normal velocity.

Transforming to the variational setting, we employ the common Sobolev space framework and
notation for evolution problems, [9, 10, 16, 23]. Abbreviating the notion W (0, T ; V ) by W (V ) for
indicating the regularity with respect to time and space, and denoting by 〈·, ·〉1, Ωa and 〈·, ·〉1/2, Γ

the duality product on H−1(Ωa) ×H1(Ωa) and H−1/2(Γ) ×H1/2(Γ), respectively, we arrive at:
Problem 2.1. Given ψ0 ∈ H1(Ωa), ψ1 ∈ L2(Ωa), vν ∈ L2(H−1/2(Γ)), find an acoustic

velocity potential ψ ∈ L2(H1(Ωa)) such that

〈c−2ψ̈(·), φ〉1, Ωa + (gradψ(·), gradφ)Ωa = −〈vν(·), φ〉1/2, Γ, φ ∈ H1(Ωa), (2.3)

in the sense of distributions on (0, T ), together with the initial conditions (2.2).

2.2. Displacement-based formulation. Instead of taking the velocity potential as primary
variable for the acoustic domain Ωa, one can seek the displacement field ua such that

üa − grad(c2 div ua) = 0 in Ωa × (0, T ),

complemented by the essential boundary condition

ua · ν = uν on Γ × (0, T ), (2.4)

and the initial conditions

ua(0) = u0
a and u̇a(0) = u1

a in Ωa. (2.5)

We assume that the mean density of the acoustic fluid is constant. For the upcoming elasto-
acoustic problem, the essential boundary condition (2.4) corresponds to the continuity of the
normal displacements.

Using the boundary condition (2.4), we define

L2(Hdiv
∗ (Ωa)) = {v ∈ L2(Hdiv(Ωa)) : v · ν = uν on Γ × (0, T )}. (2.6)

The resulting weak problem reads as follows.
Problem 2.2. Given u0

a ∈ Hdiv(Ωa), u1
a ∈ L2(Ωa), uν ∈ L2(H−1/2(Γ)), find an acoustic

displacement field ua ∈ L2(Hdiv
∗ (Ωa)) such that

〈üa(·),v〉div, Ωa + (c2 div ua(·), div v)Ωa = 0, v ∈ Hdiv
0 (Ωa), (2.7)

in the sense of distributions on (0, T ), together with the initial conditions (2.5).
Remark 2.3. In our coupled formulation, the boundary data uν will be of higher spatial

regularity H1/2(Γ) due to the fact that uν is assumed to coincide with the restriction of H1-regular
diplacements from the solid domain onto the interface Γ.
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2.3. Continuous compatibility conditions. The equivalence of Problems 2.1 and 2.2 can
only be guaranteed if both the boundary and the initial data are compatible. In this section, we
will discuss the compatibility conditions in detail. While the condition for the boundary data
is inherited from the underlying coupled elasto-acoustic problem, we explicitly construct initial
data for the displacement Problem 2.2 which is compatible to a given initial solution for the
potential Problem 2.1. From now on, the subscript “a” is frequently omitted from ua whenever it
is unambiguous.

2.3.1. Boundary data. For the elasto-acoustic problem, the solid displacements result in
compatible boundary data vν and uν , in particular,

• natural conditions for Problem 2.1 for the velocity potential, incorporated in the vari-
ational equality (2.3), and

• essential conditions for Problem 2.2 for the acoustic displacements, incorporated in the
definition of the space L2(Hdiv

∗ (Ωa)) in (2.6).
Since for the moment no coupling to the solid domain is assumed, we just impose the required
compatibility by assuming that

〈vν(·), φ〉1/2, Γ = 〈u̇ν(·), φ〉1/2, Γ, φ ∈ H1/2(Γ) (2.8)

in the sense of distributions on (0, T ).

2.3.2. Initial data. The compatibility of the initial data is provided by means of the follow-
ing lemma.

Lemma 2.4. Let the initial and boundary data ψ0, ψ1, and vν of Problem 2.1 be given. Let
also the boundary data uν of Problem 2.2 satisfying (2.8) be given and assume additionally that

−(c−2ψ1, 1)Ωa = 〈uν(0), 1〉Γ. (2.9)

Then, initial data u0 ∈ Hdiv(Ωa), u1 ∈ L2(Ωa) of Problem 2.2 can be uniquely selected by requiring

div u0 = −c−2ψ1 in Ωa, u0 · ν = uν(0) on Γ, (2.10)

(u0, curl τ)Ωa = 0, τ ∈ Vd, (2.11)

u1 = − gradψ0 in Ωa. (2.12)

Proof. Choose uΓ ∈ Hdiv(Ωa) such that uΓ · ν = uν(0) on Γ and define uΩ ∈ Hdiv
0 (Ωa) such

that

div uΩ = −c−2ψ1 − div uΓ.

Condition (2.9) ensures the existence of uΩ, since

(c−2ψ1 + div uΓ, 1)Ωa = (c−2ψ1, 1)Ωa + 〈uν(0), 1〉Γ = 0.

In order to guarantee (2.11), we define ζ ∈ Vd by

(curl ζ, curl τ)Ωa = −(uΓ + uΩ, curl τ)Ωa , τ ∈ Vd,

noting that the lemma of Lax–Milgram yields the unique existence of ζ. The function u0 =
uΓ + uΩ + curl ζ then satisfies (2.10), (2.11) by construction.

For checking the uniqueness, we assume that u1,u2 ∈ Hdiv(Ωa) satisfy (2.10), (2.11). Then,
the difference δu = u1 −u2 is an element of Hdiv

0 (Ωa), and by (2.10), we have div δu = 0. Due to
(2.11), we can apply the second part of Lemma 1.1 and conclude that δu = 0 since

‖δu(·)‖div,Ωa ∼ ‖ div δu(·)‖0,Ωa = 0.

Given ψ0 ∈ H1(Ωa), it is trivial to see that (2.12) uniquely determines u1 ∈ L2(Ωa). �

Remark 2.5. It is interesting to note that u0 is determined solely by ψ1, and that u1 only
depends on ψ0. Moreover, going in the other direction and trying to construct compatible initial
data for Problem 2.1 from given data for Problem 2.2 might fail. Although (2.10) would determine
ψ1, it is in general not possible to construct ψ0 from (2.12) without additionally assuming that u1

is irrotational.
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2.4. Equivalence of the acoustic problems. Lemma 2.6. Let ψ be the solution of Prob-
lem 2.1, and let u0, u1 be constructed by means of Lemma 2.4. Define u ∈ L2(Hdiv

∗ (Ωa)) by

div u = −c−2ψ̇, (2.13a)

(u(·), curl τ)Ωa = 0, τ ∈ Vd. (2.13b)

Then, the function u

i) is uniquely defined by (2.13),
ii) satisfies

u̇ = − gradψ, (2.14)

iii) is the unique solution of Problem 2.2 with initial data u0, u1.
Proof. We note that (2.13) has the same structure as (2.10), (2.11). In order to prove i),

it is sufficient to show that the compatibility between ψ̇ and uν holds. To do so, we choose
uΓ ∈ L2(Hdiv

∗ (Ωa)) and define uΩ ∈ L2(Hdiv
0 (Ωa)) such that

div uΩ = −c−2ψ̇ − div uΓ.

Conditions (2.8), (2.9), the balance equation (2.3), and the fact that uΓ ∈ L2(Hdiv
∗ (Ωa)) yield the

required compatibility by observing that

∫ t

0

( div uΓ(s) + c−2ψ̇(s), 1)Ωa ds

=

∫ t

0

(
〈uν(s), 1〉1/2,Γ + (c−2ψ1, 1)Ωa +

∫ s

0

〈c−2ψ̈(τ), 1〉1,Ωa dτ

)
ds

=

∫ t

0

(
〈uν(0), 1〉1/2,Γ + (c−2ψ1, 1)Ωa +

∫ s

0

〈c−2ψ̈(τ), 1〉1,Ωa + 〈u̇ν(τ), 1〉1/2,Γ dτ

)
ds

= 0.

We proceed by proving ii). From (2.13b), it follows that

(u̇(·), curl τ)Ωa = 0, τ ∈ Vd.

Thus, the first part of Lemma 1.1 can be applied yielding u̇ = gradα with α ∈ L2(H1(Ωa)).
Moreover, we observe by using (2.13a), (2.8), (2.3) that for φ ∈ H1(Ωa)

(u̇(·) + gradψ(·), gradφ)Ωa = −〈div u̇(·), φ〉1,Ωa + 〈u̇(·) · ν, φ〉1/2,Γ + (gradψ(·), gradφ)Ωa

= 〈c−2ψ̈(·), φ〉1,Ωa + 〈u̇ν(·), φ〉1/2,Γ + (gradψ(·), gradφ)Ωa

= 0,

which gives (2.14).
In order to check iii), we insert u defined by (2.13) into the left hand side of (2.7), test with

v ∈ Hdiv
0 (Ωa), and see that

〈ü(·),v〉div,Ωa + (c2 div u(·), div v)Ωa = −〈grad ψ̇(·),v〉div,Ωa − (ψ̇(·), div v)Ωa = 0.

Comparing (2.10)-(2.12) with (2.13)-(2.14) makes it obvious that the initial conditions (2.5) are
also satisfied. �

3. Discretization of the acoustic problems. This section is divided into two parts. First,
Subsection 3.1 describes the standard semi- and fully discrete acoustic problems originating from
the continuous ones. Second, the fully discrete problem for the acoustic displacement is modified
and the equivalence of the resulting problems is shown in Subsection 3.2.
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3.1. Standard discrete problem formulations. We proceed in the usual way and formu-
late semi-discrete problems as an intermediate step, thereby introducing the finite element spaces.
After that, Newmark’s time integration method is employed to derive fully discrete problems.

3.1.1. Semi-discrete problems. For the approximation of the acoustic velocity potential,
we use the space S1

a of globally continuous and piecewise linear finite elements with respect to
a shape-regular simplicial triangulation Ta of Ωa, and set S1

a,0 = S1
a ∩H1

0 (Ωa). Originating from
an approximate solution in the solid domain, the Neumann data vν from (2.1) is replaced by
vν,h ∈ C0(L2(Γ)). We note that our formulation admits the use of non-matching grids for the
coupled elasto-acoustic problem, as will be carried out in Section 4. With Π1

Γ denoting the L2-
projection onto piecewise linear functions with respect to the faces of Ta along Γ, we arrive at the
following semi-discrete problem.

Problem 3.1. Given approximations ψ0
h, ψ

1
h ∈ S1

a of ψ0, ψ1, as well as vν,h ∈ C0(L2(Γ)),
seek ψh ∈ C0(S1

a) such that for all times t ∈ (0, T )

(c−2ψ̈h(t), φ)Ωa + (gradψh(t), gradφ)Ωa = −(vν,h(t), φ)Γ, φ ∈ S1
a ,

together with

ψh(0) = ψ0
h and ψ̇h(0) = ψ1

h.

The displacement field is discretized within the space

R̂T 0 = {w ∈ RT 1 : w · νf ∈ P0,f , f ∈ Fi} ⊃ RT 0,

where RT k, k ≥ 0, denotes the standard family ofHdiv-conforming Raviart–Thomas finite element
spaces, [8], P0,f is the space of constant functions on the face f , νf is a fixed unit normal on f ,
and Fi stands for the set of all inner faces of Ta. Furthermore, we set

R̂T 0
0 = {v ∈ R̂T 0 : v · ν = 0 on Γ}.

In the following, we will frequently make use of the following properties of R̂T 0:
(P1) We have div R̂T 0

0 = W̃ 1 = {φ ∈ W 1 : (φ, 1)Ωa = 0}, and the pairing R̂T 0
0 × W̃ 1 is

uniformly inf-sup stable, i.e., there exists c > 0 such that

sup
w∈dRT 0

0

(div w, φ)Ωa

‖w‖div,Ωa

≥ c‖φ‖0, φ ∈ W̃ 1. (3.1)

(P2) If w ∈ R̂T 0
0 and div w = 0, then w = curl τ for τ ∈ K1

d , where K1
d = S1

a,0 for d = 2, and
K1

d is the lowest order Nédélec space with one degree of freedom per inner edge for d = 3.

(P3) If w ∈ R̂T 0
0 and (w, curl τ)Ωa = 0 for all τ ∈ K1

d , then ‖w‖div,Ωa ≤ C‖ div w‖0,Ωa .
We note that (P1) and (P2) can be shown by straightforward calculations, using the inf-sup

stability of the standard pairing RT 1
0 × W̃ 1 and discrete norm equivalences, [27, (B.35)]. Then,

the theory of saddle point problems yields the equivalence of (3.1) and (P3), see [7, Lemma III.4.2].
Since the essential data uν,h ∈ C0(L2(Γ)) provided by the solid domain has to be respected,

we set

C0(R̂T 0
∗) = {v ∈ C0(R̂T 0) : v · ν = Π1

Γuν,h on Γ × (0, T )}.

The semi-discrete problem for the displacement field is given as follows.
Problem 3.2. Given approximations u0

h,u
1
h ∈ R̂T 0 of u0,u1, as well as uν,h ∈ C0(L2(Γ)),

and provided that u0
h · ν = Π1

Γuν,h(0), find uh ∈ C0(R̂T 0
∗) such that for all times t ∈ (0, T )

(üh(t),v)Ωa + (c2 div uh(t), div v)Ωa = 0, v ∈ R̂T 0
0,

together with

uh(0) = u0
h and u̇h(0) = u1

h.
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Given ψ0
h and ψ1

h, we would like to specify u0
h and u1

h such that a discrete analog of (2.10)-(2.12)

holds. Our choice of the space R̂T 0 is motivated by the observation that the first equation of
(2.10) can be satisfied in a strong form. We stress the fact that S1

a ⊂ div R̂T 0 = divRT 1, but
S1

a 6⊂ divRT 0. However, (2.12) cannot be satisfied in general, since gradS1
a 6⊂ Hdiv(Ωa). This

reason prevents an equivalence of Problems 3.1 and 3.2 by means of (2.13a), (2.14). We therefore
postpone this issue until Section 3.2.

3.1.2. Fully discrete problems. Starting from the semi-discrete Problems 3.1 and 3.2,
one can employ a suitable time integration scheme, as for example Newmark’s method, [13, 19].
In particular, we decompose the interval [0, T ] into subintervals [tn, tn+1], n = 0, . . . , Nt − 1,
with tn = n∆t, ∆t = T/Nt. For a time-dependent quantity x, we denote by xn ≈ x(tn) its
approximation at t = tn. The characteristic feature of the classical Newmark method is to compute
the approximations ẋn+1 and ẍn+1 as functions of xn+1 and the already known values xn, ẋn, ẍn,

ẋn+1 = 2∆t−1(xn+1 − xn) − ẋn, (3.2a)

ẍn+1 = 4∆t−2(xn+1 − xn) − 4∆t−1ẋn − ẍn. (3.2b)

It is well known that the classical Newmark scheme is unconditionally stable and of quadratic
order with respect to time.

Assuming that the boundary data is now given by sequences uν,n, vν,n ∈ L2(Γ), and setting

R̂T 0
∗,n = {v ∈ R̂T 0 : v · ν = Π1

Γuν,n on Γ},

the fully discrete problems are stated as follows.
Problem 3.3. Given approximations ψ0

h, ψ
1
h ∈ S1

a of ψ0, ψ1, as well as boundary data vν,n ∈

L2(Γ), find sequences ψn, ψ̇n, ψ̈n ∈ S1
a such that for n = 0, . . . , Nt

(c−2ψ̈n, φ)Ωa + (gradψn, gradφ)Ωa = −(vν,n, φ)Γ, φ ∈ S1
a , (3.3)

together with (3.2) and

ψ0 = ψ0
h and ψ̇0 = ψ1

h.

Problem 3.4. Given approximations u0
h ∈ R̂T 0

∗,0 and u1
h ∈ R̂T 0 of u0 and u1, respectively,

and boundary data uν,n ∈ L2(Γ), find sequences un ∈ R̂T 0
∗,n and u̇n, ün ∈ R̂T 0 such that for

n = 0, . . . , Nt

(ün,v)Ωa + (c2 div un, div v)Ωa = 0, v ∈ R̂T 0
0, (3.4)

together with (3.2) and

u0 = u0
h and u̇0 = u1

h.

Remark 3.5. For the classical Newmark scheme, Problem 3.4 is equivalent to the “acoustic
part” of Algorithm 1 from [3], and only the result of a different notation which is more suitable for
our upcoming investigations. In particular, in [3], the velocities and accelerations are eliminated
by obtaining from (3.2)

x1 − x0 − ∆tẋ0 =
∆t2

4
(ẍ1 + ẍ0),

xn+1 − 2xn + xn−1 = (xn+1 − xn) − (xn − xn−1)

= ∆tẋn +
∆t2

4
(ẍn+1 + ẍn) − ∆tẋn−1 −

∆t2

4
(ẍn + ẍn−1)

= ∆t(ẋn − ẋn−1) +
∆t2

4
(ẍn+1 − ẍn−1)

=
∆t2

4
(ẍn+1 + 2ẍn + ẍn−1),
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which allows to modify (3.4) to

∆t−2((u1 − u0 − ∆tu1
h),v)Ωa +

1

4
(c2 div(u0 + u1), div v)Ωa = 0,

to find the first iterate u1, and to

∆t−2((un+1 − 2un + un−1),v)Ωa +
1

4
(c2 div(un+1 + 2un + un−1), div v)Ωa = 0,

for n ≥ 1, which is exactly the form found in [3]. Thus, we are able to use the stability anaylsis
from there. Since our main emphasis is to establish explicit relations between ψn, ψ̇n, ψ̈n and
un, u̇n, ün, we prefer the notation of Problems 3.3 and 3.4.

3.2. Equivalent discrete problem formulations. In the following, we discuss the modific-
ation which is necessary to formulate equivalent discrete problems, introduce discrete compatibility
conditions, and actually show the equivalence.

3.2.1. Projection and problem modification. We define Π̃0 as the projection L2(Ωa) →

P̃0 = gradS1
a/P0 + curlK1

d , and modify Problem 3.4 to:

Problem 3.6. Given approximations u0
h ∈ R̂T 0

∗,0 and u1
h ∈ R̂T 0 of u0 and u1, respectively,

and boundary data uν,n ∈ L2(Γ), find sequences wn ∈ R̂T 0
∗,n, ẇn ∈ R̂T 0, and Π̃0ẅn ∈ P̃0 such

that for n = 0, . . . , Nt

(Π̃0ẅn,v)Ωa + (c2 div wn, div v)Ωa = 0, v ∈ R̂T 0
0, (3.5)

together with (3.2) and

w0 = u0
h and ẇ0 = u1

h.

Remark 3.7. It is not necessary to explicitly construct a sequence ẅn ∈ R̂T 0. It is sufficient
to deal with Π̃0ẅn ∈ P̃0, where the expression Π̃0ẅn is interpreted as one single symbol, rather
than as the application of the operator Π̃0 to ẅn. As we will see later, the choice of w0 guarantees
that Π̃0ẅ0 is well defined.

3.2.2. Discrete compatibility conditions.

Boundary data. We have to modify the compatibility of the boundary data (2.8) to account
for the fully discrete setting. To this end, we assume that the two sequences uν,n, vν,n ∈ L2(Γ)
are related in the sense of (3.2a) by

vν,n+1 = 2∆t−1(uν,n+1 − uν,n) − vν,n. (3.6)

For the coupled elasto-acoustic problem, we will see in Section 4 that (3.6) is automatically satisfied
if the same Newmark scheme is used on both subdomains.

Initial data. The projection Π̃0 admits to formulate a discrete analog of Lemma 2.4.
Lemma 3.8. Let the initial and boundary data ψ0

h, ψ1
h, and vν,n of Problem 3.3 be given. Let

also the boundary data uν,n of Problem 3.6 satisfying (3.6) be given and assume additionally that

−(c−2ψ1
h, 1)Ωa = (uν,0, 1)Γ. (3.7)

Then, initial data u0
h, u1

h of Problem 3.6 can be selected such that

div u0
h = −c−2ψ1

h, (3.8)

Π̃0u1
h = − gradψ0

h. (3.9)

Proof. Given ψ1 ∈ S1
a , condition (3.7) and Property (P1) guarantees the existence of u0

h ∈ R̂T 0
∗,0

satisfying (3.8).
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We determine u1
h as a solution of

(div u1
h, φ)Ωa = (gradψ0

h, gradφ)Ωa + (vν,0, φ)Γ, φ ∈ S1
a , u1

h·ν = Π1
Γvν,0 on Γ, (3.10)

(u1
h, curl τ)Ωa = 0, τ ∈ K1

d . (3.11)

We observe that (3.10) is solvable for u1
h ∈ R̂T 0, since S1

a ⊂W 1 and

(div u1
h, 1)Ωa − (gradψ0

h, grad1)Ωa − (Π1
Γvν,0, 1)Γ = (u1

h · ν, 1)Γ − (Π1
Γvν,0, 1)Γ = 0.

We can additionally require (3.11) without violating (3.10). Note that u1
h is not uniquely de-

termined by (3.10)-(3.11). Nevertheless, we can show (3.9) by first testing with curl τ , τ ∈ K1
d ,

yielding

(Π̃0u1
h + gradψ0

h, curl τ)Ωa = (u1
h + gradψ0

h, curl τ)Ωa = 0

due to (3.11) and curlK1
d ⊥ gradS1

a , and second by testing with gradφ, φ ∈ S1
a , which gives

(Π̃0u1
h + gradψ0

h, gradφ)Ωa = −(div u1
h, φ)Ωa + (u1

h · ν, φ)Γ + (gradψ0
h, gradφ)Ωa = 0

due to (3.10). �

3.2.3. Discrete equivalence. We prove the equivalence of the fully discrete problems by
means of the following lemma.

Lemma 3.9. Let ψn, ψ̇n, ψ̈n be the solution of Problem 3.3. For n = 1, . . . , Nt, define wn ∈
R̂T 0

∗,n, ẇn ∈ R̂T 0, and Π̃0ẅn ∈ P̃0 by

div wn = −c−2ψ̇n, wn·ν = Π1
Γuν,n on Γ, (3.12a)

(wn, curl τ)Ωa = 0, τ ∈ K1
d , (3.12b)

together with (3.2). For n = 0, choose the initial data w0 = u0
h and ẇ0 = u1

h according to Lemma

3.8, and obtain Π̃0ẅ0 by (3.5). Then, the sequences wn, ẇn, Π̃
0ẅn

i) are uniquely defined for n ≥ 1 by (3.12) and (3.2).
ii) satisfy

Π̃0ẇn = − gradψn, (3.13)

iii) are the solution of Problem 3.6 with initial data w0, ẇ0.
Proof. The discrete compatibility conditions (3.6), (3.7) yield the existence of wn satisfying

(3.12), while (P3) guarantees the uniqueness.
Relation (3.12a) is immediately obvious from Lemma 3.8 for n=0 and from (3.12a) for n ≥ 1.

We give a proof by induction for (3.13) and the supplementary results

(a) ẇn · ν = Π1
Γvν,n, (b) (div ẇn, φ)Ωa = −(c−2ψ̈n, φ)Ωa , φ ∈ S1

a , (c) Π̃0ẅn = − grad ψ̇n.
(3.14)

For n = 0, (3.13) and (3.14a) follow from Lemma 3.8, while (3.14b) can be derived by choosing
φ ∈ S1

a , and using (3.3) in combination with Lemma 3.8,

(c−2ψ̈0, φ)Ωa = −(gradψ0, gradφ)Ωa − (vν,0, φ)Γ = (Π̃0ẇ0, gradφ)Ωa − (vν,0, φ)Γ

= (ẇ0, gradφ)Ωa − (vν,0, φ)Γ = −(div ẇ0, φ)Ωa .

Similarly, taking v ∈ R̂T 0
0, (3.14c) is obtained from (3.5),

(Π̃0ẅ0,v)Ωa = −(c2 div w0, div v)Ωa = (ψ̇0, div v)Ωa

= (ψ̇0, div v)Ωa = −(grad ψ̇0,v)Ωa .
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Assume now (3.13)-(3.14) with n replaced by n−1. Employing (3.2a), the induction assumption,

the fact that wn ∈ R̂T 0
∗,n, and (3.6), we obtain (3.14a) by

ẇn · ν = 2/∆t(wn · ν − wn−1 · ν) − ẇn−1 · ν

= 2/∆t(Π1
Γuν,n − Π1

Γuν,n−1) − Π1
Γvν,n−1 = Π1

Γvν,n.

In the same way, using the induction assumption and (3.2), we obtain (3.14b) by

(div ẇn, φ)Ωa = (2/∆t(div wn − div wn−1) − div ẇn−1, φ)Ωa

= (2/∆t(−c−2ψ̇n + c−2ψ̇n−1) + c−2ψ̈n−1, φ)Ωa = −(c−2ψ̈n, φ)Ωa .

The definition of Π̃0 and (3.12b) yield Π̃0wn = gradα with α ∈ S1
a . Via (3.2a), we immediately

obtain Π̃0ẇn = grad α̇h for a function α̇h ∈ S1
a . Moreover, we observe by (3.3) together with the

fact that Π1
Γφh = φh for φh ∈ S1

a on Γ, and by (3.14a), (3.14b), that

(Π̃0ẇn + gradψn, gradφh)Ωa = (ẇn + gradψn, gradφh)Ωa

= −(div ẇn, φh)Ωa + (vν,n, φh)Γ + (gradψn, gradφh)Ωa

= (c−2ψ̈n, φh)Ωa + (vν,n, φh)Γ + (gradψn, gradφh)Ωa = 0,

which gives (3.13). Relation (3.2) immediately yields (3.14c), which concludes the induction proof.

In order to check iii), we insert wn defined by (3.12) and Π̃0ẅn defined by (3.2) into the left

side of (3.5), test with vh ∈ R̂T 0
0, use (3.14c), (3.12a), and see that

(Π̃0ẅn,vh)Ωa + (c2 div wn, div vh)Ωa = −(grad ψ̇n,vh)Ωa − (ψ̇n, div vh)Ωa = 0,

which concludes the proof of this lemma. �

Remark 3.10. If additionally div ẇ0 = −c−2ψ̈0, then (3.14b) holds for all n in a strong
sense. We note that this can be easily guaranteed by replacing (3.10) with

div u1
h = −c−2ψ̈0, u1

h · ν = Π1
Γvν,0,

where ψ̈0 ∈ S1
a is defined by (3.3). Then, u1

h is uniquely defined and (3.10) also holds. Moreover,
we note that Π1

Γ only enters the definition of the displacement based formulation and not Problem
3.3. In the case of matching meshes, Π1

Γ does not enter at all if piecewise linear finite elements
are used for the elasticity problem.

3.3. A priori analysis of the discretization error in space. The difference between the
original discrete Problem 3.4 and its modification 3.6 is only in the inertia terms. Quite often, the
discretization of the inertia term can be simplified by applying inexact quadrature formulas, [2].
This process is well known from the parabolic case, where it is also referred to as mass lumping.
The influence of this variational crime can be analyzed in terms of the approximation properties
of an associated oprator, i.e., the use of the projection Π̃0 can be interpreted as employing a mass
lumping process. In contrast to standard mass lumping, the resulting mass matrix is singular,
and Π̃0 is a global operator. We note that recently in [12], the corresponding effect has been
rigorously investigated for a linear elasticity problem with a singular mass matrix. As it turns
out, the crucial ingredient for the analysis of the time-discrete problem is the quality of suitable
associated elliptic stationary problems: Find y ∈ Hdiv(Ωa) with given normal components yν on

the boundary and yh ∈ R̂T 0
0 with Π1

Γyν as boundary condition such that

a(y,v) = (b,v)Ωa , v ∈ Hdiv
0 (Ωa),

ah(yh,v) = (b,v)Ωa , v ∈ R̂T 0
0,

where b ∈ L2(Ωa) with (b, curl τ)0,Ωa = 0 for τ ∈ Vd and

ah(v,w) = (ωΠ̃0v,w)Ωa + (div v, div w)Ωa v,w ∈ Hdiv(Ωa),
a(v,w) = (ωv,w)Ωa + (div v, div w)Ωa v,w ∈ Hdiv(Ωa),
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with ω > 0.
As a preliminary result for the analysis of the discretization error y−yh, we state the following

lemma.
Lemma 3.11. The bilinear form ah(·, ·) is R̂T 0

0-elliptic. Proof. We write v ∈ R̂T 0
0 as

v = v0 + v⊥ such that div v0 = 0 and that (v⊥, curl τ)Ωa = 0 for all τ ∈ K1
d . From (P2), it

follows that v0 = curl τ with τ ∈ K1
d , which immediately implies

Π̃0v0 = v0. (3.15)

We have that

(Π̃0v0, Π̃
0v⊥)Ωa = (Π̃0v0,v⊥)Ωa = (v0,v⊥)Ωa = 0,

which gives

‖Π̃0v‖2
0,Ωa = ‖Π̃0v0‖

2
0,Ωa + ‖Π̃0v⊥‖

2
0,Ωa ≥ ‖Π̃0v0‖

2
0,Ωa .

Starting with ‖v‖2
div,Ωa = ‖v0‖

2
0,Ωa + ‖v⊥‖

2
div,Ωa and using (P3), we obtain

‖v‖2
div,Ωa ≤ ‖v0‖

2
0,Ωa + C‖ div v⊥‖

2
0,Ωa = ‖Π̃0v0‖

2
0,Ωa + C‖ div v⊥‖

2
0,Ωa

≤ ‖Π̃0v‖2
0,Ωa + C‖ div v‖2

0,Ωa ≤ Cah(v,v),

which concludes the proof. �

Remark 3.12. For the coercivity of ah(·, ·), it would be sufficient to set Π̃0 to the projection
onto curlK1

d instead of the more complex one onto curlK1
d +gradS1

a . However, this choice could
not lead to optimal a priori estimates, as will be shown in the next theorem.

Theorem 3.13. Under the assumption that y ∈ H1(Ωa) and div y ∈ H1(Ωa), we find

‖y − yh‖div,Ωa ≤ Ch.

Proof. By means of Lemma 1.1, the assumption on b guarantees that y = grad ξ with ξ ∈ H̃1(Ωa).
Now, we define ξh ∈ S1

a/P0 uniquely by

(grad ξh, gradφ)Ωa = −(div y, φ)Ωa + (yν , φ)Γ, φ ∈ S1
a

and note that the right hand side is compatible. We thus observe that ξh is the conforming finite
element solution of a Neumann problem, and that a standard a priori estimate holds, i.e.,

‖ grad ξh − grad ξ‖0,Ωa ≤ Ch.

Additionally, we set vh ∈ R̂T 0 such that vh · ν = Π1
Γyν and

(div vh, w)Ωa = (div y, w)Ωa , w ∈ W̃ 1,

(vh, curl τ)Ωa = 0, τ ∈ K1
d .

We note that by definition, div vh = div Π̂0
Fy and vh ·ν = Π̂0

Fy ·ν , where Π̂0
F stands for the Fortin

operator on R̂T 0, see, e.g., [8]. Thus, we have vh − Π̂0
Fy = curl τ ∈ curlK1

d yielding

‖vh − Π̂0
Fy‖2

div,Ωa =‖vh − Π̂0
Fy‖2

0,Ωa = (vh − Π̂0
Fy, curl τ)Ωa

=(y − Π̂0
Fy, curl τ)Ωa ≤ ‖y − Π̂0

Fy‖0,Ωa‖vh − Π̂0
Fy‖0,Ωa ,

and thus the triangle inequality gives

‖vh − y‖div,Ωa ≤ 2‖y − Π̂0
Fy‖div,Ωa ≤ Ch.
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Moreover, following the same lines as in the proof of Lemma 3.8, we find Π̃0vh = grad ξh. Note
that by definition, we have vh − yh ∈ R̂T 0

0. Using the triangle inequality, we obtain in terms of
Lemma 3.11

‖y − yh‖
2
div,Ωa ≤ C(‖y − vh‖

2
div,Ωa + ah(yh − vh,yh − vh)),

and the definition of the bilinear forms and of vh yield

ah(yh − vh,yh − vh) = a(y,yh − vh) − (ω grad ξh,yh − vh)Ωa − (div y, div(yh − vh))Ωa

= (ω(grad ξ − grad ξh),yh − vh)Ωa

≤ C‖ grad ξ − grad ξh‖Ωa‖yh − vh‖Ωa

and thus

ah(yh − vh,yh − vh) ≤ C‖ grad ξ − grad ξh‖
2
Ωa .

Therefore, we have ‖y − yh‖div,Ωa ≤ C(‖y − vh‖div,Ωa + ‖ grad ξ − grad ξh‖0,Ωa) ≤ Ch. �

4. Coupled elasto-acoustic problems.

fluid
solid

ν

ve

Γ
ν

Γ

Γ
e

νe

Ω
e

Ω
a

Figure 4.1. Left: solid-fluid interface, right: setup of the coupled elasto-acoustic problem.

4.1. The elasticity problem. Assuming small deformations, small strain, and no volume
forces, it is sufficient to investigate the linear system

ρeüe − div (σ(ue)) = 0 in Ωe × (0, T ), (4.1)

with the linearized stress tensor σ given by Hooke’s Law

σ = λL(tr ε)Id + 2µL ε, (4.2)

with the Lamé constants λL, µL, and with the linearized strain tensor

ε(u) =
1

2
(gradu + [gradu]t), (4.3)

complemented by the interface condition (4.9) introduced below, the boundary conditions

ue = 0 on Γe
D × (0, T ),

σ(ue)νe = ge on Γe
N × (0, T ),

and initial conditions

ue(0) = u0
e and u̇e(0) = u1

e in Ωe. (4.4)

The surface traction gΓ acting on the fluid-structure interface Γ represents the coupling of forces
between Ωe and Ωa. Transforming to the weak form, and defining the space

H1
∗ (Ωe) = {v ∈ H1(Ωe) : v = 0 on Γe

D},
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we obtain for the mechanical system the following problem.
Problem 4.1. Given u0

e ∈ H1
∗ (Ωe), u1

e ∈ L2(Ωe), ge ∈ L2(H−1/2(Γe
N
)), and gΓ ∈ L2(H−1/2(Γ)),

find a displacement field ue ∈ L2(H1
∗ (Ωe)) such that for all times t ∈ (0, T )

〈ρeüe(t), v〉1,Ωe + (σ(ue(t)), ε(v))Ωe − 〈gΓ(t),v〉1/2,Γ = 〈ge(t),v〉1/2,Γe

N
, v ∈ H1

∗ (Ωe),

together with the initial conditions (4.4).
For the approximation of the elastic displacements, we use the space S1

e of vector-valued
globally continuous and piecewise linear finite elements with respect to a shape-regular simplicial
triangulation Te of Ωe, and set S1

e,∗ = S1
e ∩H1

∗ (Ωe). Using the same time integration scheme as
for the acoustic part, we arrive at the following fully discrete elasticity problem.

Problem 4.2. Given approximations u0
e,h ∈ S1

e,∗ and u1
e,h ∈ S1

e of u0
e and u1

e , respectively,

and boundary data gΓ,n ∈ L2(Γ), find sequences ue,n ∈ S1
e,∗ and u̇e,n, üe,n ∈ S1

e such that for
n = 0, . . . , Nt

(ρeüe,n,v)Ωe + (σ(ue,n), ε(v))Ωe − (gΓ,n,v)Γ = (ge,n,v)Γ, v ∈ S1
e,∗, (4.5)

together with (3.2) and

ue,0 = u0
e,h and u̇e,0 = u1

e,h.

4.2. Interface conditions. At the solid-fluid interface Γ, as depicted in Figure 4.1, the
continuity requires that the normal component of the mechanical surface velocity of the solid
must coincide with the normal component of the acoustic velocity of the fluid. Thus, the following
relation between the velocity ve = u̇e of the solid expressed by the mechanical displacement ue

and the acoustic particle velocity va arises:

va · ν = u̇e · ν = u̇ν , on Γ × (0, T ), (4.6)

where the unit normal vector field ν on Γ points outward of Ωa. Moreover, we assume that the
initial solutions are compatible, namely,

ua,0 · ν = ue,0 · ν, on Γ. (4.7)

Given this compatibility, we can equivalently describe (4.6) by requiring the continuity of the
displacements, i.e.,

ua · ν = ue · ν = uν , on Γ × (0, T ). (4.8)

In addition to (4.6) or (4.8), one has to consider the fact that the ambient fluid causes a surface
force gΓ which acts like a pressure load on the solid. Therefore, a second coupling condition is
given by

σ(ue)ν = gΓ, on Γ × (0, T ). (4.9)

Throughout the paper, we assume that the surface force gΓ only acts in normal direction. In
particular, we have that

gΓ = c2(div ua)ν = ψ̇ν, on Γ × (0, T ).

4.3. Coupled problem formulations.

4.3.1. Continuous Setting. The fully coupled potential-based elasto-acoustic problem is
obtained by Problems 2.1 and 4.1 requiring that u̇ν = u̇e · ν and gΓ = ψ̇ν. The fully coupled
displacement-based elasto-acoustic problem is obtained by Problems 2.2 and 4.1 requiring uν =
ue · ν and gΓ = c2(div u)ν.
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4.3.2. Discretization. The discrete coupled potential-based elasto-acoustic problem is ob-
tained by Problems 3.3 and 4.2 requiring that u̇ν,n = u̇e,n · ν and gΓ,n = ψ̇nν. The discrete
coupled displacement-based elasto-acoustic problem is obtained by Problems 3.4 and 4.2 requiring
uν,n = ue,n · ν and gΓ,n = c2(div un)ν.

Remark 4.3. The two triangulations Ta and Te inherit two (d−1)-dimensional grids T a and
T e on Γ. Due to the flexible construction of both grids, the finite element nodes on T a and T e

will in general not coincide. On the contrary, motivated by different spatial scales required for the
resolution of the local subproblems, the difference in the mesh sizes can become quite large.

The discretized version of (3.3), (4.5) reads in matrix form

(
Ma 0

0 Me

)(
ψ̈n

üe,n

)
+

(
0 CT

ea

−Cea 0

)(
ψ̇n

u̇e,n

)
+

(
Ka 0

0 Ke

)(
ψn

ue,n

)
=

(
0

fn

)
. (4.10)

The block diagonal entries Me,Ma,Ke,Ka can be assembled locally without needing to transfer
any information across the interface. The coupling between the two grids is represented by the
matrices CT

ea and Cea which realize the boundary integrals on Γ in (3.3) and (4.5). Their entries
are given by

Cea = [Cpq]; Cpq =

∫

Γa

h

ρa φ
e
pφ

a
qν dΓ ∈ R

d, (4.11)

where φe
p is the scalar basis function associated with the node p on T e, and φa

q is the one for node
q on T a. Thus, the same assembly procedures as in the case of the mortar coupling can be used,
[4, 5]. It should be emphasized that the coupled system of equations remains symmetric. This is
not the case if instead of the acoustic velocity potential an acoustic pressure formulation is used.

Due to the equivalence of the acoustic subproblems, it seems quite obvious that the fully
coupled global problems are also equivalent. The stability results provided by [3] for the displacement-
based formulation can thus be transferred to the potential-based formulation employed here. How-
ever, we will not attempt to rigorously analyze the global equivalence within this paper.

5. Numerical results. We present three numerical tests and potential applications for the
elasto-acoustic coupling. In each time step, the resulting linear system is solved exactly. Since we
do not have any moving bodies involved, the system matrix which has to be inverted is the same
in each time step. Thus, it is possible to factor this system matrix only once, and then to reuse
the factorization in each step. In the first and second test, we demonstrate the gain in flexibility
for the nonconforming approach. The first example investigates an electrodynamic loudspeaker
where the computation can be restricted to 2D due to symmetry. For the second test, we consider
the emission of acoustic waves from several cylindrical structures. The third test is dedicated to
the simulation of a piezo-electric loudspeaker where the diplacements in the structure additionally
couple with the electric potential. We remark that in [11], several simpler examples are presented
which compare our nonconforming approach to the traditional one using matching interface grids.

5.1. Electrodynamic Loudspeaker. Electrodynamic loudspeakers like the one depicted in
Fig. 5.1 are mainly used in cars. Manufacturers of such systems face the challenge to design such
loudspeakers, e.g. according to changing geometries or material properties, in the interior of cars.
To avoid the costly process of building prototypes, conducting measurements and redesigning, the
use of flexible CAE tools is of major importance for the reduction of costs during the development
phase of a new product.

For the design of electrodynamic loudspeakers the frequency dependency of the axial pressure
at 1 m distance and the electric impedance of the voice coil are the two most important parameters.
Now, one can perform a harmonic analysis for each frequency of interest or perform a transient
analysis using a short excitation pulse, compute the acoustic pressure at 1 m distance and divide the
Fourier transformation of the pressure by the Fourier transformation of the normalized excitation
pulse. Since in practice the pressure response as well as electric impedance has to be computed
for a wide frequency range, the second option is preferred. It is well known from the theory of
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Figure 5.1. Schematic of an electrodynamic loudspeaker with low construction depth (i.e. magnetic assembly
in front of membrane; radius = 11.2cm, depth = 4.7cm).

Fourier transformation, that the number of frequency samples equals the number of time samples.
Therewith, to obtain a good frequency resolution, we have to perform enough time steps.

The main problem for analyzing a fully elasto-acoustic coupled model of such loudspeakers
is the fact, that the mechanical subsystem consists of very thin parts like the membrane, the
spider and the surround with dimensions in the thickness direction in the sub-millimeter range.
The considered loudspeaker model is however designed as a subwoofer system with a maximum
frequency of 5 kHz. This corresponds to a minimal acoustic wave length in air (c = 340 m/s) of
6.8 cm, which is about half of the radius of the speaker. It is already clear from these simple
geometric arguments that the discretization in the acoustic subdomain has to be chosen much
coarser than in the mechanical subdomain. As already mentioned before, the standard finite
element method requires the elements to be geometrically conforming. This means for our example
that the fine discretization in the mechanical subdomains has to be continued also to the acoustic
far field domain, which introduces many unnecessary degrees of freedom (DOFs). This fact is
demonstrated in Fig. 5.2(a)

(a) Conforming (b) Non-matching

Figure 5.2. Finite Element discretization in the vicinity of the surround

The non-matching grid technique provides an excellent framework to cope with this problem
since one can switch the resolution of the finite element discretization from mechanical to acoustic
subdomains. This is depicted for our application in Fig. 5.2(b).

To demonstrate the advantages of the non-matching grid approach we conduct a transient
simulation for the electrodynamic loudspeaker as shown in Fig. 5.1. Due to rotational symmetry,
we perform an axisymmetric computation, and restrict ourself to the mechanical-acoustic coupling.
Therewith, we excite the loudspeaker by applying a mechanical pressure on the top of the coil
suspension in downward direction. For a fully magnetic-mechanical-acoustic coupled computation
on conforming grids we refer to [22]. The excitation signal for the mechanical pressure consists of
a triangular spike pulse with a duration of 60 µs. Therewith, this time signal contains a frequency
band up to 5 kHz. Furthermore, the speaker is mechanically fixed at the surround as well as at
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the spider, and everything else may move freely. We apply absorbing boundary conditions on the
outer boundary of the acoustic domain to account for free radiation. Choosing a time step size
of 5µs, and computing 5000 time steps results in a frequency resolution ∆f of about 40 Hz. In
the reference configuration the speaker is discretized by second order Lagrangian finite elements
with a minimal edge length hm = 50µm. The acoustic far field region is also discretized with
second order elements exhibiting a edge length of about ha = 5 mm, which corresponds to about
24 DOFs per wave length at 5 kHz. Therewith, the mesh results in 465, 934 acoustic DOFs and
20, 168 mechanical DOFs in our square domain with edge length of 1.8 m. The simulation took
2785 seconds measured on a 2.2 GHz Intel Core2 (Merom) dual core machine with optimized code
(Intel C++ 10.1) and the direct solver Pardiso from Intel MKL 10.1 [24]. In the non-matching
case we keep the discretization for the loudspeaker as in the conforming case (20.168 mechanical
DOFs) but we apply a much coarser discretization for the acoustic domain (ha = 10 mm; 12 DOFs
per wave length at 5 kHz). Therefore we can reduce the number of unknowns to 101.520 DOFs
while still maintaining a fairly good coincidence of the signal in the point of interest with the
reference signal as can bee seen from Fig. 5.3. The overall simulation time reduces to 722 seconds
on the previously mentioned machine.

Figure 5.3. Acoustic pressure signals for conforming (Reference) and non-matching grid (NMG) in point of
interest (rotational axis z=1m).

5.2. Excitation by Multiple Structures. We present the emission of acoustic waves by
multiple structures which admits the steering of the waves by exciting the structures in a specified
chronological order. In particular, we use for the structure Ωe 25 cylindrical silicon chips with
diameter 50 µm and height 1 µm. They are placed as a (5× 5)-array, each plate having a distance
of 50 µm to its nearest neighbors. An excitation force with frequency f = 1 MHz is applied on
their lower end. For the acoustic domain Ωa which is assumed to be water, a cuboid of length and
width 1200 µm and height 420 µm is chosen. Due to symmetry reasons, we use as computational
domain one quarter of the original one. In Fig. 5.4, a part of the finite element meshes is shown,
for which a uniform grid of 40×40×28 cubes is used to discretize the acoustic domain and a
grid of 768 hexahedrons is employed for each full cylindrical chip. Thus, having a meshwidth of
ha = 600 µm/40 = 15 µm, we use c/(fha) = 1500ms−1/(1 MHz·ha) = 10 elements per wavelength
for Ωa. If one had to employ matching grids, it would be quite difficult to generate them, and if the
mesh-width could not be very small over the whole domain, the resulting element shapes would
possibly result in a poor approximation of the solution. The nonconforming approach admits to
use the grid desired for each subdomain regardless of the grids for the other subdomains. Moreover,
it is very easy to add more plates or to change their position. Only the corresponding part of
the coupling matrix would have to be (re-)calculated. Figures 5.5 and 5.6 show snapshots, taken
every 10 time steps of 3.5 ns, of the evolution of the acoustic velocity potential ψ along with
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Figure 5.4. Left: cylindrical plates attached to the fluid domain, right: isosurfaces of the acoustic potential,
deformed plates

the deformation of the structures (magnified by a factor of 1000). For the results presented in
Figure 5.5, the cylindrical plates are excited simultaneously, while for Figure 5.6, they are excited
successively. For both calculations, the waves emitting from the structures add up as expected
to constitute the superposed global sound beam. Given a target point, it is possible to optimally
steer the acoustic wave towards this point by appropriately adjusting the chronological order
of excitation of the silicon chips. This principle is used in so-called capacitive micro-machined
ultrasound transducers (CMUTs), [15]. There, the deformation of the structure is induced by an
electrostatic surface force acting on the boundary. We will address a similar electric-mechanical-
acoustic system in the next example by means of a piezo-electric structure, where a volume coupling
of the electric and the mechanical field is considered via the constitutive law.

5.3. A Piezo-electric Loudspeaker. In our last example, we choose a piezo-electric ma-
terial for a part Ωp of the structure Ωe, where mechanical quantities interact with an electric field.
The new additional unknowns, namely, the electric potential ϕ, the flux density d, and the electric
field e, correspond to the displacement up, the stress σp, and the strain εp, respectively. While the
evolution of the mechanical displacement up is still governed by the equilibrium of forces (4.1), we
have to satisfy a second partial differential equation realizing the conservation of electric charge.
Moreover, the coupling between the electric and the mechanical part takes place within the con-
stitutive relations and is characterized by the elastic stiffness tensor C, the piezo-electric tensor
B, and the dielectric permittivity tensor E . Overall, the following coupled problem formulation is
obtained: Find (up, ϕ) : Ωp × (0, T ) → R

d+1 such that

ρpüp − div σp(up, ϕ) = fp,

div d(up, ϕ) = q,

σp(up, ϕ) = Cεp(up) + BT gradϕ,

d(up, ϕ) = Bεp(up) − E gradϕ,

where the strain εp(up) is given by (4.3), complemented by appropriate boundary and initial

conditions, [1]. The piezo-electric part Ωp is attached to an aluminum part Ωq such that Ωe =
Ωp ∪ Ωq, as depicted in Figure 5.7. For Ωq, we seek the displacement uq as solution of the
standard model of linear elasto-dynamics (4.1), (4.2), and (4.3). The coupling between Ωp and
Ωq is realized by the mortar approach, [4, 5], using dual basis functions for the approximation
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of the corresponding Lagrange multiplier space, [29]. For this particular example, the piezo-
electric part Ωp is chosen to be the lead titanate zirconate composition PZT-5 with density ρp =
7.75025·103 kgm−3. The elastic stiffness tensor C, the piezo-electric tensor B, and the dielectric
permittivity tensor E are given in Voigt notation [28] by
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Figure 5.5. Evolution of the acoustic velocity potential and of the deformed structures, synchronous excitation:
snapshots after 10, 20, . . . , 80 timesteps.
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Figure 5.6. Evolution of the acoustic velocity potential and of the deformed structures, successive excitation:
snapshots after 10, 20, . . . , 80 timesteps.
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Figure 5.7. Piezo-electric loudspeaker: view of the (x, y)-plane (left), (x, z)-plane (right).

where

c11 = 1.26·1011 Nm−2, c12 = c13 = 8.41·1010 Nm−2, c33 = 1.17·1011 Nm−2,

c44 = 2.3·1010 Nm−2, b31 = −6.5 Cm−2, b33 = 23.3 Cm−2,

b15 = 17 Cm−2, e11 = 1.51·10−8 CV−1 m−1, e33 = 1.27·10−8 CV−1 m−1.

For the aluminum membrane Ωq, we have the density ρq = 8.4·103 kgm−3 and the Lamé paramet-
ers λL = 2.30769·1010 N m−2, µL = 1.53846·1010 Nm−2. The membrane Ωq is fixed at all of its
thinner sides as visualized in Figure 5.7, while the remaining boundary of the composed structure
Ωe remains free. Between the lower and the upper end of the piezo Ωp, a potential difference
∆ϕ(t) = sin 2πft of frequency f is applied by means of a Dirichlet boundary condition for the
electric potential ϕ.

From the geometry dimensions given in Figure 5.7, it can be seen that the ratio of length to
thickness is 160 for the aluminum part Ωq and 600 for the piezo-electric part Ωp. From this large
ratio, a strong locking effect has to be expected. We investigate this locking effect by comparing
the results of the motion under a constant potential difference ∆ϕ = 1 obtained by using piecewise
trilinear elements with the ones from employing Serendipity elements. In order to have a more
uniform element quality in terms of the ratio h/d of length to thickness, we start with 2×2 elements
in Ωq and 4×4 elements in Ωp, and perform a uniform refinement procedure only in (x, y)-direction,
thus, always using only one element in z-direction. In the left picture of Figure 5.8, the frequency
of the resulting motion at the barycenter p0 of the upper boundary of Ωq is plotted, while in
the right picture , the maximum vertical displacement of the same point is visualized, both times
against the maximum ratio h/d of the employed elements. The results for trilinear elements clearly
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Figure 5.8. Comparison of linear with quadratic elements: frequency (left), vertical displacement in p0 (right)
against the maximum ratio h/d of the elements.

exhibit the typical signs of locking, namely, an overestimation of the frequency, an underestimation
of the displacements, and a very slow convergence towards the correct values. In contrast, a rapid
convergence can be observed if the quadratic Serendipity elements are used. Thus, in order to
avoid locking, we discretize the structure by Serendipity elements in this example. We remark that
there exist numerous alternatives for reducing locking effects for lowest order elements, [6, 25, 26].
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In the following, we investigate the elastic response of the structure to applied potentials of
the form ∆ϕ(t) = sin(2πft) with different frequencies f . The finite element mesh is kept fixed
with 16×16 elements in Ωp and 8×8 elements in Ωq, corresponding to the value h/d = 37.5 in
Figure 5.8. In particular, we examine the applicability and the effect of introducing a damping
matrix Ce in the formulation (4.10), which should be responsible for the damping of undesired
eigenmodes. We use the easy model of Raleigh damping which is characterized by Ce being
proportional to the mass and stiffness matrices, i.e., Ce = αMe + βKe. At first, a low frequency
f = 50 Hz is considered. Performing 200 time steps of size ∆t = 5·10−4, the vertical displacement
at p0 is recorded and depicted in the left picture of Figure 5.9. The dashed line corresponds
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Figure 5.9. Vertical displacement at p0 for different frequencies of excitation: 50Hz (left), 500 Hz (right).

to the undamped formulation, i.e., α = β = 0. The applied frequency is well below the first
eigenfrequency which has been determined by the last test to be at roughly f0 = 720 Hz, as
depicted in the left picture of Figure 5.8. In this case, the effects of the eigenmodes can easily be
damped out, resulting in the solid line exhibiting a stable sinusoidal motion. Here, the damping
parameters are set to α = 2.51·101, β = 1.59·10−4 in Ωp, and to α = 1.63·101, β = 1.03·10−4 in Ωq,
which corresponds to a loss factor of about 0.4. In a second test, the influence of the eigenmodes
increases considerably for the now applied frequency f = 500 Hz, which is in the same range as
f0. As visualized in the right picture of Figure 5.9, the undamped motion is clearly disturbed by
the lowest eigenmode. Nevertheless, it is still feasible to extract a stable sinusoidal motion at the
applied frequency by employing the Raleigh damping. The parameters α, β have been adjusted in
order to keep the loss factor constant, [14].

The situation becomes more critical if f is chosen to be greater than f0. A better strategy is
needed to damp out eigenfrequencies which are lower than the applied frequency. The development
of such a strategy is beyond the scope of this paper.

It remains to investigate the elasto-acoustic coupling. Since the acoustic medium is chosen
to be air, we can neglect the influence of the acoustic field onto the structure. Thus, the system
(4.10) is decoupled by setting Cea to zero in the first line of (4.10). In every time step, the
structural equation is solved first, taking into account the changes in the applied electric potential.
Afterwards, the acoustic response is calculated by imposing the normal velocity of the structure
as inhomogeneous Neumann condition at the fluid-structure interface. For the solid, we use the
same mesh as before: one layer in vertical direction of 16×16 elements in Ωp and 8×8 elements
in Ωq, respectively, adding up to about 12000 degrees of freedom. The acoustic domain Ωa is set
to be a cuboid of 3 m width and depth, and of 1.5 m height, centered above the structure. On
Ωa, we also use quadratic Serendipity elements on a structured grid of meshsize 3/32 m, yielding
16384 hexahedrons and about 70000 degrees of freedom. The choice of the meshsize is motivated
by the expected wavelength: since the excitation frequency is set to f = 500 Hz, we end up with
roughly 7.3 quadratic elements per wavelength, which is enough to give reasonable results. A time
step size ∆t = 5·10−5s is used for performing 180 time steps. Figure 5.10 shows the resulting
velocity potential in four nodes pi at distances i·0.1875 m, i = 1, . . . , 4, located directly above
the center of the solid. As expected, the frequency coincides with the frequency of excitation by
the structure. Moreover, the amplitude of the acoustic waves decreases as the distance to the
vibrating structure increases. If we had to choose the meshsize conforming to the solid, namely

26



0 1 2 3 4 5 6 7 8 9

x 10
−3

−8

−6

−4

−2

0

2

4

6

8
x 10

−8

time

ve
lo

ci
ty

 p
ot

en
tia

l

p
1

p
2

0 1 2 3 4 5 6 7 8 9

x 10
−3

−2

−1

0

1

2

3
x 10

−8

time

ve
lo

ci
ty

 p
ot

en
tia

l

p
3

p
4

Figure 5.10. Velocity potential at pi, i = 1, . . . , 4, for an excitation of frequency 500Hz.

1/200 m, and did not want to distort the elements by coarsening them, we would end up with
(3·200/32)3 = (75/4)3 > 6000 times the number of elements for the acoustic part. This effect
would become even stronger, if the wavelength increased and larger elements could be chosen to
approximate the velocity potential.

6. Conclusion. In the present paper, we have investigated the coupled time dependent par-
tial differential equations describing the interaction between the mechanical and acoustic field. We
have based our formulation on the primary variables mechanical displacement and scalar acoustic
velocity potential. Therewith, we can use standard Lagrangian finite elements and a symmetric
coupled formulation. Our theoretical main result is the equivalence to the pure displacement based
formulation on the continuous and discrete level. This equivalence allows us to employ an already
available a priori analysis. On the practial side, the use of non-matching grids along the coupling
interface strongly decreases the CPU time and memory consumption and furthermore improves
the quality of the computational grid in each subdomain. In particular, the applicability and
efficiency of our implementation has been demonstrated by three engineering examples.
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