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Abstract

This thesis is concerned with the development of robust and efficient numerical schemes
for obtaining approximate solutions of partial differential equations. A most promising
tool to develop such schemes is provided by the framework of domain decomposition
methods in combination with modern finite element technology. In this context, it is
always convenient and sometimes even mandatory to be able to deal with non-matching
finite element grids. There are numerous tasks where non-matching grids naturally arise
when employing on each subdomain the grid best suited to solve the corresponding sub-
problem associated with this subdomain. In order to construct the global solution, the
stable and inexpensive transmission of data between the grids is of outmost importance.
While point-wise coupling procedures usually fail, the framework of mortar finite ele-
ments provides a method which is able to deal with non-matching grids both from the
mathematical and from the implementational point of view. The method is based on in-
troducing additional degrees of freedom in form of Lagrange multipliers on the interface,
thereby replacing the strong continuity requirement of the solution by a weak one.

So far, the theory as well as most of the numerical tests have been restricted to the
case of planar interfaces. In this thesis, the mortar method is extended to the case of
curvilinear interfaces. For a scalar model equation, a rigorous convergence analysis in
the spirit of variational crimes is carried out. In order to derive optimal a priori error
estimates, the discrete problem formulation on affine elements is interpreted as a pertur-
bation of a blending element approach, where the curved interfaces are resolved exactly.
While the analysis is based on abstract assumptions for the discrete Lagrange multiplier
space, dual Lagrange multipliers are introduced as a particular example satisfying these
assumptions. They are characterized by the possibility to locally eliminate the multipli-
ers from the system, which substantially increases the efficiency of the approach. Being
formerly restricted to simplicial or parallelogram-shaped surface elements, two alterna-
tive extensions to arbitrary quadrilateral elements are given. Several numerical examples
validate the theoretical results and illustrate the stability of the method with respect to
the number of subdomains, as well as with respect to large differences in the subdomain
meshsizes and the choice of the discrete Lagrange multiplier space.

Despite the fact that the theory of the scalar case can be extended to the setting
of linear elasticity, a preasymptotic misbehavior is encountered for some non-standard
Lagrange multipliers if they are used on the coarser interface grid. In order to restore
the stability, two alternative modifications for lowest order dual Lagrange multipliers are
presented, both preserving the advantages of the dual approach. A priori error estimates
are derived, again using perturbation arguments by regarding the discrete problem for-
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Abstract

mulation as a perturbed blending approach. The positive effects of the modifications are
illustrated by several numerical tests.

Moreover, the use of non-matching grids for coupled problems in computational acous-
tics is studied. In particular, the radiation of sound waves due to vibrating structures
as well as turbulent flow is investigated. Employing non-matching grids is especially
promising here, since the often quite small region occupying the source of the acoustic
waves has to be discretized with a much smaller meshsize than the adjacent large domain
of propagation. Two settings are examined, the first one considering the wave equation
for the acoustic velocity potential in both regions, where a source term is responsible for
the development of acoustic waves. The second setting realizes a fluid-structure coupling
by considering a displacement based formulation for the elastic structure, and the wave
equation for the acoustic fluid. The presented numerical tests range from a point source
in two dimensions to the simulation of a three-dimensional piezo-electric loudspeaker, and
always exhibit the profit of being able to use non-matching grids. Moreover, a solution
method for the case of nonlinear structures is introduced and tested.

Especially for a subdomain in motion, it is natural to use an overlapping decomposi-
tion. In addition to the global triangulation, a local region is discretized independently
and patched upon the global grid. First, a simple model problem is investigated: in-
heriting as boundary data the global solution, a corresponding subproblem is solved on
the patch with the goal of a better approximation of the exact solution. The a priori
error analysis incorporates the use of different meshwidths and finite element spaces on
the global domain and the patch. As a particular application, the eddy currents result-
ing from the motion of a conductor through an electromagnetic field are investigated.
The unknown magnetic field is decomposed into the difference of a vectorial component
with support restricted to the conductor and the gradient of a scalar potential which is
defined everywhere. Inside the conductor, edge elements are used to approximate the
vector potential, whereas on the global grid, standard nodal elements are used for the
scalar potential. The simulation of an electromagnetic brake is considered as an example
which clearly depicts the advantage of using an overlapping decomposition.
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Zusammenfassung

Zeitabhingige und stationédre Prozesse in Natur und Technik werden sehr haufig durch
partielle Differentialgleichungen modelliert. Da deren analytische Losungen im Allge-
meinen nicht berechenbar sind, ist die Wichtigkeit robuster und effizienter numerischer
Algorithmen zur Bestimmung von Naherungslosungen kaum zu iiberschétzen. Gebietszer-
legungsmethoden in Verbindung mit moderner Finite-Elemente-Technologie stellen ein
sehr vielversprechendes Werkzeug zur Entwicklung solcher Algorithmen dar. Die allge-
meine Idee hinter jeder Gebietszerlegung ist im Wesentlichen reduzierbar auf das Motto
“divide et impera”; so wird versucht, ein komplexes und grofes globales Problem in meh-
rere einfachere und/oder kleinere lokale Probleme aufzuspalten. Um daraus eine Losung
des globalen Problems zu konstruieren, ist der stabile und effiziente Informationsaus-
tausch zwischen den Teilproblemen von grofter Wichtigkeit. Im Rahmen der numerischen
Simulation werden Gebietszerlegungsideen fiir die optimale Diskretisierung der zugrun-
deliegenden physikalischen Problemstellungen, fiir die Entwicklung iterativer Loser, oder
fiir die Parallelisierung bestehender numerischer Algorithmen eingesetzt.

In dieser Arbeit werden wir uns fast immer auf den physikalisch motivierten Diskre-
tisierungsaspekt von Gebietszerlegungsmethoden konzentrieren. Aufgrund ihres breiten
Anwendungsspektrums kommen finite Elemente zur Diskretisierung der kontinuierlichen
Problemstellungen zum Einsatz. Hierfiir ist es immer angenehm und manchmal auch un-
abdingbar, dass man in der Lage ist, Finite-Elemente-Gitter zu handhaben, die an den
Trennflachen der Teilgebiete geometrisch nichtkonform sind. Es gibt eine Vielzahl von
Anwendungen, bei denen solche nichtkonformen Gitter aus dem natiirlichen Wunsch her-
aus entstehen, in jedem Teilgebiet das Gitter einzusetzen, welches am besten zur Losung
des entsprechenden Teilproblems geeignet ist. Wahrend Methoden, die eine punktwei-
se Kopplung benutzen, im Allgemeinen scheitern, bieten Mortar-Finite-Elemente einen
Ansatz, der nichtkonforme Gitter sowohl aus mathematischer als auch aus implemen-
tierungsbezogener Sicht zufriedenstellend handhaben kann. Die Methode basiert auf der
Einfiihrung zusétzlicher Freiheitsgrade in Form Lagrangescher Multiplikatoren auf den
Trennflichen, wobei starke Stetigkeitsanforderungen durch schwache ersetzt werden. Es
héngt von der Qualitit des diskreten Lagrange-Multiplikator-Raums ab, ob der resultie-
rende Algorithmus stabil, optimal und effizient ist. Hier bieten sogenannte duale Mul-
tiplikatoren, deren zugrundeliegende Basis orthogonal beziiglich der Basis des diskreten
Spurraums auf der Trennflache ist, den entscheidenden Vorteil, dass sie lokal eliminiert
werden konnen und somit die Effizienz des Ansatzes betrichtlich steigern.

Bis jetzt waren sowohl die Theorie als auch die meisten numerischen Tests auf ebene
Trennflichen beschrinkt. In dieser Arbeit erweitern wir die Mortar-Methode auf den Fall
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Zusammenfassung

gekriimmter Trennflichen. Es werden ein rigoroser mathematischer Rahmen im Sinne
von “variational crimes” und umfangreiche numerische Beispiele vorgestellt. Fiir vierecki-
ge Oberflichenelemente waren die dualen Basisfunktionen bisher nur fiir Parallelogramme
entwickelt. Wir erweitern duale Lagrange-Multiplikatoren niedrigster Ordnung auf Ober-
flachengitter bestehend aus beliebigen Drei- und Viereckselementen. Auferdem wird der
Einsatz nichtkonformer Gitter fiir gekoppelte Problemstellungen der Akustik untersucht.
Dariiber hinaus ist es speziell fiir bewegte Teilgebiete vorteilhaft, eine iiberlappende Zer-
legung zu verwenden. Wir benutzen die Mortar-Methode zur Handhabung ineinander
geschachtelter Gebiete, und untersuchen eine Anwendung in der Elektro-Mechanik. Im
Folgenden sind die Inhalte der Arbeit in groferem Detail aufgefiihrt.

Im einleitenden Kapitel [l werden im Anschluss an eine Ubersicht die in der Arbeit
verwendeten Modellprobleme vorgestellt: die Poisson-Gleichung, lineare und nichtlineare
Elastizitit, sowie ein Kontaktproblem. Wir geben Griinde fiir die Verwendung dualer
Lagrange-Multiplikatoren an und stellen klar, warum der Einsatz einer starken punkt-
weisen Kopplung zwischen den Teilgebieten nicht empfehlenswert ist.

Kapitel B errichtet das mathematische Geriist fiir das Problem der Handhabung ge-
kriimmter Trennflichen in Mortar-Finite-Elemente-Methoden. Fiir ein skalares Modell-
problem wird eine den Fall vieler Teilgebiete beinhaltende rigorose Konvergenzanalyse
durchgefiihrt. Zur Herleitung optimaler a-priori-Fehlerabschitzungen wird die auf af-
finen Elementen basierende diskrete Problemformulierung als Stérung eines Blending-
Elemente-Ansatzes interpretiert, bei welchem die gekriimmten Trennflichen exakt aufge-
16st werden. Wahrend die Analysis auf abstrakten Annahmen an den diskreten Lagrange-
Multiplikator-Raum beruht, werden duale Multiplikatoren als spezielles diese Annahmen
erfiillendes Beispiel eingefiihrt. Zwei alternative Erweiterungen auf beliebige Vierecksele-
mente werden fiir die vormals nur auf Dreiecken und Parallelogrammen definierten Multi-
plikatoren gegeben. Dariiber hinaus werden die implementierungsbezogenen Aspekte der
Assemblierung der Kopplungsmatrizen adressiert, wobei speziell auf die Schnitterken-
nung zweier Oberflichenelemente eingegangen wird. Dies fiihrt zu mehreren numerischen
Beispielen, welche die Stabilitit des Ansatzes zum einen beziiglich der Anzahl der Teilge-
biete, als auch beziiglich grofer Spriinge in den Maschenweiten der Teilgebietsgitter und
der Wahl des Lagrange-Multiplikator-Raumes illustrieren.

Inhalt von Kapitel B ist die Behandlung numerischer Instabilitdten, die durch Ver-
wendung dualer Lagrange-Multiplikatoren auf gekriimmten Trennflichen zur Approxi-
mation von Oberflachenkriften in der Strukturmechanik entstehen. Obwohl die Theorie
des skalaren Falls auf allgemeine elliptische Systeme linearer partieller Differentialglei-
chungen und damit auch auf den Rahmen linearer Elastizitit iibertragen werden kann,
lésst sich fiir einige Nicht-Standard-Multiplikatoren ein vorasymptotisches Fehlverhalten
beobachten, vorausgesetzt dass die Multiplikatoren auf dem groberen Oberflichengitter
zum Einsatz kommen. Es wird eine Erklédrung dieses Fehlverhaltens mittels eines einfa-
chen zwei-dimensionalen Modellproblems gegeben. Um die Stabilitiat wiederherzustellen,
werden zwei Modifikationen fiir duale Multiplikatoren niedrigster Ordnung vorgestellt,
welche beide die Vorteile der dualen Methode erhalten. A-priori-Fehlerabschitzungen
werden unter wiederholter Benutzung von Stérungsargumenten hergeleitet. Der positive
Effekt der Modifikationen wird anhand mehrerer numerischer Tests dokumentiert.



Kapitel @ ist anwendungsnahen Problemen aus der Akustik gewidmet. Es werden die
Entstehung und Ausbreitung von Schallwellen aufgrund vibrierender Strukturen oder
aufgrund von Stromungen untersucht. Der Einsatz nichtkonformer Gitter ist hier be-
sonders vielversprechend, da die Quelle der akustischen Wellen hiufig in einem verhélt-
nisméakig kleinen Teilgebiet liegt, das mit einer viel kleineren Maschenweite diskretisiert
werden muss als das angrenzende grofe Ausbreitungsgebiet. Wir untersuchen zwei Pro-
blemstellungen; bei der ersten wird die Wellengleichung fiir das akustische Geschwin-
digkeitspotenzial in beiden Teilgebieten betrachtet, wobei ein nicht-trivialer Quellterm
fiir die Entstehung der Schallwellen verantwortlich ist. Hier erfolgt die Kopplung analog
zum stationdren Fall der Poisson-Gleichung. Die zweite Problemstellung realisiert eine
Fluid-Struktur-Kopplung, indem eine verschiebungsbasierte Formulierung fiir die elasti-
sche Struktur und die Wellengleichung fiir das akustische Fluid betrachtet werden. Die
Kopplungsbedingungen fiir die vektorwertigen Verschiebungen und das skalare Potenzial
kénnen hier in kanonischer Weise in die Variationsformulierung eingearbeitet werden, oh-
ne dass die Einfiihrung Lagrangescher Multiplikatoren erforderlich ist. Die vorgestellten
numerischen Tests reichen von einer Punktquelle in zwei Dimensionen bis hin zu einem
drei-dimensionalen piezo-elektrischen Lautsprecher. Dariiber hinaus wird eine numerische
Losungsmethode fiir den Fall nichtlinearer Strukturen vorgestellt und getestet.

In Kapitel Bl werden iiberlappende Zerlegungen geschachtelter Gebiete betrachtet. Zu-
sétzlich zur globalen Triangulierung wird eine lokale Region unabhingig diskretisiert und
iiber das globale Gitter gelegt. Die globale Losung gibt Dirichlet-Randbedingungen fiir
das Teilgebiet vor, von der daraus resultierenden zusétzlichen Losung auf dem Teilgebiet
wird eine bessere Approximation der exakten Losung erwartet. Die a-priori-Fehleranalysis
schlieftt die Verwendung unterschiedlicher Maschenweiten und diskreter Ansatzraume auf
dem globalen und dem lokalen Gebiet mit ein. Dariiber hinaus wird eine dquivalente For-
mulierung als verallgemeinertes Sattelpunktproblem prisentiert. Die aufgefiihrten nume-
rischen Resultate beinhalten die Kopplung linearer und quadratischer Elemente sowie die
Anwendung auf ein reibungsbehaftetes unilaterales Kontaktproblem.

Kapitel B beschiftigt sich mit der Anwendung iiberlappender Zerlegungen auf die Si-
mulation elektro-mechanischer Probleme. Es werden die aus der Bewegung eines Leiters
durch ein Magnetfeld resultierenden Wirbelstrome untersucht, die ihrerseits eine auf den
Leiter wirkende Lorentzkraft auslosen. Das zu bestimmende Magnetfeld wird in die Dif-
ferenz eines Vektorpotenzials, das nur auf dem Leiter existiert, und des Gradienten eines
skalaren Potenzials, welches im gesamten Gebiet definiert ist, zerlegt. Im Leiter werden
Kantenelemente fiir die Approximation des Vektorpotenzials verwendet, wohingegen auf
dem globalen Gitter gewohnliche nodale Elemente fiir das skalare Potenzial zum Ein-
satz kommen. Die Kopplung beider Potenziale wird wieder mittels eines Mortaransatzes
realisiert. Als Beispiel wird die Simulation einer Wirbelstrombremse vorgestellt, welches
klar den Vorteil des Einsatzes einer iiberlappenden Zerlegung demonstriert. Schlieflich
werden in Kapitel [ die Schlussfolgerungen der Arbeit zusammengefasst.

Die gesamte Arbeit befindet sich im Rahmen herkémmlicher Variationsformulierun-
gen. Im Anhang werden knapp die wichtigsten zugrundeliegenden Konzepte und Resul-
tate aus Funktionalanalysis, schwachen Sattelpunktformulierungen und Finite-Elemente-
Ansétzen aufgefiihrt.
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1 Introduction

This introductory chapter first provides an overview of the thesis. After that, several
model problems are presented, followed by the derivation of a saddle point problem
based on a decomposition of the computational domain. Reasons are given for utilizing
dual Lagrange multipliers for the discretization of such problems. Moreover, it is clarified
why using a strong point-wise coupling usually fails for non-matching finite element grids.

1.1 Overview

Dynamic and stationary processes in nature and technology are very often modeled by
partial differential equations. Since their analytical solutions are not computable in gen-
eral situations, the importance of robust and efficient numerical schemes for obtaining
approximate solutions can hardly be overrated. A most promising tool to develop such
schemes is provided by the framework of domain decomposition methods in combination
with modern finite element technology. Essentially reducible to the overall slogan “di-
vide et impera”, the general idea of domain decomposition is to decompose a complex
and large global problem into several simpler and/or smaller local problems. In order to
construct the solution to the global problem, the stable and inexpensive transmission of
data between the subproblems is of outmost importance. Within the context of numerical
simulation, domain decomposition ideas are employed to optimally discretize the under-
lying physical problems, to develop efficient iterative solvers, or to parallelize numerical
algorithms. In order to gain access to the vast literature, the books [I00) I13| 115, as
well as the proceedings of the annual International Domain Decomposition Meetings can
be recommended, [I].

In this thesis, we will almost always focus on the aforementioned physically motivated
discretization aspect of domain decomposition methods. Due to their universality and
flexibility, finite elements will be used to discretize the continuous problem formulations.
When now domain decomposition techniques are applied to discretize partial differen-
tial equations by means of finite elements, it is always convenient and sometimes even
mandatory to be able to deal with non-matching finite element grids. There are numer-
ous tasks where non-matching grids naturally arise when employing on each subdomain
the grid which is best suited to solve the corresponding subproblem associated with this
subdomain. Concerning the construction of appropriate transmission operators between
the grids, the framework of mortar finite elements provides a method which is able to
deal with non-matching grids both from the mathematical and from the implementa-
tional point of view. The method is based on introducing additional degrees of freedom
in form of Lagrange multipliers on the interface, thereby replacing the strong continuity



1 Introduction

requirement of the solution across the interface by a weak one. It depends on the qual-
ity of the discrete Lagrange multiplier space whether the resulting numerical scheme is
stable, optimal, and efficient.

Originally introduced in [T9, 20, 2] for the coupling of spectral and finite element
methods, the first choice for the Lagrange multiplier space was the trace of the finite
element space on the interface. Soon, the analysis of mortar methods was extended to
three-dimensional problems, [I5, 24, [77], and to hp-finite elements, [16, 10, TTT]. The
very natural equivalent formulation of the mortar approach by means of a saddle point
problem was introduced in [T0] and clearly exhibited the important role of the Lagrange
multiplier space. The saddle point structure of the linear system arising from mortar
discretizations required the development of adjusted iterative solvers, [24], 25 (ol M19,
121]. The advent of dual Lagrange multipliers in [T20] opened new perspectives for
the construction of iterative solvers by offering the possibility to locally eliminate the
Lagrange multipliers from the system. In particular, two multigrid methods have been
proposed that take advantage of the dual multipliers, one based on the unconstrained
product space, [125], and one based on the constrained problem, [126].

Evolving from simple model problems, mortar methods meanwhile have been suc-
cessfully applied to a wide range of academic and near-to-real-life problem settings. In
|11, 12|, the Stokes problem was considered, resulting in a stabilized approach with
discontinuous multipliers, which got further utilized in [63, [64] for the solution of elasto-
dynamic problems. Applications to flow in porous media were given in [95, 06]. In
structural mechanics, a most prominent setting yielding a natural domain decomposi-
tion is provided by multi-body contact problems. The urge of being able to deal with
non-matching grids led to an extension of mortar methods to this field, |13, T4, 87, O8|.
Also here, the use of dual Lagrange multipliers offers an improved numerical efficiency
by admitting to construct adjusted active set strategies, [70, [72].

So far, the theory as well as most of the numerical tests have been restricted to the case
of planar interfaces. In this thesis, we extend the mortar method to the case of curvilinear
interfaces. A rigorous mathematical framework in the spirit of variational crimes is
provided, as well as extensive numerical examples. For quadrilateral surface elements, the
dual basis functions have only been developed for parallelograms. We extend the lowest
order dual Lagrange multipliers to arbitrary quadrilateral or triangular surface grids.
Moreover, we study the use of non-matching grids for coupled problems in computational
acoustics. Especially for a subdomain in motion, it is natural to use an overlapping
decomposition. We employ the mortar framework to deal with nested domains, and
investigate an application to electro-mechanics. In the following, the contents of this
thesis are presented in more detail.

In the remainder of this introductory chapter, the model problems used throughout
the thesis are introduced, including Poisson’s equation, linear and nonlinear elasticity, as
well as a contact problem. Moreover, we give reasons for using dual Lagrange multipliers,
the most important one being the possibility to locally eliminate the multipliers yielding
a positive definite system. Additionally, we clarify why it is not advisable to use a strong
point-wise coupling between the subdomains.

Chapter [ sets up the mathematical foundation for the problem of dealing with curvi-
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linear interfaces in mortar finite element methods. For a scalar model equation, a rigorous
convergence analysis based on [47] is carried out, including the case of many subdomains.
In order to derive optimal a priori error estimates, the discrete problem formulation on
affine elements is interpreted as a perturbation of a blending element approach, where the
curved interfaces are resolved exactly. While the analysis is based on abstract assump-
tions for the discrete Lagrange multiplier space, dual Lagrange multipliers are introduced
as a particular example satisfying these assumptions. Being formerly restricted to sim-
plicial or parallelogram-shaped surface elements, two alternative extensions to arbitrary
quadrilateral elements are given, as introduced in [5I]. Moreover, the assembly of the
coupling matrices is considered from the implementational point of view, focusing on the
detection of the intersection area of two surface elements. This leads to several numerical
examples validating the theoretical results and illustrating the stability of the method
with respect to the number of subdomains, as well as with respect to large differences in
the subdomain meshsizes and the choice of the discrete Lagrange multiplier space.

Subject of Chapter Bl is the treatment of numerical instabilities arising from the use of
dual Lagrange multipliers on curved interfaces for the approximation of surface tractions
within structural mechanics. Despite the fact that the theory of the scalar case can be
extended to general elliptic systems of linear partial differential equations and therefore
to the setting of linear elasticity, a pre-asymptotic misbehavior is encountered for some
non-standard Lagrange multipliers if they are used on the coarser interface grid. An
explanation of this misbehavior is given by means of a simple two-dimensional model
problem. In order to restore the stability, two alternative modifications for lowest order
dual Lagrange multipliers are presented, both preserving the advantages of the dual ap-
proach. Unifying the two-dimensional and the three-dimensional case presented in [48)|
and [5T], respectively, a priori error estimates are derived, again using perturbation argu-
ments by regarding the discrete problem formulation as a perturbed blending approach.
The positive effects of the modifications are illustrated by several numerical tests.

Chapter @l is devoted to applied problems arising from computational acoustics. The
radiation of sound waves due to vibrating structures as well as turbulent flow is investi-
gated. The use of non-matching grids is especially promising here, since the often quite
small region occupying the source of the acoustic waves has to be discretized with a much
smaller meshsize than the adjacent large domain of propagation. Setting up on [42], two
settings are examined, the first one considering the wave equation for the acoustic velocity
potential in both regions, where a non-trivial source term is responsible for the devel-
opment of acoustic waves. The coupling is managed analogous to the stationary case of
Poisson’s equation. The second setting realizes a fluid-structure coupling by considering
a displacement based formulation for the elastic structure, and the wave equation for
the acoustic fluid. The coupling conditions for the vectorial displacement and the scalar
potential can be incorporated in a straightforward manner into the variational problem
formulation with no need for the introduction of Lagrange multipliers. The coupling ma-
trices remain almost the same. The presented numerical tests range from a point source
in two dimensions to the simulation of a three-dimensional piezo-electric loudspeaker, and
always exhibit the profit of being able to use non-matching grids. Moreover, a solution
method for the case of nonlinear structures is introduced and tested.
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In Chapter Bl an overlapping decomposition of nested domains is considered. In addi-
tion to the global triangulation, a local region is discretized independently and patched
upon the global grid. Inheriting as boundary data the global solution, a corresponding
subproblem is solved on the patch with the goal of a better approximation of the exact
solution. The a priori error analysis incorporates the use of different meshwidths and
finite element spaces on the global domain and the patch, [49]. Moreover, an equiv-
alent formulation as a generalized saddle point problem is presented, [46]. Numerical
results including the coupling of linear with quadratic elements, and the application to
a frictional unilateral contact-problem complete the chapter.

Chapter bl deals with the application of an overlapping decomposition to the simulation
of an electro-mechanical problem, [44]. In particular, the eddy currents resulting from
the motion of a conductor through an electromagnetic field are investigated, causing a
Lorentz force acting on the conductor. The unknown magnetic field is decomposed into
the difference of a vectorial component with support restricted to the conductor and
the gradient of a scalar potential which is defined everywhere. Inside the conductor,
edge elements are used to approximate the vector potential, whereas on the global grid,
standard nodal elements are used for the approximation of the scalar potential. The
coupling between the two potentials is again realized by a mortar approach. As numerical
example, the simulation of an electromagnetic brake is considered, [45], which clearly
depicts the advantage of using an overlapping decomposition in the case of a moving
subdomain. Finally, Chapter [d draws the conclusions of this thesis.

Throughout the thesis, the standard variational setting is employed. The appendix
briefly reviews the most important concepts and results of functional analysis, weak
saddle point problems, and finite element spaces. For the numerical results, the software
toolbox UG, [8], has been used for the discretization and the solution by multigrid, while
PARDISO, [105, [T06], has been employed as a direct solver. The visualization in three
dimensions has been performed with the help of NETGEN, [I08]|, and GMV, [93].

1.2 Model Problems

We introduce the model equations which are used for the upcoming analysis and the
numerical illustrations. Starting with the formulation for a single domain, the strong and
the weak form of Poisson’s equation and elasticity problems are given. By investigating a
simple decomposition into two subdomains, the principles of the coupling via a Lagrange
multiplier space are explained, yielding a weak saddle point formulation. Some remarks
on the resulting system of equations after discretization conclude the section.

1.2.1 Single Domain Formulation

For scalar problems, we focus on Poisson’s equation in R?, d = 2, 3. In particular, given
a domain Q) C R?, we seek a scalar function v as the solution of

—divgradu = f in Q. (1.1a)
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The boundary of €2 is the union of disjoint subsets Iy and Ip, on which Neumann
data, i.e., fluxes, and homogeneous Dirichlet data, i.e., zero solution values, are given,
respectively,

Ju/On = g on Iy, (1.1b)
u=0on Ip, (1.1c)

with n denoting the unit outward normal vector field on 02. We assume that I'y has a
nontrivial Lebesgue measure. Starting from the strong problem formulation, the crucial
first step in any finite element approach is to proceed to a weak or variational formulation.
In case of problem (ICTl), this is achieved by choosing appropriate function spaces for
the weak solution and for the test functions in accordance with the Dirichlet boundary
condition (CId), multiplying (LTal) by a test function v, performing a partial integration
by means of Green’s formula ([AI0), and inserting the Neumann boundary conditions
(CID). We arrive at the variational problem of finding a function u € X = {v € H'(Q) :
V|, = 0} such that

a(u,v) =1(v), v e X, (1.2)

where in the definition of X, the restriction of v to I'p has to be understood in the sense
of traces, see Theorem Moreover, we set the bilinear form a(-,-) = (grad -, grad -)q
with (-,-)q indicating the L?-inner product (A2), and the linear form I(-) = (f, )q +
(g, ). Since the bilinear form a(-,-) is X-elliptic and continuous on X x X, and since
the linear form [(-) is continuous on X, the Lax-Milgram Lemma [A21] can be applied
yielding the well-posedness of problem (CZ).

Additionally, we consider linear and nonlinear elasticity problems, [32]. For the linear
setting, we intend to solve the problem of finding a displacement vector field w such that
we have the force balance

—divo(u) = f in Q, (1.3)
supplemented by Hooke’s law

o= A,(tre)ld + 2, €, (1.4)

with the Lamé constants Ap, pr,, and by the linearized strain tensor
1
e(u) = é(gradu + [grad u] ™). (1.5)

The boundary 0f2 is assumed to be partitioned as before, and u has to satisfy the
conditions

o(u)n = g on Iy, (1.6a)
u =0 on [p. (1.6b)

The term o(u)n corresponds to the surface traction on I'y. Proceeding like in the scalar
case yields the weak formulation (C2) with X replaced by X¢ and a(-,-) = (o(-),e("))a,
as well as [(-) = (f,")a + (g, )ry- By Corollary of Korn’s second inequality [A-T9
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the bilinear form a(-, -) is X%-elliptic, and again the Lax-Milgram lemma guarantees the
unique solvability of (L2).

However, the validity of the linearized elasticity equations ([C3))-([CH) is restricted to
small strains and small deformations. If the strains remain small but the deformations
become large, one has at least to consider the geometrically nonlinear elasticity setting.
This amounts to using the full Green—-St. Venant tensor

- 1
E = (F'F —1d) = 5(C ~1d), (1.7)

instead of (LH), with F' = Id + grad u the deformation gradient and C' = F'F the right
Cauchy—Green strain tensor. We keep the constitutive law (L) as

S =A(tr E)Id +2up, E =CE, (1.8)
defining the second Piola—Kirchhoff stress tensor S, with C the Hooke-tensor. We solve
—div (F'S) = f, (1.9)

complemented by the boundary conditions
FSn=gon Ty, and uw =0 on Ip. (1.10)

Transforming to the weak setting, the nonlinearity in (L) results in the fact that a(-,-)
is nonlinear in the first and linear in the second argument, i.e., we obtain () with X¢
and [(-) as before, and the linear form a(u,-) given by a(u,v) = Z?:l a;(u,v), where,
cf. [32,

1
ai(u,v) = (Ce(u),e(v))q, as(u,v) = 5(6 [(gradu)” grad u] , grad v)q,
az(u,v) = (grad uC grad u, grad v)q, a4(u,v) = %(grad uC [(gradw)" grad u] , grad v)g.

Under additional assumptions on the data, it is possible to establish the well-posedness
of (C7)—(CY), [T04]. However, the analysis of the nonlinear problem is substantially more
involved and not within the scope of this thesis.

Still, the applicability of (ICZ)—(LY) is limited to small strains. In order to extend the
model to large strains, we have to introduce another kind of nonlinearity by means of
nonlinear material laws, [92]. In particular, to solve (LY), we employ the neo-Hooke law
given by

S =p(ld—C1) + %(ﬁ —1)C (1.11)

with J = det(F’) denoting the determinant of the deformation gradient. While in ([C7)
the nonlinearity enters in terms of polynomials of grad w, it is given in terms of its inverse

in (ICTTI).
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1.2.2 Coupled Formulation

For the ease of notation and to avoid technicalities in this introductory chapter, we
restrict ourselves to the case of two non-overlapping open subdomains 2™ and 2° sharing
a common interface I', their union giving the global domain , Q = Qm U (5. Moreover,
we assume that [y = 0€). By taking into account the standard modifications at the cross-
points or at the wire-basket of more than two subdomains, the following considerations
apply analogously to more general situations, especially to decompositions into many
subdomains, as will be carried out in Chapter 2

In the following, we establish a weak formulation of the model problem (1) corre-
sponding to the decomposition of the domain 2. We equivalently can rewrite ([LIal) as

—div grad uy = [, in OF, k=m,s, (1.12a)
Uy = Us on I (1.12b)
Ol /ONy, = —0ug/Ong  on T, (1.12¢)

denoting by n;, the unit normal vector field on the interface I, outward with respect to Q,
k = m,s. This means that the strong solution u = (um, us) is required to be continuous
in its trace as well as in its flux, across the interface I". The correct function space to
consider now is the product X = X™ x X®, where X* = {v € H(QF) : v|p,ng90r = 0},
k = m,s. Multiplying (LI2al) with v = (vm, vs) € X and applying Green’s formula ([A10)
subdomain-wise yields

Z (grad ug, grad v )or — (Vm, O /OMm) g-1/72.1 — (Us, OUs /ONg) gr-1/2.0 = L(v), (1.13)

k=m,s

where (-, -) g-1/2,r indicates the duality product on H)>(T)x H-Y2(T"). An important step

is now the introduction of the Lagrange multiplier A\ € M = H~Y/2(I") which is chosen to
be the normal flux through the interface I', namely, using the coupling condition (CLT2d),
A = —0ug/Ong = Oup /Ony,. This simplifies (CI3) to

Z (grad ug, grad vg)or + (Us — Vm, A) g-1/2.0 = 1(v). (1.14)

k=m,s

While the introduction of the Lagrange multiplier \ realizes the coupling (LI2d) of the
flux in a strong sense, the remaining coupling ([L12D) in the trace is enforced in a weak
sense. This is achieved by multiplying ([LI2H) by a Lagrange multiplier test function
i € M and integrating over I', which yields

introducing the coupling bilinear form b : X x M — R. With (CT4)) and (CIH), we arrive
at the typical saddle point problem of the following structure, [27]: find a primal variable
u € X and a Lagrange multiplier A € M such that
a(u,v) + b(v, \) = 1(v), ve X, (1.16a)
b(u, ) =0, we M, (1.16b)
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witha(-,-) = >, s(grad -, grad-)qs. Problem (ICIH) is well-posed, if the well-established
conditions [ATH), (A10) are satisfied.

The above procedure can be applied to the linear elasticity problem (LC3)—(LH) in a
straightforward manner. In the resulting problem formulation ([CTH), the spaces X and
M consist of vector fields with component functions being in the corresponding spaces for
the scalar case. Moreover, the Lagrange multiplier A corresponds to the surface tractions
on I', namely,

A = —o(ug)ns, (1.17)

the coupling b(-,-) remains the same with vector fields replacing the scalar functions,
and the bilinear form a(-,-) is given analogously to the scalar case as the sum of the
corresponding bilinear forms on the subdomains.

By elimination of the Lagrange multiplier, the saddle point problem (LT6) can be
recast into a positive definite problem, provided that a(-,-) is elliptic on the constrained
space

V={veX:bvu =0, uec M}

where in case of the Laplace operator, [54], and of the linear elasticity setting, [61], it is
well known that the ellipticity constant does not depend on the number of subdomains.
In particular, this yields in analogy to (L2) the problem of finding u € V' such that

a(u,v) = l(v), velV. (1.18)

For the nonlinear elasticity problems (CZ)-(CI0) and (C3)-(CII), the situation is
much more involved. However, the subdomain coupling via Lagrange multipliers remains
the same as for linear problems. Physically, A = —F'Sn is still interpreted as surface
traction on I'.

In addition to the model problems introduced in Section [LZTl we consider a two-
body nonlinear contact problem as a most natural example where domain decomposition
techniques can successfully be applied. The domain 2 is the union of two initially disjoint
bodies 2°, 2™, and its boundary 092 = 02° U 9™ is subdivided into three disjoint open
sets Ip, In, Tc. We intend to solve ([L3)-(CH) with Dirichlet and Neumann boundary
conditions on I'p and Iy, respectively, and frictionless Signorini contact conditions on the
possible contact boundary ['¢, given by

o (ug) :[uaggu_m; g, (1.19)

IA

where o, (u;) and o,(u;) are the tangential part and the normal component of the
surface traction o(uy)n, respectively, k& = m,s, [un] stands for the jump of the normal
displacement across [, and g defines the linearized initial gap between the two bodies.
We arrive at the problem, [7T]: find (u,A) € X x M™ such that

a(u,v) +b(v,A) = f(v), v e X,

bu,p—A) < (g, (L —A) )1, pe M, (1.20)

A
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with b(v,u) = (un,[vn])r,, and M* = {up € M : p, = 0, (un,v)r,, > 0,v €
We, v > 0 on I'cg}, where W denotes the trace space of H'(2®) restricted to I'cg, and
M is its dual. We discuss an appropriate and efficient solution strategy for the discrete

version of ([L20) in Section B4

1.2.3 Discretization

In order to numerically solve (LTH), the infinite-dimensional spaces X and M are approx-
imated by a family of finite dimensional spaces X, = X;" x X} and M), with a discretiza-
tion parameter h, and ([LT6) yields the discrete problem of finding (us, A\n) € Xj, x M,
such that

a(uh,vh) + b(?}h, )\h) = f(Uh), Vp € Xh, (121&)
b(un, pn) =9g(kn),  pn € My (1.21b)

If the approximations of X and M by X, and M, are conforming, the fulfillment of
the discrete analogs ([A19), (A20) to the conditions (ATH), (AT6) yields a priori error
estimates in terms of the best approximation errors. An optimal approximation can
only be expected, if the constants involved in ([AI9), ([A20) are independent of the
discretization parameter h.

In this thesis, the approximations are always chosen to be finite element spaces based
on two triangulations 7, of O™ and 7; of 2°. For the moment, we assume that the
triangulations resolve the subdomains (and therefore also T') exactly. We emphasize
that each triangulation 7, k£ = m,s, itself is assumed to be geometrically conforming,
while the overall triangulation 7, U 7; may be non-matching at the interface I'. Using
superscripts, we indicate by 7™ and 7° the corresponding surface grids meeting the
interface I'. The finite element nodes on 7™ and 7° are called master and slave nodes,
respectively, all remaining nodes are indicated as inner nodes. We associate the discrete
Lagrange multiplier space Mj with the mesh 7° on the slave side. Having chosen a basis
for each of the spaces X}, and My, the approximate problem (LZ2II) can be written as

A Aim A 0 uj, f

Ami Amm 0 _MT url? — fIIl

Ag 0 Ae DT [ |w || r ] (1.22)
0 —-M D 0 An 0

where the subscripts i, m, and s represent the inner, master and slave nodes, respectively.
The entries of the coupling matrices M and D are assembled from integrals of the form

(95 kg)r, and (95, ig)r, (1.23)

respectively, where gb’;, k = m, s, denotes the scalar nodal basis function of the trace space
W} = XJ|r of the finite element space on 7* associated with the node p, and p, stands
for the scalar basis function of the discrete Lagrange multiplier space M}, associated with
the node gq.
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1.3 Why Dual Lagrange Multipliers?

In the following, we illustrate why dual Lagrange multipliers are an important key to
efficiently solve problems discretized by mortar finite elements. We speak of dual basis
functions pi4, if they satisfy the biorthogonality relation

(955 Hg)r = Opg(1, &)1 (1.24)

The importance of ([L24]) comes into play when attempting to solve the discrete problem
(C22). There exist various possibilities for solving the problem efficiently by iterative
solvers. The development of positive definite discrete formulations, which are equivalent
to (C22) and for which multigrid schemes can be applied, always involves the elimina-
tion of the discrete Lagrange multipliers from the indefinite system (L22)), [124]. This
elimination is performed in terms of the discrete projection operator M=D"'M , which
enters into the positive definite system matrix. The same operator plays an essential role
if Dirichlet-Neumann solvers are applied, [62]. Depending on the structure of D, this
projection can be carried out locally or it has to be carried out globally, represented by
a sparse or a dense matrix M, respectively. In particular, if the biorthogonality relation
(C24) is satisfied, the matrix D is diagonal, and therefore, M is sparse and can be easily
calculated. We emphasize that the applicability of dual Lagrange multipliers is not re-
stricted to linear stationary problems as ([LTH). In more general cases, one has to face a
linear system of the structure (CL22)) in each iteration step of a time integration and/or
nonlinear solution method.

For example, the advantages of the dual approach have been fully exploited for the
solution of contact problems like (CZ0), [72]. There, the linearized non-penetration
condition is formulated as a weak integral inequality constraint Duj < Muj' + ¢°. Only
in case of dual Lagrange multipliers, this is equivalent to the point-wise inequality u} <
DY (Mu®+ ¢%). Thus, the inequality constraint can be verified for each node separately,
and we do not have to apply a global strategy to solve the nonlinear variational inequality.

For the iterative solution of the discretized nonlinear elasticity problems (C70)—([C10)
and (CO)—(CTII), it is very useful to eliminate the discrete Lagrange multipliers and
apply a Newton iteration to the constrained problem. In particular, the Jacobian of the
constrained system is positive definite and admits the use of multigrid solvers for the
linear system in each Newton step. As pointed out before, the elimination is especially
efficient if the dual basis functions are used for spanning the Lagrange multiplier space.

1.4 Why Not Simply Couple Point-wise?

A very straightforward way to deal with non-matching grids at the interface I' may seem
to perform a strong point-wise coupling in the sense that the nodal values on the slave
side have to coincide with the solution on the master side. We investigate this approach
by means of an example. As it turns out, this method even yields the celebrated afore-
mentioned possibility of local elimination of the discrete Lagrange multipliers. However,
it severely suffers from the fact that it is not optimal.

10
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We consider the model problem ([CIZ) on Q = (0,2) x (0,1) C R? with f;, = 0,
om = (0,1)% & = (1,2) x (0,1), and T' = {1} x (0,1). We assume homogeneous
Dirichlet boundary conditions ([LId) on I = {0} x (0,1), while we require u = 2 on
[, = {2} x(0,1). On Iy = 90\ (T, UT,), we set ([LIH) with g = 0. Obviously, the exact
solution is u(x,y) = z. Setting

X = {(vm, vs) € H (™) x HY () : vm|r, = 0, vs|r, = 2},
Xo = {(vm, vs5) € HY(Q™) x H () : vm|r, = 0, vs|p, = 0},

the saddle point problem ([LI6) is derived with the test function space X in the first line
(CTI6al) replaced by X,. For the discretization, we choose X, = S,NX and Xy = S,NXo
with Sy, = {(vm, vs) piecewise linear with respect to 7™ x7*}. The point-wise coupling is
realized by approximating the Lagrange multiplier space M by Dirac delta distributions
d(p) associated with the slave nodes p, namely, M; = span{d(p),p slave node}. An
important fact is that this approximation is non-conforming, i.e., M), ¢ M. Proceeding
like this, the discrete problem ([LZI]) reads: find (up, Ap = >, A,6(p)) € Xp, X M), such
that

a(up,v) + 3,2 (vs(p) — vm(p)) =0, v € Xon, (1.25a)
Zpap(uh,S(p) — Upm(p)) =0, = Zpapa(p) € Mj. (1.25b)

As pointed out before, this strong coupling means that the solution values at the vertices
of the triangulation 7° on the slave side have to coincide with the solution at the physi-
cally same point from the master side (which is in general no vertex of 7™). It is easy to
see that the algebraic formulation ([L22) of the discrete problem ([C2H) results in D and
D" being identity matrices. This yields the fact that also here, the Lagrange multipliers
can be locally eliminated from the saddle point system, which is the central advantage
of the dual basis functions discussed in the last section. So the question arises why not
to choose this simpler coupling procedure.

In order to answer this question, we show that the exact linear solution wu is not a
solution of the discrete problem (C2ZH), although it belongs to the space Xj. Since
u satisfies the continuity condition ([L25D]), it even belongs to the constrained space
Vi, ={v € X :b(v,u) =0, p € My}. However, the equilibrium ([C25a)) is in general not
satisfied. For this example, we have gradu = (1,0)" and (L25al) amounts to

OpmdQ+ [ 0,0gdQ+ Y " N(vs(p) —vm(p)) = 0, v E Xop. (1.26)
Qm Qs 5
We consider the triangulation depicted in Figure[[LT] consisting of four simplicial elements
in each subdomain. The three master nodes pi*, ¢ = 1,2,3, are indicated by filled
circles, the three slave nodes p$, i = 1,2,3, by crosses. Indicating by ¢F the basis
function associated with the node p%, k = m,s, i = 1,2,3, we set the test function
v = (9T, ¢5/2). It is obvious that v € X ;. Moreover, v is continuous at the slave nodes,
ie., us(pf) = vm(p}), ¢ = 1,2,3. Thus, v is in the corresponding constrained space Vj

11
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Figure 1.1: Non-matching triangulations 7y,, 7.
and the third term in ([C26) vanishes, so that v should satisfy
0pvmdQ + | O,usdQ = 0. (1.27)

Qm Qs
However, we have that
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so (C21) is not satisfied. This means that the strong point-wise coupling is in general
not able to yield an exact solution in the discrete space X}. In other words, the method
does not pass a patch test.

This shortcoming of the point-wise coupling would not be that severe, if the method
performed well with respect to the error decay. In fact, the weak coupling we are going
to use in this thesis only passes a patch test if the triangulations from the master and
from the slave side are geometrically conforming, which is always the case for planar
interfaces, but in general not true for curvilinear ones. However, a linear solution will
be approximated in a superconvergent way. In contrast, the point-wise coupling does
not even show an optimal decay of the error. We illustrate this by means of two nu-
merical examples. The first one uses the setting from above. Starting with the initial
triangulation from Figure [T we perform a uniform refinement procedure, and record
the discretization error measured in the H'- and in the L?-norm in each refinement step.
The result is visualized in Figure We observe that the decay of the error measured
in the H'-norm is only of order O(h'/?), while for the L?-norm, it is of order O(h).
This simple example clearly exhibits suboptimal convergence behavior of the point-wise
coupling.

The second example, which is taken from [35], is the analog of the one above within
the setting of linear elasticity (T3)—(TCH). The domain © = (0,10) x (0,10) C R? is
decomposed into Q™ = (0,5) x (0,10) and ° = (5,10) x (0,10) sharing the common

12
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Figure 1.2: Point-wise coupling: error decay.

interface I' = {5} x (0, 10). We assume homogeneous Dirichlet boundary conditions in z-
direction on the left boundary {0} x (0, 10), and in y-direction in the node (0,0). On the
right boundary {10} x (0, 10), a constant force of magnitude one is pulling in z-direction.
All other boundary parts respect homogeneous Neumann conditions. The model of plane
stress is used, with material parameters £ = 107 and v = 0.3, resulting in the linear exact
solution u(z,y) = E~(z, —vy)T. Figure[3(a) shows the computational grid, consisting

() (b)

Figure 1.3: Patch test: (a) mesh configuration, (b) deformed geometry (exaggerated)
using strong point-wise coupling.

of 2x2 quadrilateral elements on the master side, and 3x3 quadrilateral elements on
the slave side. The finite element space consists of piecewise bilinear functions which
are able to exactly interpolate the solution u. However, the use of point-wise coupling
results in a different discrete solution wuy. In Figure [[3(b), the deformed geometry is
plotted. Although the displacements are continuous in the slave side nodes, as required
by the point-wise coupling, the deformed geometry exhibits a gap around the master
node (5,5). As for the scalar setting, the method exhibits a suboptimal convergence
behavior. Figure [[4)(a) shows the decay of the discretization error measured in the
energy norm and in the L?-norm. The same suboptimal convergence rates as for the

13
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Figure 1.4: Patch test for point-wise coupling: (a) error decay, (b) stresses.

scalar case can be observed, namely, O(h!/?) for the energy norm and O(h) for the L>-
norm. In Figure [[4[(b), the stress component oy; at the barycenters of elements with
edges on the slave side is plotted versus the y-coordinate for three refinement steps, with
n = 6,12,24 indicating the number of elements on the slave side. It can clearly be
seen that oy; oscillates between a minimum and a maximum value. Unfortunately, the
difference between the extreme values does not decrease under mesh-refinement, which
explains the bad convergence behavior.

The two examples clearly reveal that it is not advisable to use a strong point-wise
coupling in the presence of non-matching meshes. The weak coupling used in this thesis
is clearly superior with respect to the achieved approximation quality. Moreover, the use
of dual Lagrange multipliers exhibits several advantages concerning the solution of the
arising systems of equations.
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2 The Scalar Case

We consider a non-overlapping decomposition into subdomains with curvilinear bound-
aries and generalize well-known mortar formulations [20, 21| for non-matching triangu-
lations to this setting. The a priori analysis can be carried out in terms of blending
elements [66, 67, B8] and within the abstract mortar setting. Of crucial importance are
norm equivalences and uniform inf-sup conditions [I0]. A lot of work has been done to
analyze mortar settings and the coupling of different model equations. However, most
approaches are restricted to straight or planar interfaces. In the special case of two sub-
domains without cross-points and one curvilinear interface, a first theoretical result can
be found in [69]. There, a piecewise constant Lagrange multiplier space is used, which
does not guarantee a uniform inf-sup condition. Throughout the whole thesis, we work
with discrete Lagrange multiplier spaces for which uniform inf-sup conditions hold and
consider many subdomains. We focus on the analysis of the variational crime which
enters by using piecewise linear approximations of the curvilinear interfaces. According
to these approximations, we use piecewise linear interpolations to map the non-matching
meshes on the master and slave sides onto a reference segment, in order to define the
jump of a finite element function across the curved interface.

In Section Il we consider the model problem, while in Section B2l we discuss the
continuous and discrete saddle point formulation. In Section EZ3. we carry out the con-
vergence analysis and provide optimal a priori results for the discretization error in the
H'-norm for the primal variable and in the H~'/?-norm for the Lagrange multiplier.
Numerical results are given in Section In a test series, we show the stability and
flexibility of the approach and consider the influence of the number of subdomains on
the discretization errors.

2.1 Problem Formulation

We consider the classical model problem (CI)) with Q C R? T = 99, and f € L*(Q)
piecewise Lipschitz continuous. We assume that () is a polygon; this assumption is not
necessary and merely done in order to concentrate on the curved interfaces. Let Np
smooth (C? is sufficient) curves I';, i = 1,..., Ny, be given in terms of the arc length

parametrizations ) )
v € C*(1;,R?),  I;=[0,4], (2.1a)

such that I'; = 7;(1;), where ¢; denotes the length of I';. We assume furthermore that the
parametrizations 7; are injective and satisfy, for some ¢ > 0,

() — %) > et =1,  tt el (2.1b)
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2 The Scalar Case

We require that the interior of I'; is contained in 2, i.e., no part except possibly the
endpoints of I'; lies on 0f). We allow these curves to meet at No € Ny cross-points.
Without loss of generality, we will assume that the curves I'; are selected such that cross-
points can only occur at their endpoints. These curves divide the domain €2 into Ng
subdomains (¥, j = 1,..., Ng, which we assume to be Lipschitz domains, see Figure 211
We require the number of interfaces I'; belonging to one subdomain € to be bounded.
Each curve T; is shared by two domains Q™ %0 je. T, Cc 990 N oQs® where
Om@ is called the master side of T;, and Q¥ is called the slave side. In what follows,
we will frequently omit the argument ¢ in m(¢) and s(i). We employ usual Sobolev
spaces and norms, see the appendix or the standard work [3], and introduce the space
X = H;V:Ql H'(€) with the corresponding broken H'-norm given by

Nq
ol =D llvlf i (2.2)
j=1

2.2 Formulation of the Numerical Method

This section is decomposed into two subsections, the first one introducing the continuous
and discrete function spaces to be considered in the following, the second one presenting
the continuous and discrete problem formulations.

2.2.1 Spaces

We will restrict our attention to piecewise linear discretizations for the domain parts; the
Lagrange multiplier can be discretized by means of any of the standard stable spaces,
[20, 211, 24, [77, M22]. For each subdomain ’, we have a quasi-uniform, shape-regular
triangulation 7; with mesh size h; of a domain ng that approximates (¥ in the sense that
89{1 is a piecewise linear interpolation of 9. We insist on the endpoints of the curves
I';, = 1,..., Nr, being interpolation points. For each curve I';, we obtain in this way
two piecewise linear approximations that we denote by I}, and I'}3,. The superscripts s
and m indicate that I'}, and T'}, are parts of D o™ | respectively. Since s, and
'l are piecewise linear interpolations of I';, we can parametrize them in the standard
way by continuous piecewise linear functions

Vono v I — R, (2.3)

as illustrated in the right picture of Figure 2l In particular, the endpoints of I; are
mapped to the same points under these two mappings. The set V; of nodes, V; = {z €
I : Yin(r) = p, where p is an interpolation point on I';,}, forms a mesh on I,. Since
the triangulation 7y;) is assumed to be shape regular and the parametrizations ; satisfy
(1), the nodes V; form a shape regular mesh on I; with mesh size 1. Moreover, we can
find constants C; such that Cj’lhj <h< Cihj, j=1,..., Nq.
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2.2 Formulation of the Numerical Method

[

(a) (951
Qm()

Figure 2.1: (a) decomposition of {2 into six subdomains and three cross-points given by
eight curves, (b) interface I'; and its piecewise linear interpolation I

We work with two different dual spaces

Nr ,
Mo =T Rm). B = (1)
=1

2 = [T ()

and equip the spaces H/?(T';) and H&{Z(Fi) with the “intrinsic” norms, i.e., the Slobodecki
norms:

o) — ()P
meﬁzw%ma//————T—mw% (2.42)
r; JT; |$—y|
1

2 _ 2 _
||U||00,F1- = ||?J||1/2,ri + /Fz dist(z, oT;)

The duality pairings for a curve D between H/2(D) and its dual, and between HY,*(D)
and its dual are denoted by (,)p and (-, -) y-1/2.p, respectively. We note that in the case
of v € HYX(D), u € (HY*(D)), the two duality pairings coincide. Moreover, it holds
that (HY2(0907)) = H-Y2(0%), 1 < j < Ng. On the spaces M° and M, we define the
norms || - ||p0 and || - ||ar by

lv(z)]? da. (2.4Db)

Nr Nr
Il =Y Mel2yjor,s me M®and il =D Iallm ey # € M,
i=1 i=1

respectively, where the dual norms are defined in the usual way (A-8). It is easy to see
that M/ C M° and || - || is the stronger norm, i.e.,

leellae = Nlpllaro, € M. (2.5)

By assumption f is in the dual space of H*(€/), 1 < j < Ng, and thus the normal flux of
the weak solution u|q; on 99 can be identified with a unique element o; € H~1/2(0Q7).
Let the interface I'; be a subset of 9Q7. Then we can define the restriction of oj to I'; by

1/2
(0,050) g0, = (003) s ey 0 € Hop (T,

T
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2 The Scalar Case

where the trivial extension of v onto 9 is still denoted by v. By definition, we find
ojlr, € H™Y2(T;). In what follows, we assume that o;|r, € (HY*(I;)) < H~Y2(T,),
and that crs(i)|pi = —0m() |pi, 1 <4 < Nr, in order to define the Lagrange multiplier
Ae M cC M° by

)\| = —gradu . ns(i) = _O-S(i)|ri = o-m(i)|riv 1= 1, N NF, (26)

Ly

where ;) denotes the outer normal vector of 05 on T),.

The nonconforming discretization is based on a saddle point problem, and we have to
discretize the spaces X and M°. The space of piecewise linear functions on 7; is denoted
by

Xjn={ve () v|r ePT), T €T}, v|og = 0}, (2.7)
where P;(7") denotes the classical space of polynomials of degree 1 on the element 7.
We set X, = vaﬂl ;n equipped with the mesh dependent norm | - ||x, defined by
Jvll%, = Z L vl? Lol We denote by Fr the element map from the reference element 7

associated with the element T € 7;. Additionally, we need to introduce discrete spaces
of Lagrange multipliers associated Wlth the curves I';, i = 1,..., Nr. Here, we exploit
the fact that the curves I';, I}, and I}, can be identified with the reference interval I;

via the maps v;, 7§, 7/, On I;, we take for each i any one of the standard Lagrange
multiplier spaces |20, 211, 24, [77, 122], that are based on the mesh on I; determined by

the nodes VZ, and we denote this space by MZ n C LA ([ ). In particular, the following
assumptions are made, which are all satisfied by the spaces proposed in these references.

Assumption 2.1. The discrete Lagrange multiplier spaces ]\Z,h satisfy:
(a) The constant functions are contained in ]\Z,m i.e., Py C ]\Zh

(b) It holds that

inf [lw—villos, < Chyfolwly . we HY (). (2.8)

v €M p,

(¢) There exists a projection ﬁz‘,h : Hl/Z(.f) /\i,h satisfying

n - 1/2, 7
ITinvllgos, < Callvlloos IMinvllz < Callvlloz, v e Hyg (L), (2.9b)

where (-,-); is the L?-scalar product on fi, and /V[Z',h 1s the pull-back to I; of the
trace of Xyu),n on I}y, e,

Wh:{u

ri, ©Yion U € Xyt (2.10)

and the continuity constant Cg of the projections ﬁi,h 15 assumed to be independent
of the discretization parameters.
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2.2 Formulation of the Numerical Method

For a more rigorous axiomatic development of the mortar framework, we refer to [0).
There, the theory is also extended to only locally quasi-uniform meshes.
Via 7}, we define on I, the space

Nr

M= Mo ()" My=]] M. (2.11)

i=1

In order to relate results for the reference interval I; to the exact interface I';, the following
norm equivalences will be used.

Lemma 2.2. Let ~; satisfy (Z1)), i = 1,..., Nr. There exists C > 0 such that for each

i=1,... . Np
CHollor; < llveillgs < Clvllor;, v e L*(Ty), (2.12a)
Cwlloo,r, < llvoillgg.s, < Cllvlloor,, v € Hy) (Ty). (2.12b)

Moreover, for a curve I' and a function g € WH(T') that is bounded away from 0, we
obtain

CMgvllijar < [vllijer < Clv/gllijar, ve H'(D), (2.12¢)
C Mlgvlloor < lvlloor < Cllv/glloor v e Hy (D). (2.12d)

Proof. The assumptions (1) imply that +; and «; ! are C'. A direct calculation with
the involved norms yields (212a]) and ([ZI2H). We give a detailed proof of (ZI2d). Let
g € WL(T') and v € HY?(I"). For the L?norm, it is obvious that

lgvllgr = (gv, gv)r < CllgllZemllvligr < Cllvllgr

For the H'/?-semi-norm, we observe that

2 lg(x 9y
|9U|1/2,r // |x—y|2 dxdy
[ [ o)+ )=,

|z — y|?

//| |2|” |(2 C ey + 2//| |2|g |(2>| dz dy

C||9||Loo(r)|v|1/2,r + CH gradg|lL°°(F) ||U||0,F
CHUH%/Q,IW

IA

IA A

which proves the first part of (2I2d). The second part follows immediately from the first
one by

[oll2r = I(w/9)gllijzr < Cllv/gllyzr
Similar reasoning proves (212d]). O
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2 The Scalar Case

Remark 2.3. We note that the constant C' in (ZI2) depends on the length of the
corresponding interface I';. In this particular case, we will not rigorously analyze the
dependence of the constant on the decomposition into subdomains. However, in all the
following proofs, we will exploit the fact that the number of interfaces I'; belonging to one
subdomain € is bounded, and demonstrate that the constants depend on this bound,
and not on the total number of subdomains Ng. Moreover, in Section 26, we provide a
numerical example illustrating this independence. .

2.2.2 Bilinear Forms and Finite Element Method

To define our saddle point formulation, we also need to define the jump across the in-
terface I';. For a function v € X, the jump across ['; is given in the standard way and
denoted by [v]; = vs4) — Um@). For v € X, we exploit the fact that I%f,, '}, can be

identified with I; in order to define the discrete jump across [7), as
[V]5,h = Us(i),h — Pa(i)Vm(i) b (2.13)
where the grid transfer mapping Fy(;) is given as
Pyiy : L2(T,) — L*(T5,), v Pgo=vorlo(f,) " (2.14)

The mapping Fy;) is responsible for transferring a function on the master side I'7}, to
the slave side I7;,. In Figure 22 we illustrate the mappings which are involved in its

.’ m .’
Fi,h

Figure 2.2: The mappings involved in the definition of F;.

definition, and their action on an arbitrary point of the interface I';. Related to the jump
across the interfaces I'; are the bilinear forms

b(v, 1) = Z<[U]z, wr.,  (v,p) € X x M, (2.15)
on(v, 18) = > (Wi p)rs,, (v, 1) € X x My, (2.16)

i=1
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2.3 Convergence Analysis

Finally defining the domain bilinear forms

Nq

a(w,v) = Z(gradw,gradv)m, (2.17)

J=1

ap(w,v) = Z Z (grad w, grad v), (2.18)

j=1 T€T;
it is easy to see that the pair (u,\) € X x M satisfies the saddle point problem ([CTH)
with

l(v) = (f,v)e- (2.19)
Correspondingly, the approximate solution u, € Xj, and the approximation to the La-
grange multiplier, A, € M}, are given as the solution of

ah(uh,v) -+ bh(v, /\h) = lh(?}), ve Xy, (220&)
bh(uh, [L) =0, w e M. (220b)
Here, the approximation [,(-) to the linear functional [(-) is given by
Nq
(o) = S (s 0oy (221)
j=1

where we assume that f; is a Lipschitz continuous function on Q7 U ng such that
fi=f YN, (2.22a)
||fj||W1,oo(QjUQ{1) < Cf7 (2.22b)

and that the constant C} is independent of mesh parameters.

Remark 2.4. Necessary conditions for the well-posedness of the continuous problem
(CT8) and of the discrete problem (Z20) are the continuity of the coupling bilinear forms
b(-,-) and by(+,-), as well as the fulfillment of the inf-sup conditions ([AI6) and ([A20),
respectively. It is an important fact that the bilinear form b(-, -) is continuous on X x M
but does not yield an inf-sup condition with respect to the norms || - ||x and || - ||a;. This
also holds true for the discrete space X, x M, where no uniform inf-sup condition can
be shown. In order to overcome this shortcoming, it will be of crucial importance to
establish a uniform discrete inf-sup condition for the weaker norm || - || 0. .

2.3 Convergence Analysis

We do not analyze problem (ZZ20) directly. To obtain a priori bounds for the discretization
error, we proceed in two steps. In the first step, we introduce and analyze a new discrete
variational problem based on blending elements, where the curved interfaces are resolved
in an exact way. In the second step, we interpret (220) as a perturbed blending approach,
and estimate the perturbation terms obtained from a modified version of the first Strang
lemma.
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2 The Scalar Case

2.3.1 Error Analysis Using Blending Elements

While problem (220 is given in terms of approximations a(-, -) and by (-, -), respectively,
we establish the discrete problem formulation (CZII) based on the exact bilinear forms
a(-,-) and b(-,-) as an intermediate step. After the basics of blending elements are intro-
duced, the new discrete problem is established and a rigorous a priori error analysis is
carried out.

Blending Elements

Since we intend to approximate the saddle point problem ([CI) by the discrete form
(C2T), the subdomains €/, j = 1,..., N have to be represented exactly by the trian-
gulations. By assumption, €2 is a polygon, and only the elements that have two vertices
on one of the interfaces I';, ¢ = 1,..., Nr, require a treatment as a blending element,
[57, B8]. The blending function for an element that has an edge lying on I'; results from
the parametrization +; of I';. The triangulation of (¥ using blending elements will be
denoted by 7; with element maps Fz, 1" € 7;. The triangulations 7; and 7; are illus-
trated in Figure The blending elements are chosen such that there is a one-to-one

7

Figure 2.3: Triangulations 7; and ’j}, corresponding elements 7" and T.

connection between the elements 7' € 7; and the elements T e ’j}, i.e., the vertices of the
two triangulations coincide. The particular construction of the blending method implies
that the mappings Iy and Fz of two elements 7' € 7; and T' € 7; corresponding to each
other satisfy the following lemma.

Lemma 2.5. Under Assumption (Z1), the mappings Fr and ﬁf of two elements T' € T;,
T € 7T, corresponding to each other satisfy

Fr=Fr+ B, | Rrllymg + 1Bl iy + [ Rl ey < CH3 (223)
where the constant C > 0 depends only on the parametrizations v;, it = 1,..., Np. Fur-

thermore, we have that
15l ooy + Pz IR oo 2y + RN (ER) ™l oo 7y < Chg (2.24)

Above, Ry, ﬁ% and RY, ﬁ%’ denote the Jacobian and the Hessian of Rr, ﬁj:, respectively.

Proof. Without loss of generality, we consider the situation illustrated in Figure 24
All other configurations involving one curved edge can be achieved by translations, rota-
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ho 14 ho

T T T

hT \\_:—’/1 g hT
Y Y

Figure 2.4: Element mappings

tions, and deformations of T with parameters independent of the diameter A;. Additional
edges can be taken into account by summing up the contributions from each edge. The
function Fr(£,n) = (hr&, hrn)t maps the reference element T = ((0,0), (1,0), (0,1))
onto the element 7' = ((0,0), (hr,0), (0,h7)). The blending element T has one curved
edge given by v € C?([0, hr|), which is twice continuously differentiable as a consequence
of Assumption (1)) by transforming the subinterval of I corresponding to the curved
edge onto the interval [0, hy).

We denote the pull-back of v onto the reference configuration by 7 € C?([0, 1]), defined
by 7(&) = v(hr). The element mapping ﬁ; is given by ﬁf = Fr + Rrp, where

l—e—n_ T
rr= (0. 175500

We note that Rp is well-behaved in (1,0), since on 7', i tends to 0 as £ tends to 1, and
~(1) = 0. In order to estimate the terms involved in Ry, R)., R/, we develop 7 into its
Taylor series around 1, yielding

(&) =7(1) + (€ = D' (1) + (&),
with .
= — )" (t) dt.
1O = [ =07
By differentiating r, we obtain
PO < E=D 7" lloes [P < (€ =DIF" oer "] < 17" lloo- (2.25)

Considering the fact that 7(1) = 0, we can give Ry as

Ry = (0, (& +n—1)hry(hr) + 115%5777“(5)) :

The term hry/(hr) is bounded by Ch%, since 7(0) = J(1) = 0, and the mean value
theorem guarantees the existence of h, € [0,1] such that 7'(h,) = 0. Thus, using (Z23),
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2 The Scalar Case

we see that || Rr[; .z is bounded by ChZ. For the Jacobian R/, we obtain

/ 0 0
B = (fw(hT) — r(€) + 55(E) e (hr) — 1—LJ(€)> ’

which can be bounded such that |[Ry[| 7 < ChZ. The coefficients of the Hessian R/,
involve the following terms:

which can be handled as before, and

2n no N
WT(@, 7 (§), QT (€).

Regarding again the fact that n tends to 0 as £ tends to 1, since 0 < n < 1 — &, these
terms also pose no difficulty, so that (2223)) is completed. From (223)), we deduce (Z24)
simply by using the properties of the affine transformation Fr. O

Discrete Problem Formulation

We are now able to state the analog of the discrete problem (Z20) in terms of blend-
ing elements. Similar to (27) and (ZII), we define the blending element space on a
subdomain €/ and the blending Lagrange multipliers space on an interface I'; as

X;n={ve H(Y) : v|zo Fx e Py(T), T € T;, v]og = 0}, (2.26)

Mi,h = Mi,h (0] 7;17 (227)

respectively, and set X, = ijjl)?j,h and M, = HiV:FlZ\A/[/Zh In contrast to the original

discretization, we now have conforming approximations . X, C X and Mh C M, which
admits to introduce the problem: find (uy, Ay) € X, x M, such that

a(Tn,v) + b(v, M) = 1(v), ve Xy, (2.28a)
b(iin, 1) =0, peEM,. (2.28b)

In order to analyze the error u — u;, and the error of the Lagrange multiplier A\ — Xh, we
introduce the constrained space

Vi={veX,:blu =0 pneM} (2.29)

The constrained space ‘7h admits to equivalently reformulate the saddle point problem
([Z228) as approximation of (LI8), namely: find @, € V}, such that

a(ln, ) = 1(Wh), T, € Vi (2.30)
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2.3 Convergence Analysis

Analogous to the continuous setting, the approximate constrained problem (Z30) is pos-
itive definite, provided that a(-,-) is coercive on V,. We emphasize that we have to deal
with a nonconforming approximation, i.e., 17;1 g V.

Of essential use in the upcoming error analysis will be the following observation that
stems from using blending elements based on the parametrizations ~;:

Lemma 2.6. Let X, and /WM be defined as in 1) and ZIO), respectively. Then for
each interface I';, i = 1,..., Ny, we have

Xs(z'),h|F,' oY = VVz‘,h-

Furthermore, there exists a constant C' > 0, which depends solely on the parametrizations
i, the subdomains ¥, and the shape-regularity constant C., of Z2Z4), and there exists a

A

lifting operator L; : /I/Iah N H%Z(fi) — Xs(i),h such that for all vy, € /Wth N Holéz(li)

Hﬁﬁh”l,ﬂs@) < C”@hHooju
(Ez‘@\h)bﬂs(i)\ri =0,

(L0h)|r; © Vi = Up-

Proof. Let 1), € WMOH&({Q(E) be given. Define v, on T; via v, = Uj,07; *. By 212H),
we then get |lvplloor, < CllOnllgyz- Next, we extend vy, to 9@ by zero. The thus
extended function (still denoted vy) satisfies [|vn || /2,00:0 < C|[Unllgg 7, (see, for example,
[59, Thms. 1.5.1.3, 1.5.2.3|). By using the generalized discrete harmonic extension H%L,S(i)
of v, into %) according to (A24), we set L0, = Hj, s(iyvn- The equivalence ([A.23) yields
the assertions of the lemma. O

A Priori Results for Blending Elements

In this subsection, we establish optimal a priori bounds for the discretization errors u—y,
and A— ;. Of crucial importance are the best approximation property of the constrained
space and a uniform inf-sup condition. We have the following ellipticity result on the
space

Xy={u€eX :blu,p) =0, p€span{xr,

i=1,... Np}}, (2.31)

where xr, € M° is the function that is identically 1 on T'; and vanishes on all other
interfaces.

Lemma 2.7. There exists a constant o > 0 such that for all v € X, there holds
a(v,v) > aljv]x.

Proof. The coercivity assertion is well-known within the framework of mortar methods
with straight interfaces, [20]. Moreover, in the case of straight interfaces, the ellipticity
constant is independent of the number of subdomains, [54]. O

For the moment, we do not show the existence of a unique solution (i, \,) of 2.
Since (Z228)) corresponds to a square system of linear equations, existence follows from
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2 The Scalar Case

uniqueness. For all standard Lagrange multiplier spaces, we have that span{yr, |i =
1,...,Nr} C M, as required by Assumption ZT(a), and thus the bilinear form af(-,-) is
coercive on the constrained space ‘7/1- To obtain uniqueness of the solution, it is sufficient
to establish a suitable uniform inf-sup condition ([A20), see [27], the proof of which
will be given in Proposition Concerning the approximation, we have the following
classical result.

Theorem 2.8. Let u be the weak solution of (L), and assume that X € M is defined by
(Z8). Let uy, be the solution of (Z28). Then

. ‘ b(wp, A
|u—up||x <C inf [Ju—w|x + C sup b(wn, A)
et wnei, [[wnllx

(2.32)

for some C > 0 that is independent of h. Moreover, if the Lagrange multiplier X\ is in
[T LA(Ty), we find

N 1/2
lu— |y < C 1nf Ju—vpllx + C {Zh inf ||\ — uhllﬁ,n} : (2.33)
i=1 MhEMi,h

for some C > 0 that is independent of h.

Proof. The first estimate (232) is a standard result for mixed finite element methods,
as found for example in [I0T, Thm. 3]. Tt also follows immediately from the second Strang
Lemma [A.34] for nonconforming finite elements. We note that the second term measures
the consistency error. For the second error bound, (Z33), we employ the approximation
property (228]) of typical Lagrange multiplier spaces, which is transferred to the case of
curvilinear interfaces via the equivalence (Z1Zal),

||w HUJHQF = 1nf ||w—z||0p <Ch |’w|1/2FZ, (234)

ZEMZ h

where II; denotes the L?-projection onto M, n. Let wy, € Vh Using the definition (Z29)

of Vj,, the assumption that \ € HNF L*(T;) together with the defining property of the
L2-projection II;, as well as (2234]), we can bound the consistency error by

Nr Nr

bwn, A) = Y ([wnlis A = TLX)r, = D ([wnli — Wfwals, A = LA,

=1 i=1
Nr
1/2
<O hyfyllwnl:
i=1

The trace theorem [A.13l implies

1/2
b A
sup M (Zhs“ inf ||\ — NhHOP) . (2.35)

wLEV), HwhHX pn€M;
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O

Next, we estimate the infimum and the supremum in the a priori bound ([Z32)). We first

provide an upper bound for the best approximation error in the unconstrained product
space X}, and use the result to establish an upper bound in the constrained space V,.

Lemma 2.9. Let v € H*(V). Then there exists C' > 0 depending only on C., of (2:Z4),
and there exists a unique element vy, = Tjv € X; such that v, and v coincide in the
nodes of T; and

lo = vallnas < Chy (Jolog + [vlras) - (2.36)
Moreover, for all i such that j = s(i) or j = m(i), it holds that
1(v = vn)laslloor, < Chy (lulo,0i + |uf10s) - (2.37)

Proof. Let v € H2(€), let T € 7, be a blending element and consider w = v|x €
H?*(T). Setting @ = wo Fz and denoting by Z5 : C(T') — P the nodal linear interpolant,
it is a standard result that

|w = Zzwl, 7 < Clwly 7.

We investigate the term |@|, + more closely. Setting (z,y) = ﬁf(,g, n), and applying the
chain and the product rule, one obtains for the partial derivatives w,, r, s € {£,n}, that

Ly

@rs<§a 77) = (gradw)”(l;,y) (y

TrXs TrYs
TsYr  YrYs

Y &+ ol ). rseten,

T

where Hw denotes the Hessian of w. By transformation to the blending element T, we
have

~ T 1—1/2
@7 < Clldet Fyll, 22 (1 ety 07+ IFHIE iy 0 7) -

From (Z24)), we conclude

@7 < Chy (lwlyz+ 0l 7)

yielding
1@ - Tzl 7 < Chy (Jwly 7+ wl, 7).

Transforming the left-hand side back to the element f, and indicating by Zz the nodal
linear interpolant on 7', we get

hgtllw = Trwllyz + o = Tyl 7 < Chg (Jwlyz+ ol )

This proves (Z30), and fj is given element-wise by Z7. We remark that in the bound
above, the semi-norms |-|; and |-| are equally scaled.
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The bound (237) is obtained by similar reasoning. We first exploit that on the reference
element T', we have by the trace theorem [A-T3| for the edges ¢;, i = 1,...,3, of T":

|0 — Zz0l|o0,e; < Clwly 7, 1=1,2,3.
Transforming now to the physical element T allows us to infer

D o= wnllbo. < Cj (jol + lofir)

eegj

where we denote by g'j the set of all edges of the triangulation ’Z~; Employing the fact
that the square of the H&éz(Fi)-norm is bounded by a constant times the sum of the
squares of the HééQ—norms restricted to the edges of I';, we deduce (Z31). t

Theorem 2.10. Let u € Hi(Q) N vazﬂl H?(V). Then

No 1/2
in‘f~/ |u—wvllx < C (Z W2 {|ulf g + \u\im}> . (2.38)
vpE€Vh j=1

Proof. The techniques involved in the proof are known from standard mortar element
methods, [I0]. We note that the assumptions on u guarantee that u is continuous. The
construction is done in two steps: first, we define the function w; € )~(h subdomain-
wise by wp|qs = Z;u, where Z; is the piecewise linear interpolant on ’ introduced in

Lemma 29 By (236, this leads to

Ne 1/2
lu—wnllx <C (Z B3 {uls 0 + |U|im}> :

J=1

Since wy, is not necessarily in ‘7/1, we have to investigate its jump across the interface.
The endpoints of the curves I'; are nodes, so the jump ¢; = [wy]; across the curve T

satisfies ¢; € Holéz(Fi), and we obtain from (Z37)

(2)0,1“1- <C h? {‘U‘SQJ + |u|§m} .
J€{s(4),m(i)}

leclgo,r, = ll(w — wa)lase + (wn — w)lome

In a second step, we correct this jump using the mortar projection ﬁl-’h associated with
the curve I';, as given by (Z3). More precisely, we define the pull-back 7; = ¢; 0~; and set
2 = Ei(ﬁi,h@), where the lifting operator £; is defined in Lemma We may think of
2; as being extended by zero outside of 250, Proceeding in this fashion for each interface
I';, we can construct a function z, = Zf\fl z; € X;, such that

2

NQ Nr* NQ Nr‘ Nl"
leale =D =l <CD D Ml =0 lali g,
j=1 || i=1 1,00 j=1 i=1 i=1
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2.3 Convergence Analysis

with C' independent of the number of subdomains. Therefore, by Lemma Pl together

with (Z00) and (ZI20),

Nr Nq
lzall < €Y lleillgor, < C Y lu—wallf -
i=1 7j=1

We now check that the function v, = w; — 23 is an element of ‘7/1- For u € ]\A/fm1 we
calculate

Np Nr
b(vp, 1) = Z([LZ — 2zili, )1, = Z(/L\z — i nti, )7, =0
i=1 i=1

by definition of ﬁi,h since i € ]\/Zm For the transformation onto the reference interval fi
above, we have used the fact that I'; is parametrized by arc length, so that the infinitesi-

mal surface elements coincide and no additional factor appears due to the transformation.
O

Remark 2.11. Due to the appearance of |u|; in (Z38]), an affine solution u will in general
not be reproduced by the numerical scheme (Z2Z8]), which is the essential difference in the
a priori results to the case of planar interfaces. However, this term only stems from the
blending elements, the number of which is considerably smaller than the total number of
elements involved. In typical meshes, curved elements are used only near the boundary
so that (238)) can be sharpened: If S; C €/ denotes the region where blending elements
are used (and affine elements are used on € \ S;), then we obtain the error bound

No 1/2
inf [lu—v,x < C (Z 22 (Jul3 o + |u|isj)> . (2.39)
j=1

v EVY

If S; is contained in a strip of width O(h;) near 9, and if the function u is smooth,

then this improved bound yields an error bound O(max;—1__n, h?/ 2); we will illustrate
this effect in a numerical example in Section .

We now turn to estimating the error in the Lagrange multiplier for the blending element
formulation (Z28)). As already pointed out in Remark ZZ4 necessary conditions for
deriving optimal estimates are the continuity of the coupling bilinear form b(-,-) and a
uniform inf-sup condition ([A20). By definition, the bilinear form b(-, -) is continuous on
X x M with respect to the norms || - ||x and || - ||a; but not on X N X, x M° N M with
respect to the norms || - ||x and || - ||p0, where the space X is given by

Xo={veX: ;e H*(T)) i=1,...,Np}. (2.40)

On the other hand, we cannot establish a uniform inf-sup condition with respect to the
norms ||-||x and || - ||»;- A uniform inf-sup condition can be only established with respect
to the norms || - || x and || - ||az0-
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2 The Scalar Case

Lemma 2.12. Let b(-, ) be given by (ZID), and equip the space Xy with the stronger

norm |[v||%, = llvl% + M [l 1o.0,- Then, b(-,-) is continuous on Xo x M° N M, i.e.,
there exists Cy, > 0 such that
b0, 1] < Callellxollulla,  vE Xo pe MM, (2.41)

Moreover, b(-,-) satisfies a discrete inf-sup condition of the following type: There exists a
constant C' > 0 (depending only on the interfaces T';, the stability constants of the mortar
projections I1; ;,, and the constant C.,) such that

- b(Zn, _~
Cllfinl[ao < sup w iy, € My, (2.42)

ZreXpNXo thHXO

Proof. The continuity (247]) follows from the consideration

b(v, p)| < Z ([v] < Z ITv]illoo.r

Np 1/2
<C {Z ”MngO,Fi} [l a0 < Col|vll xo [ 4l aro-
i=1

In order to see ([242), let p), € M,. We set Ji; = fin|r, and use (ZI2) and the fact that
v; is an arc-length parametrization to obtain
_ n @, 1)
£l -1/20, = sup CYIDIVPe sup :
UEH1/2F) HUHOOF vEH1/2F) HUHOOI

where the superscript: indicates the pull-back to I. Employing the stability properties
of mortar projection II, 5, we arrive at

~

i 11, n Ai .
il =120, < C sup (0, M) VL o sup M
veH?(Ty) [0l oo, vert/2ry I1in0llgo 7,
<C s 2 g < Oz, i) g, (2.43)
2€W; yNH 2 (1 Hz”oo i;

for an element z; € W\i,h N Hé({g(fi) with ||2,~||00ji = 1. We extend Z; to z; € )?S(i)h by
means of the lifting operator from Lemma .8 and define z, = ZN b(Z;, fin)z;. Using
again the fact that I'; is parametrized by arc length, we obtain

and, therefore,

30 = lemll21/zr < CZ (Zi, 11))” = 0(zn, fin) < ColZnllxo [7nllaro,  (2.44)
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2.3 Convergence Analysis

where, in the last step, we employed the continuity of b(-, ) stated in (Z41]). This allows
us to estimate

No  Nr Nr
1Z0% =D 1D bGE in)Fl g < CYb(E, in)* = Cb(Zh, fin),
j=1 i=1 i=1

Nr

Nr
> Eillsor, < C D b(Z, in)* = Cb(Zn, fin)-

i=1 i=1

so that we arrive, by summing these last two bounds, at
1Z0]1%, < Cb(Zns fin)- (2.45)

From (ZZ4) we infer ||fin|a0 < C||Zh||lx,; inserting this in (ZZH) then allows us to

conclude ([Z42). O

We are now able to estimate the error in the Lagrange multiplier.

Theorem 2.13. Let u be the weak solution of (1), and assume that X € M is defined
by (Z8). Assume that (up, \n) are given by (ZZ8). Then there exists a constant C > 0

depending only on the interfaces I';, the stability constants of the mortar projections 11, ,
and the constant C., of (2-24)) such that

1A = Rallao < c( inf I\ — gl po + [l — ahnx) . (2.46)

HEMp,

Proof. Let u;, € M,, be arbitrary. Then, by the continuity of b(-,-) stated in (ZZ1]),
the Galerkin orthogonality, and (Z42), we have

~ b(Zh, fth — A
[1tn — Anllae < C° sup w
Zh€XnNXo 121 | xo
<C sup b(Zh, Un — /\) b(Zh, A — Xh)
B Ehe)?hﬂXo ||Zh||X0 ||Zh||X0

a\u — ﬂh ’?jh
< Clln = Ao + € sup 2T %)
ZheXpNXo thHXO

< Cllpn = Ao + Cllu — unllx

The standard argument using the triangle inequality then gives the desired result. U

2.3.2 Convergence Analysis on Affine Elements

We now turn to the analysis of the original discrete problem (2220)). Having established a
one-to-one connection between the elements of the triangulations 7; and 7;, we demon-
strate in the following how we can construct one-to-one connections between the elements
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2 The Scalar Case

of X, and )A(:h and between the elements of M, and Mﬁ. A function v, € X}, corresponds
to v, € X, if for every element 7' € 7, we have v), o Fz = v;, o Fip. This mapping exists
and is denoted by _

SX : Xh — Xh, Up — ’17/1 (247)

with the inverse map B
CX = 8;(1 : Xh — Xh, f’l\]/h = Up,. (248)

In particular, for every element 7" we have that v, |7 is the linear nodal interpolant of vy,
on T'. Considering the restriction of Cx onto an element 1" € 7, given by

Cr:T—T, Cr=FroF;'=1d+0(h}), detDCr=1+O(hr), (2.49)
which follows from property (Z24), it is easy to see that
CLh<CX1~}h, CX6h> ~ a(ﬁh, @h), vy € )?h, (250)

where the constants hidden in the ~-notation are independent of h. On )Afh X )?h, we
define the bilinear form
a(wn, vp) = an(Cxwp, Cxvy). (2.51)

In view of (Zhl) and Lemma 7], we have ellipticity of the bilinear form aj, on X, N Xy,
with the space X, defined in ([Z31)):

a), (vn, vn) > ol )%, op € XpN Xy (2.52)

__In a similar way, we can uniquely identify a function p; of M), with a function i, of
M;, by mappings

SM : Mh — Mh, Uy ﬁh, and CM = S]\_/Il : Mh — Mh, ljh = Up- (253)
For the coupling on X n X Mh, we set
b, (Un, fin) = bp(CxUn, Carfin), Uy, € )?h, [y, € Mh-

Using the bijections Sx and Sy, we can reformulate the problem ([Z20) as a perturba-
tion of a problem of the form analyzed in Section 2311 We set (u},, A,) = (Sxun, SmAn)

for the solution (up, A,) of (Z20) and rewrite [Z20) as: find (uj, \)) € Xj, x M, such
that

ay,(uy,v) + b, (v,\,) = lh(Cxv), v e Xy, (2.54a)
by, (uy,, 1) =0, € M,. (2.54b)

In order to assess the error u — uj, we introduce the corresponding constrained space
Vh/ = {’fl\],h € )?h : b;l(fﬁh,ﬁh) =0, /jh € Mh} (255)

As before, the constrained problem is approximated in a nonconforming manner, i.e.,
Vi ¢ V. However, the second Strang Lemma [A34] cannot be applied directly since
the bilinear form aj(-,-) is not defined for elements in X. Taking into account the
nonconformity, a slight modification of the proof of the first Strang Lemma [A-33] admits
to derive the following estimate.
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2.3 Convergence Analysis

Lemma 2.14. Let u be the weak solution of (L), and assume that A € M is defined by
(Z3). Let u) be the solution of (2-54). Then

o
[ — il SC{ inf <||U—Uh||x+ sup AV, 10n) ah(vh,wh)>

o€V} wneV! |wn | x
" e (2.56)
b A l — 1 (C
+ sup (wp, A) - (wp) — lh(Cxwp) .
weev! lwnllx  wpevy l|wal| x

Proof. Let vy, w, € V. We use the facts that uj € V) and that V] C X to derive
from (CLI6al) and (Z54a)

ay, (up,—vp, wp) = L, (Cxwy)—ay, (vn, wp)+alu—vh, wp)+a(vy, wy)+b(wy, \)—l(wy). (2.57)
With the V}/-ellipticity of a},(-,-) following from (Z52)), we have

N
ity — onllx < sup Ll = vnsn)
wpev,  llwnllx

Since vp,w, € V) are arbitrary in (01), the desired result is obtained by using the
triangle inequality. U

We are able to conveniently employ the results of the blending approach from the last
section by suitably relating the two constrained spaces V; and V.

Lemma 2.15. For an arbitrary v}, = (vl v}) € V], there exists Av}, € X, such that

Oy = vl + Al € Vi, (2.58a)
N 1/2
[Av[x < C (Z hi&fﬂv;nﬁ,n) , telo,1], (2.58b)
i—1
N 1/2
Rojlor < € (Z h;”’(@-)w;ﬁ/z,m) , (2.580)
i=1
vy llx ~ ||onllx, h small enough. (2.58d)

The analogous statement holds for arbitrary v, € 17h, yielding v, = v, + A'v, € V).

Proof. Given v, € )?h and fiy, € Mh, it can be observed that
Nr
0, (Tns Fin) = b(Cx T Carfin) = D ([CxTnlins Cosfin)ys,
i=1 ’
Nr

= 3 (@00 (1) = Pl 00 (1)), Fno o (15)
i=1 '
Nr* Nl"

- Z ([Onli o yio (5p) 7" Bmomio (,}/is,h)_l)pjh = Z(Wh]ia Wiflh)p,

i=1 =1
= b(@llw wﬁh%
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2 The Scalar Case

with a weighting function w defined interface-wise by w|r, = w; = [(7§,07; ')'|. Denoting
by W; 5 the restriction of the blending element space )?s(i)ﬁ to the interface I';, we employ
the mortar-type projections II;, IT; : L*(T';) — W, 5, given by
(w — w, fip)r, = 0, fin € My,
(w — Maw, wipin)r, = 0, [y € Mh.

Given an arbitrary v;, € V), we define ﬁms(i)vg € Xy by

(ﬁi7gs(i)vz)(pj) _ {v; (py) for all nodes p; in the interior of Q50

(ﬁivfn|pi)(pj) for all slave nodes p; on I';.

By leaving v, unchanged and setting subdomain-wise v, = (v, II; gsv;,) € X, it
follows immediately that v;, € V}. The difference Av) = v, — v}, is zero on all nodes
except the slave side nodes. The restriction of Avj to I'; is given by

Auvplp, =T, — o) = (I1; — Tl (2.59)

since vy, € V). It follows that

1A llor, = 1L — I v flor,

< swp (=), i)
llzllo,r;=1 L

= sup ((U;na Z’Z)Fz - (H;v;na wiﬁ)ri + (H;v;m (wi - ]')Z’Z)Fz)
I7llo,r,=1

= sup (v, (1 —wi)i)r, + (), (wi — 1)A)r,)
llzllo,r,=1

= sup ((Id =1}, (1 —w)i), < Cll1 = willeor, I(Id = IT)) vy, llo,r,
llzllo,r,=1 !

< ORIy, te 0,1, (2.60)

where we have used the fact that w; = 1+ O(h;)) for the last step. Setting ¢ = 1/2 gives
(258d). Using the standard inverse inequality ([A28) and the norm equivalence (A28)
twice, once with d = 2 for all finite element nodes, and once with d = 1 only for the slave
side nodes, we obtain

Nr
1A% < O hghIIAIE s
i=1

since ﬁv,’l = vy, — ), is zero on all nodes except the slave side nodes. Combining this with

(Z60) yields (2580). The norm equivalence ([Z58d)) follows from (258H) and the trace

theorem by observing that

> ||v I A > _ e
P > ||onllx = [[Avpllx = (1 Clg}gﬁrhs@))nvhnx,

< onllx + [Avh[lx < (14 C max hs))|[onllx,
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2.3 Convergence Analysis

provided that maxi<;<n;. hg(;) is small enough. According to (259), we observe that &)g
only depends on v/ = v,. Therefore, it is obvious that the analogous statement of the
Lemma has to hold for an arbitrary o € V. O

In the following, we will estimate each of the terms from the right hand side of (Z28)
separately.

Lemma 2.16. Let u € H}(Q) N H;V:“l H?(QY) and V] be given by @EH). Then it holds
that

No 1/2
it =il < © (Z uuuam) | (261)
Proof. From (Z38) in Theorem ELI0, we can find @, € Vj, such that
Nq
lu = Bull3 < C Y Bllull3 g
=1

We choose v; € V}/ as in Lemma ZT5, and obtain with (2.58D)

lu—vhllx < Cllu =l + ClIAT%

NQ Nr*
¢ Z h?”“”%m +C Z hz(i)‘5m|%/2,ri7
Jj=1 i=1

IN

which yields the result by the trace theorem [A.13l and the usual coloring argument. [

Lemma 2.17. Let the bilinear forms a(-,-), d'(-,-), and the blending element space X,

be given by ZI7), X)), and [Z26), respectively. Then

a(v,w) — aj (v, w)

sup sup

vEX) WEX), ”U”XHwHX T 1<j<Ng

Proof. On each element T, the difference a(v, w) — a), (v, w) can be written as
(gradv, (Id — Ar) grad w) 7, (2.62)
where the matrix A is given by
Ar =T cl N det O,
with Cr defined in (Z49). Hence,

10— Arll gy < Chr,  Te (269

e

Summation of (ZZ62) over all involved triangles gives

a(v,w) — ay,(v,w) = Z(grad v, (Id — Ar) grad w)#

T

< max|[|1d — Az o 7y ;(I grad |, | gradw|)z,
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2 The Scalar Case

from which we conclude by (ZE3) and the Cauchy-Schwarz inequality

12/ Ng
a(v,w) — aj,(v,w) < C’lgli% h; (Z | gradv”om) <Zl I gradw”%’m)
J:

< ¢ max hyjv]lx]wllx,
1<j<Ngq

1/2

which yields the desired result. U

Lemma 2.18. Let u be the weak solution of (L1), and assume that N € M is defined
by (Z4). Let the coupling bilinear form b(-,-) and the constrained space V; be defined by
TI9) and [Z2H), respectively. For h small enough, it holds that

1/2
b(vy, A
sup (Ui“ ) < C max h; <Z ||U||2m> . (2.64)

vevy llonllx 1<j<Na

Proof. For an arbitrary v;, € V/, we apply Lemma to obtain ¥, € Vj and
A'vy, € X, yielding by (Z58al) and ([2.58d)
/ ~ 177 ~ !/
b(vf”)\) _ b(v7,A) b(Alvh,)\) < Cb(gh,k) +Cb(A~vh,>\)
[[or |x [0 || x [0 || x 0] x 10| x

The first term of the above right hand side can be bounded appropriately by (235) and
234)). For the second term, we use (Z58d), and conclude

1/2
A'D, A'D, s || A
b( ~Uh’)\> < | hHB’Fh” HO’F < C max hillMlor < C max h; <Z|u|29> ,

[onllx  — [onll x 1<j<N,

which gives the desired result. U
We now turn to estimating the error introduced by the right hand side I(wy, ) —{5(Cxwy,).

Lemma 2.19. Let the linear forms 1(-), [r(+), and the blending element space X, be given

by 2I9), @2T), and [Z26), respectively. Then

sup |[(wp) _~lh<Cth)| < Czhf»-

FheXn [[wn | x

Proof. For each element T € ’j}, we have
(fs wn)7 — (f;, Cxwn)r = (f, Wn)7 — (fj © Cr, Wy det Cr) 7
= (f — f; 0 Crdet Cp. @)
Our assumptions (Z22) on the choice of the functions f; together with the fact that
Cr(x) = x for the vertices of the triangle T give
1f = fioCrllpe < IIf = fill ey + 15 = fi o Crll ooy
< Cthv+C||Id—CT||Loo(fTv) < Chr, (2.65)

36



2.3 Convergence Analysis

where the constant C' is determined by the Lipschitz constant C of the functions f, f;.
We therefore have
||f - fj o CT det C’}'HLOO(T) S ChT

Hence,

|(f, @n)g = (f5,Cx@h)r| < Chrll@ll 15y < Ch||@nlly 7
O
The above considerations allow us to conclude

|lu—uyllx <C max h;y, (2.66)
Jj=1,...Nq

Ly

if the exact solution u satisfies u € H}(2) N HNQ H? (7).
It remains to estimate the error in the Lagrange multiplier. Here, we proceed as in

Section 22311

Theorem 2.20. Let u be the weak solution of (L), and assume that X € M is defined
by (Z8). The error of the Lagrange multiplier is bounded by

A = Nullao < C ( inf A = finllare + [lu = upllx + (14 [Juf x) max hj)
MhGMh 1<j<Ngq

Proof. The proof follows the lines of the proof of Proposition 2 We have the dis-
crete inf-sup condition (2:42). The approximation uj = Cth and the discrete Lagrange
multiplier \) = Cy A\, satisfy by (Z54) for arbitrary p, € M, and v € X, N Xo

b(v, fin — M) = b(v, fin — A) + b(v, A = A})
= b(v, fip, — A) + 1(v) — [(Cxv) + a(u, v) — aj (uj, v)
~ /
< Clllls (g, 1A= Tl + lu =
/ I
+a(uh>v) ah(“ha”))

1]l xo

< Cllollx, (<1+||uz||x> max hj+||A—ﬁh||Mo+||u—u;||X).
1<j<Ng,

The triangle inequality allows us then to estimate ||u}||x < ||u — u}||x + ||u||x. Finally,
from the discrete inf-sup condition (Z42)), arguments as in the proof of Proposition ZT3
Lemmas 217 yield the desired result. O

We are now able to provide an a priori estimate for the discretization error of the
solution from the original discrete problem (220).

Theorem 2.21. Let u € H*(Q) be the weak solution of (1), and assume that \ € M
is defined by (Z8). Assume that (uy, \,) are given by (Z20). Then

lu — unl|x, + |A = SuAnllae < Cu) max h;. (2.67)

1<j<Nq

If u is only subdomain-wise regular, i.e., u € HNQ ' H?(QY), the first term in (Z81) has to
be replaced by ||u — Sxup||x-
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2 The Scalar Case

Proof. We first consider the error in the primal variable u. As before, let 7, and 7,
indicate the global nodal interpolation operators on X, and X}, respectively. We have

lu —unllx, < llu—Thullx, + llun — Thul x,,

where the first term can be bounded appropriately by the right hand side of ({Z&17). For

the second term, we observe that Z, = SxZj,. Moreover, owing to (Z49), it can be easily
seen that ||vy|/x, ~ [[Sxvn|x, vn € X}. This yields

lun — Tyullx, < CllSx(un — Tyu)llx = Clluj, — Zhul|x

< C (llu = Tuullx + llu = wj1x)

A\

Again, the first term poses no difficulty. Concerning the second term, we can use Lemmas
and obtain the desired bound from (Zh6). For the error in the Lagrange
multiplier, we observe that Sy;A, = A}, and use Proposition Z20] in combination with

the best approximation property (234]) of M,. A similar reasoning yields the result for
u € T H2(Q9). O

2.4 Discrete Lagrange Multiplier Spaces

So far, we have been quite vague about the explicit definition of the discrete Lagrange
multiplier space M}, and only worked with the properties listed in Assumption 11 In
this section, we introduce concrete spaces for the Lagrange multipliers. Focusing on dual
basis functions, we extend this concept to arbitrary quadrilateral surface grids.

2.4.1 Standard and Dual Multipliers
The discrete problem (Z20) can be written as

A A Ajs 0 uj, f

Ami Amm Ams -M T ullil _ f o

Asi Asm Ass D T UZ N f ® ’ (268)
0O -M D 0 An 0

where the subscripts i, m, and s represent the inner, master and slave nodes, respectively.
We emphasize that the subscript m also includes the degrees of freedom associated with
the cross-points of the slave-side mesh, resulting in the possibly non-zero matrices Ay
and Agm. According to the definition of the coupling bilinear form by (-, ) in (ZI), the
entries of the coupling matrices M and D are assembled from integrals of the form

(Paiy 3 g)rs - and (65, p1g)rs (2.69)

respectively, where qb’;, k = m, s, denotes the scalar nodal basis function of the trace space
WE=X ]]ﬂ[‘? , of the finite element space on T* associated with the node p, and j, stands
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2.4 Discrete Lagrange Multiplier Spaces

for the scalar basis function of the discrete Lagrange multiplier space M), associated with
the node q. We speak of standard Lagrange multipliers, if M), = Wy and p, = ¢} for all
slave nodes ¢. As already introduced in ([L24]), we indicate by dual Lagrange multipliers
the space M), = span{p,, ¢ € V°} spanned by the basis functions p, satisfying the
biorthogonality relation

(95, Hg)rs, = Opq(L, &p)rs - (2.70)

From (ZT0), it is obvious that the use of dual multipliers results in a diagonal matrix
D. As it already has been carried out in Section [[3 this fact may crucially improve the
efficiency of algorithms for the solution of (ZES]).

The construction of higher order basis functions with local support satisfying (270
may be a tedious or even impossible task, [80]. Throughout this thesis, we focus on the
lowest order case. In 2D, as well as in 3D for simplices and parallelograms, the lowest
order dual basis functions are well established, [T20]. In particular, on a slave edge [s1, s2],

the basis functions p; and ps associated with the nodes s; and s, respectively, are given
by

p1 = 2¢% — ¢5, and pis = 2¢5 — ¢f. (2.71)

On a simplicial slave side element [sq, $9, s3] in three dimensions, the basis functions p,
12, and p3 associated with the nodes sy, s9, and s3, respectively, are given by

p1 = 397 — 5 — @3, o = 3¢5 — ¢} — ¢, and uz = 3¢3 — ¢ — ¢5.

In case of parallelograms, the basis functions can be simply constructed by considering
the tensor product of the situation in two dimensions. In particular, if the parallelogram
is given by the vertices [s, s2, S3, s4], with s; and s3 being opposite, the basis function
11 associated the node s; can be defined as

= 407 — 295 + 3 — 244,

and the remaining ones are constructed in a symmetric manner. However, the situation
is more involved in the case of arbitrary quadrilateral surface grids. We address this topic
in the following section.

2.4.2 Dual Multipliers on General Quadrilaterals

We extend the lowest order dual Lagrange multipliers to arbitrary quadrilaterals. We
focus on planar interfaces and scalar model equations and remark that the extension
to curvilinear interfaces and the vectorial case is straightforward. For the moment, we
focus on one planar interface I', and ignore any potential necessity for modifications
on OI'. However, we allow that the interface grids 7™ and 7° consist of general non-
degenerate convex quadrilaterals or triangles. In case of parallelograms or triangles,
the following considerations reduce to the already known standard case. The discrete
Lagrange multiplier space M}, is simply defined as the span of all nodal basis functions
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ug, where p is a vertex of the slave side grid. As usual, each basis function yJ is defined

element-wise as
= Z Hop,T (2.72)
TeTP

with local supports 77 = {T" € 7° : pis a vertex of T'} for ug and T for y,r. Here
and in the sequel, we will abuse the notation and indicate by p either a global vertex
of the triangulation or a local node number within an element 7', depending on the
context. Moreover, we will usually write 1, instead of 1, 7 when there is no ambiguity
involved. It is sufficient for the dual approach that the local multiplier functions s,
satisfy a biorthogonality relation with the element basis functions ¢} of the trace space
W = X§|r N H}(T), namely,

(kp: D)7 = Opg(1, 95)1- (2.73)

As usual, the 1ntegrat10n of the left side of (Z73)) is performed via a transformatlon to
the reference element 7. For a simplex 7', the corresponding reference element T is the
triangle with vertices (0,0), (1,0), (0, 1), while for quadrilaterals, T is set to be the unit
square (0, 1)%. We remark that, within the c0n51dered setting, it is not sufficient to simply
choose the Lagrange multiplier 1, as ji, o ;' with Fr : T — T the element mapping
and [i, respecting a biorthogonality relation with the shape functions ggz on the reference
element 7. This is due to the fact that, for quadrilaterals, F7 is not necessarily an
affine, i.e. P;-mapping, but an isoparametric Q;-mapping. This yields a surface element
dT = |det F},|dT with a linear contribution det F, where F} indicates the Jacobian of
Fr. We note that the expression det F;. abuses the notation since Fr maps from T c R?
to R3, and the Jacobian F is not a square matrix. To be more specific, when Fr is
written as (u,v) — (z,y,2) = Fr(u,v), then we set det F;, = v/ EG — H?, according to
[29, (8.152c)|, with

= (0x/0u)? + (9y/Ou)?® + (0z/0u)?,

= (0x/0v)* + (9y/O)* + (0z/dv)?*,

= (0z/0u)(0x/Jv) + (Qy/0u)(Qy/dv) + (0z/0u)(dz/v).

Transforming the required integral to the reference element, we obtain

(tp G5)r = (Tip, &3] det Fr ), (2.74)

from which we obviously cannot expect that (Z73) is satisfied. In what follows, we will
provide two alternative ways of defining M}, both yielding (Z73). The first approach
relies on the solution of local subproblems on each element, whereas the second one uses
a special transformation to eliminate |det F;,| from (2774)).

Local Subproblems

We indicate by D and My € R™*"s the diagonal matrix and the element mass matrix,
respectively, with entries given by

dpp = (17 ¢;)T7 mpq == ( ;7 (bZ)T (275)
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2.4 Discrete Lagrange Multiplier Spaces

With Ap = Dp M, 1 we define
= Z apqg 05, (2.76)
q

and obtain the biorthogonality ([Z73) by

(i B = Y apieg = (ArMr)pg = dpg = Gpq(1, 631
k

Above and in the sequel, we always assume that the summation index runs from 1 to n,
the number of element vertices, unless another index set is given. We especially focus on
quadrilateral surface grids, i.e., ng = 4. For simplicial grids, the following considerations
are also valid and reduce to already well known results. We continue by showing that
the global space M)}, constructed above satisfies Assumption 11

Lemma 2.22. Let M), be constructed from [2Z2) and ZZ68). Then M, satisfies As-
sumption [Z(a), i.e., Py C M.

Proof. Denoting by V* the set of vertices of 75, and by 1 € R™ the vector of unity,
we observe that

> ullr = Zup D apdh =) (AT1),¢5 = > (My'Drl),d5. (2.77)

peEVS p.q q q

A simple calculation reveals that M, 'Dr1 = 1, namely for b = M, 'Dr1 — 1, we have
that

(Mrb), = (Drl — Myl), = (1,¢5)r — ( quS) =0,
thus, Mrb = 0 yielding b = 0. From (ZT1), we get that

> ullr = Zw dog=1,

peEVS

which concludes the proof. O
By using Lemma[Z22 it can be easily shown that M), satisfies an approximation property.
In fact, if the biorthogonality relation (2-70) is satisfied, the approximation property can
be shown to be equivalent to Py C M. For completeness, we repeat a proof here, see
122, Lemma 1.12].

Lemma 2.23. Let M, be constructed from ZZ2) and ZZ6). Then M), satisfies As-
sumption [Z(b), namely, it holds that

Ch;/2|'l}|1/271*, v GHl/Q(F)

inf ||U -
€M
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Proof. For any given v € H'*(T), define y1, € M), by 1, = 3 ¢y 0p(0) 1 with

(U7 ¢IS;)F
a,(v) = , p E VS
p< ) (17 (b?))F
By construction, we observe that o (v)|ullgr < Cllvll§ supp ¢~ Using the locality of the

supports of the basis functions j, and ¢}, we obtain for each surface element 7" € 7°

sz <€ Y a@lmler <€ D 10l sppay < ClIOIG wrs

p, TN supp pp#0 p, TN supp pp7#D

where wp contains a uniformly bounded number of surface elements. By Lemma P.22]
namely by the fact that Py C M}, we have that p, = v for v € Py. This yields

v —pollor < (v —Tlovllor + || fto—1100]0,7
S CHU_HOUHO,WT S Chi)/T2‘U|1/2,wT7

where I denotes the locally defined L2-projection onto Py. Summing up and using the
locality of wr gives the desired result. O

The biorthogonality (Z70) is enough to show that the stability assumption (2.9D)) is
satisfied, which is one of the essential conditions for proving the approximation property
of the constrained space (235).

Lemma 2.24. Let M, = span{u,, ¢ € V*} with p, € L*(T') satisfying 13), and let
the mortar projection 11, be given by

(v, wr = (v, pr, p € Mp.
Then, the projection 11, : L*(T') — W} satisfies Assumption [Z1(c), namely, 11, is uni-
formly bounded in L*(T) as well as in Hy) (T).

Proof. We follow the presentation in [80]. First, we prove an inf-sup condition relating
the spaces M}, and W}, namely,

inf sup _{ome > 0, (2.78)

WEMp veWp ||U

with 8 > 0. Given p = > apu, € My, set v =3 a,¢, € Wj. By the norm equiv-
alence (A2f]), we have ||[v|[§r ~ |ullgr ~ h*" >, i, This yields, together with the
biorthogonality (Z73),

(v, u)r = ZZ = apty(Pp, pig)or = Zoz , Op)or > Czhd tag > Bllollorlelor,

s pq

thus, (278) holds. Given v € L*(T'), define (w,p) € W§ x M, to be the solution of the
saddle point problem

(w, 2)r + (¢, 2)r = (v, 2)r, 2z €W}, (2.79a)
(w, 1)r = (v, (), p € M. (2.79b)
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2.4 Discrete Lagrange Multiplier Spaces

By standard theory as presented in Theorem [A.23] problem (ZZ79) has a unique solution

(w, p) under the condition (T8, satisfying ||wljor < (1+287")||v|jor. From (Z79h), it
follows that w = II,v. Thus, the L?-stability is proved.

We next show stability in HJ(T'). We employ a Scott—Zhang type interpolation operator
P, : HY(T) — W3, [109], with properties

h™Hlv = Pyollor < Cllwllr, and  [[Piflir < Cllwlyr.

Using these properties, the fact that I, is an L2-stable projection onto W3, and the
inverse inequality ([A228), we obtain

vl < [[Iv — Pyl + [[Pao||ir
< Ch™H (v = Buv)llor + ([ Pavllvr
< Ch™Hlv = Pyollor + [lvllr
< Clolfir-

The stability in HééQ(F) follows from interpolations arguments, |26, Thm. 12.1.5|. O

We note that the entries of the global coupling matrix M can be easily assembled by
the local contributions of (Mgm)yg = (@5, ¢5')rsm, where T denotes the intersection of
a slave and a master element. Formally, this gives

M = Z RTs DTs M;sl Mst%m 5

Tsm=TsTm

where Ry« denotes the matrix which maps the local node numbers of the element 7% to
the global ones with respect to 7%, k = m,s.

Special Transformation

In the previous subsection, a local mass matrix has to be inverted on each element for
the construction of the dual Lagrange multipliers. Here, we introduce an alternative
procedure for deriving them. They are given in terms of a special transformation from
the reference element, namely, by

w ~ _
Hp T = mﬂp o By, (2.80)

with a weighting factor w, = (1, ¢3)r/(1, gg;)f In case of an affine element transformation

Fr, the factors w,/| det F| are equal to 1, and the approach reduces to the original one.
As before, the construction almost immediately implies (Z773) by observing that

(i 851 = Wi, 07 = Gpg(1, )7

Again, we verify the approximation property of M, by showing that it contains the
constants.
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Lemma 2.25. Let M), be constructed from [ZZ2) and ZZW). Then Py C M.

Proof. We take p= 3" . udlr = >, pp- We first consider the fact that

~

M_]_<:>[,[,—1W1th[1/ [j,OFT Z|th1‘p

Moreover, elementary calculations reveal that both | det F|iz and | det F.| are QQ1-functions.
We can verify the assertion by showing that |det Fi.|ii = | det F.|, which is in this case
equivalent to the requirement that

- <| det FA4[fi — | det |, Zs;)A =0, ¢=1,...,ns
T
Using the biorthogonality on T and the definition of the weights w,, we obtain

= wp(fiy, )7 — (65, | det Fp|)7 =
P

which concludes the proof. O

We remark that the implementation of the coupling matrix M does not require the
inverse of a local mass matrix. It can be carried out by transferring 11, and ¢' onto the
reference element, i.e.,

(:upv gb;n)Tsm = wp(ﬂpv gb;n © FT)fsm-

2.5 Implementational Details

In what follows, we give a more detailed account of the assembly of the coupling matrices
defined in (CZJ). Omitting the subscripts p and ¢ in ([Z6Y), we have to evaluate the
integral

(Fo™, 1°)rs (2.81)

for all basis functions p® and ¢™ defined on the (d—1)-dimensional grids 7° and 7™
inherited from the grids on 2°® and ™, respectively. As usual, the assembly can be
performed element-wise. One possible realization is given by Algorithm [[I We remark
that the naive implementation of this algorithm for 2D-problems is of order O(n), but
for 3D-problems it is of order O(n*/?) with n denoting the total number of unknowns.
However, it is possible to obtain a better complexity in both cases by incorporating neigh-
borship relations of the surface elements and/or inheritance relations from an underlying
geometrical multigrid hierarchy.

The crucial point in Algorithm [I] is the determination of the intersection area of two
elements from the different grids. In the remainder of this section, we will address this
issue for different situations.
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2.5 Implementational Details

Algorithm 1 Assembly of the coupling matrix
for all slave elements 77,7 =1,...,ns do
for all master elements 77", j = 1,...,nn do
determine intersection area 7°" = T3> NT"
if 75™ # () then
for all basis functions ¢™, p® with support N7T™ # () do
add (@™, p®)sm to M
end for
end if
end for
end for

2.5.1 Planar Interfaces

In order to determine whether two surface elements 7% and T™ intersect, we loop over
all vertices pi*, k = 1,...,n;', of T™, where n;' denotes the corresponding number
of vertices. The two elements intersect, if we find at least one vertex p® which lies
inside 7®. An easy way to justify this, is to use the transformation of global to local
coordinates, which is usually available in any finite element code. If all local coordinates
of p;' with respect to the element 7° are within the correct ranges, the elements 7%
and T™ intersect. Otherwise, it may still be possible that the element 7® is completely
covered by the element 7™. Therefore, one has to repeat the procedure interchanging
the roles of T® and T™. If still no appropriate vertex is found, the two elements do not
intersect. In the following, we give a more detailed account of how to determine the area
of intersection, divided into considerations for two-dimensional problem settings, three-
dimensional structured hexahedral grids, and three-dimensional unstructured tetrahedral
meshes.

Two-dimensional Problems

We consider the case that the interface I' is part of the x-axis. The corner coordinates
of 7% and T™ are denoted by z} and 7}, respectively, £ = 1,2. We assume that z§ < 2%
and 27" < x3'. The possible four situations and resulting intersections are illustrated in
Figure

(a) Ts (b) Ts (c) Ts (d) Ts
f ! f ! P f !
f ! f ! f ! S
™ ™ ™ T
7 = [af, 5] 7 = [, 5] = fafay) | T = e ag)

Figure 2.5: 2D: Four situations of intersecting elements 7° and 7™.
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Three-dimensional Structured Hexahedral Grids

We assume that the interface I' is part of the xy-plane, and that we have axiparallel
surface grids 7; and 7,,. We describe an axiparallel quadrilateral surface element 7° by
its lower left and its upper right corner coordinates as 7% = (23, y3, 2%, 4% ), analogously
for T™. It is obvious that the intersection of the elements 7° and 7™ has to be also an
axiparallel quadrilateral. In Figure 2.6l we illustrate two different situations. All other
possible situations can be obtained by symmetry observations.

m_ | _ m_1__
Yu Tm Yu Tm Tm
S S
m m
ye_-_l I yz_-__l I
| T | |
/A | /R B |
1 | 1 | ! 1 1 !
1 . 1 . ! | 1 !
sm __ s ,m ,m ,8§ sm __ S ,m .S ,,8 sm __ S .8 .8 ,8
T - (xbyé 3 Ly 7yu) T - ("Ebyﬁ 7Ir7yu> T - (xbyévmr?yu)

Figure 2.6: 3D structured: Intersecting elements 7° and 1T™.

Three-dimensional Tetrahedral Meshes

The intersection of two arbitrary triangles is quite more complex than the situations
considered above. In particular, the polygonal intersection 7™ can be anything between
a triangle and a 2D-hexahedral, see Figure 71 However, the vertices of 7" can be

ool NP S

Figure 2.7: 3D unstructured: Intersecting elements 7° and 7T™.

determined straightforward by including
e all vertices of T® lying inside 7™ (marked with a cross in Figure 1),
e all vertices of T™ lying inside 7* (filled box),

e all intersection points of edges of T® with edges of T™ (filled circle).
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For the evaluation of (ZEI), the polygon 7°™ can be subdivided into triangles by con-
necting its barycenter with the vertices and applying an appropriate quadrature formula
on each subtriangle. Although our presentation focuses on simplices, the above consid-
erations apply for all intersections of convex coplanar polygons.

2.5.2 Curvilinear Interfaces

When dealing with curvilinear interfaces in numerical calculations, often the information
about the exact curved interface I' is lost, and only the computational grids are available.
In order to give a meaning to the discrete jump as defined in (ZI3)), it is important
to realize the grid transfer mapping Fs by only using the available information from
the discrete setting, in contrast to the former definition (ZTI4]). We illustrate possible
implementations of F, first for two and afterwards for three dimensions.

Two Dimensions

The mapping FP; can be defined for each slave edge by using the piecewise constant
normal projection of the corresponding master edges, as illustrated in Figure There,
a linear function vy, on the master edge 7™ = {m;, my} is mapped onto the slave edges
T} = {s1,s2} and T§ = {s9,s3}. For T}, the segment [mq,q;] on T™ is projected onto
[p1, s2] (dashed lines), whereas for T3, the segment [go, mo] is projected onto [ss, ps] (dash-
dotted lines). Since [go, ¢1] is considered twice, the mapped function Py, is discontinuous
at the node s,. Due to this lacking regularity, the a priori results from Section 2.3 cannot
be transferred directly. In order to analyze this case, one could decompose P, in a
sufficiently smooth part for which the a priori results hold, plus a perturbation, and
perform a perturbation analysis in terms of weighted L?-norms. We will not carry out
this analysis in detail, since, for all tested examples, there is only a slight quantitative and
no qualitative difference in the error decays compared to using (ZI4) for the definition
of P;. We provide a numerical comparison of both alternatives in Section EZ6.11

Um

1 mao 51 D1 S2 D2 S3

Y T

i

i

i

i

I
my q2

Figure 2.8: Realization of F; via the normal projection onto the slave edges.
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Three Dimensions

For curvilinear interior boundaries, the interface grids 7; and 7y, are both not in any affine
hypersurface. In the case of nonconforming grids, this results in the fact that possibly
intersecting elements 7® and 7™ are not coplanar, see Figure One possible way of

(a) (b) (c) (d)

Figure 2.9: 3D curvilinear: Intersecting elements and projection onto one plane.

dealing with this situation in the case of affine-equivalent triangulations is to project
the element 7™ onto the plane of the element 7®, [97]. Then, the same techniques as
described above can be applied in order to determine the intersection 7°™. For the
evaluation of the basis function ¢™, the quadrature points in 7® have to be projected
back onto 7®. For more general element transformations, it is possible to perform the
intersection by projecting both elements onto an intermediate plane obtained by a least
squares approximation.

2.6 Numerical Results

We present various numerical examples. In Subsection EZ6.11 we consider the case of two
subdomains sharing one curved interface. In Subsection L6221 a decomposition into eight
subdomains with straight as well as curved interfaces is investigated. Moreover, we give
numerical evidence of the independence of the constants from the number of subdomains,
when we vary the number of subdomains from 4 to 25.

2.6.1 Two Subdomains

In a first test, we consider the case of the domain Q = (0,2) x (0,1) divided into two
subdomains Q' and Q? as illustrated in Figure ZI0(a). Dual basis functions with respect
to the grid on Q2 are used to span the Lagrange multiplier space Ml,h. We solve the
model problem ([CT]) with Dirichlet boundary conditions and source term f derived from
the exact solution u(z,y) = 2% — 2y, starting with the initial triangulation displayed in
Figure ZZT0(b).

The error decay of the finite element solution wuj, measured in the H'- and in the
L?-norm, as well as the behavior of the error in the Lagrange multiplier, are plotted in
Figure ZTTl(a). We note that in order to evaluate the error in the Lagrange multiplier,

we substitute the /% norm by (3, h.|A — )\h||(2)7e)1/2, where the sum is taken over
all edges e on the slave side of the interfaces, and h. denotes the length of e. For the
H'-norm, the results are in perfect agreement with the theory presented in Section
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(b)

(@) - =

Ql

Figure 2.10: (a) decomposition into subdomains 2!, Q2 (b) initial grid.
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Figure 2.11: Error decays: (a) quadratic solution, (b) linear solution.

Moreover, the numerical convergence order for the Lagrange multiplier is better than
predicted from the theory. This can be explained by the following observation. The
weighted L?-norm of the error in the Lagrange multiplier can be bound by the sum of
the best approximation error and the discretization error in the H'-norm restricted to
a strip of width h around the interface. Once the solution is H®?-regular, the best
approximation error of the Lagrange multiplier space is of order O(h3/ 2). If, moreover,
the discretization error can be assumed to be equidistributed over the domain, the overall
order O(h*?) can be derived, as is experienced in this example, as well as in the next
examples in Section

An interesting special case is the approximation of a linear solution. In contrast to
straight interfaces, the finite element solution does not coincide with the exact one,
as pointed out in Remark EETTl Numerical evidence of this behavior is illustrated in
Figure ETTI(b), where the error decays are plotted for the same geometrical setting as
before with the exact solution u(z,y) = y. The error measured in the H'-norm is of
order h*/? as shown in Remark 2111

In a further test, we start from a conforming triangulation consisting of two elements
on each subdomain, and refine the right subdomain Q* 1 (2, 3) time(s). Thus, a ratio
¢\ = 2:1(4:1, 8:1) of the number of element edges on the left side of the interface to the
number of edges on the right side is obtained. We test the stability of our method choosing
first the Lagrange multiplier with respect to the finer (left) grid, and then with respect
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to the coarser (right) grid, so that the ratio ¢&, of the number of slave edges to master
edges is out of {2:1,4:1,8:1,1:2,1:4, 1:8}. In Figure ZI2(a), the error A — \;, measured

(a) e e TR (b) T T qd T
8:1 standard 4 : 1
1:4 100 b dual 1:4
4:1 r standard 1 : 4
1:2 O(h)
2:1
5 i) :
3 5
1
2 —
= T
10t |
10t 10? 10t
number of interface edges degrees of freedom

Figure 2.12: Different ratios of the number of slave edges to the number of master edges:
(a) error in the Lagrange multiplier A, (b) error in the solution w.

in the L2-norm, is plotted against the total number of slave and master edges. Looking
at the exact solution, it is not surprising that the error decreases as the ratio ¢, tends to
1. What is more interesting and demonstrates the stability of our approach, is the very
moderate influence of whether to choose the fine grid as master side or the coarse one.
Of course, this also depends on the characteristics of the exact solution. Especially in the
case of discontinuous coeflicients, it might be important to choose the discrete Lagrange
multipliers on the correct side. In Figure ZZI2(b), we provide a comparison of the H'-
error decays for the ratios 1 : 4 and 4 : 1, where once, dual Lagrange multipliers are
taken, and in the other case, standard Lagrange multipliers are chosen. All approaches
yield qualitatively the same and quantitatively almost the same results.

We keep the same setting and test the influence of the projection mapping F; onto
our results, once using the exact parametrization and choosing P; as in (22I4]), and once
realizing Py by projections from the master onto the slave side elements along the slave
side normals as discussed in Section The results for the ratios ¢, € {1:8, 8:1}
are given in Figure T3 picture (a) visualizing the decay of the L?-error in the solution
u, and picture (b) depicting the error decay for the Lagrange multiplier A. For both
errors, as well as for the H'-error in u which is not visualized, the difference between
using the exact parametrization or the normal projection is in general negligible. Only
for the coarsest grid, the parametrization gives considerably better results for the error
in the Lagrange multiplier. We remark that the situation is the same for other ratios
¢, with even less difference between the two approaches for the other considered cases
¢, € {1:2,2:1,1:4, 4:1}.
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0
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Figure 2.13: Comparing the influence of the mapping Ps: (a) L*-error in the solution u,
(b) error in the Lagrange multiplier A.

2.6.2 Many Subdomains

We investigate the behavior of our method on the domain = (—1,1)?, subdivided into
eight subdomains sharing twelve interfaces, four of which are curved, and five cross-points.
The exact solution is chosen to be u(x,y) = (sin7wx)(sin27y). The initial triangulation
is displayed in Figure ZZT4l(a). The Lagrange multiplier spaces are defined with respect
to the finer grids, again spanned by the corresponding dual linear basis functions. The
various error decays shown in Figure ZZT4{(b) illustrate the same qualitative behavior as
in the case of two subdomains.

T
(a) (b) o]0 R
Lagrange multiplier
10t ¢ O(h3/?2)
L2-norm
O(h?)
8 100 E *'"""'-..'; ......
- 3
= Yo, e, T
>
10
1072 *
10t 102 10° 10* 10°

degrees of freedom

Figure 2.14: Eight subdomains: (a) initial triangulation, (b) error decays.

In the next example, the global domain © = (0,1)? is divided into Ng = 4,9,16,25
subdomains. Figure displays the domain decompositions and the initial triangu-
lations. The discrete Lagrange multiplier spaces are always chosen with respect to the
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Figure 2.15: Many Subdomains: initial triangulations.

finer triangulations. As exact solution, we use u(z,y) = exp(—2((z — 0.5)2 + (y — 0.5)?)).
We run a test for each of the decompositions, measuring the error decay under uniform
refinement of the triangulations. In Figure EZT6(a), the discretization error measured in
the H'-norm is plotted versus the number of elements. Only very slight differences can be
seen between the considered decompositions, which illustrates nicely the independence of
the constants appearing in the a priori analysis from the total number of subdomains. In
order to achieve comparable results for the error in the Lagrange multiplier, the weighted
L?-norm was divided by the corresponding total length of the interfaces. Also here, it
becomes hard to distinguish between the various decompositions, as illustrated in Fig-

ure ZT6(b).

(a) | (b)
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Figure 2.16: Many subdomains: (a) H'-error, (b) weighted LM-error.

2.6.3 General Quadrilaterals

We now focus on the treatment of interface grids consisting of general quadrilaterals,
as discussed in Section The theoretical results of Section yield optimal a
priori estimates for the error in the broken H'-norm. Here, we are interested in the
quantitative numbers. In addition to the two approaches considered above, we employ
two other methods for comparison: one using standard basis functions p, = ¢ not
satisfying (Z73)), and a “naive” one, where s, is chosen as Ji, o Fi;* for the coupling with
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2.6 Numerical Results

the master side, but it is set to be (|T'|/|det F}|)fi, o F ' for the coupling with the slave
side. We note that the latter approach satisfies (£773), and coincides with the original
dual method for simplices and parallelepipeds. We also point out that by a suitable
redefinition of the coupling bilinear form b(-, -), the approach could be reformulated with
respect to only one discrete Lagrange multiplier space M. The choice is motivated
by the fact that nothing has to be modified for the coupling on the master side, and
only a minimal modification is necessary for the coupling on the slave side. However,
despite its similarity with (Z80), constants are not preserved due to the choice of |T'| as
weights. Therefore, the approximation property is lost, and optimal convergence cannot
be guaranteed anymore.

We consider a simple test example with two cubes Q™ and €2® of length and width 1
and height 0.2, sharing as interface the unit square of edge length 1 at z = 0. We solve
(CT)) with right hand side f derived from the exact solution u(z,y, z) = yze™* . On the
planes z = £0.2, Dirichlet boundary data is considered, while on the remaining part of
the boundary, we employ Neumann data. The Lagrange multiplier space Mj, is associated
with the grid on the lower cube. For the surface meshes 7® on the slave side, we compare
three different sequences as in [6]: square, asymptotically parallelogram, and trapezoidal,
see FigureZT7 For the first two sequences, the initial triangulation is indicated by thick

(a) (b) (c)

Figure 2.17: Surface grids 7°: (a) square, (b) asymptotically parallelogram, (c) trape-
zoidal.

lines, and the subsequent grids are simply obtained by uniform refinements. For the
trapezoidal grids, the same initial triangulation as for the asymptotically parallelogram
grid is used, but instead of employing a standard uniform refinement procedure, the
surface is partitioned into congruent trapezoids at each step, all similar to the trapezoid
with vertices (0,0), (0.5,0), (0.5,0.2), and (0, 0.8). The thin lines in the pictures of Figure
217 indicate the slave side grids after two refinements. On the master side, the meshes
T™ consist of squares twice the size of the elements on the slave side.

In Figure EZT8, the error decays measured in the H'-norm are plotted for different
grid sequences and different Lagrange multipliers. In particular, we compare three ap-
proaches: the naive dual one and the ones introduced in Sections and For the
asymptotically parallelogram grid sequence illustrated in Figure 2I8|(a), we choose the
results from the uniform square grids as reference. All approaches give qualitatively the
same and quantitatively almost the same results. We remark that the same quality is
obtained by the use of the standard basis functions. This observation changes drastically
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Figure 2.18: Error decays, measured in the H!'-norm: (a) asymptotically parallelogram,
(b) trapezoidal.

when employing the sequence of trapezoidal grids, as illustrated in Figure EZI8(b). The
naive approach fails completely, the error remains almost static after a few refinement
steps. The other two methods behave as predicted by the theory. Moreover, the errors
visually coincide with the approach using standard basis functions which is taken as a
reference here.

2.6.4 Coupling of Different Model Equations

We consider a global domain consisting of three cylinders Q™! Q™2 and Q°. Each
subdomain is of height 1, the two master subdomains ™! and ™2 have the unit circle as
base, while the slave subdomain €2° has as base a circle of radius 0.7 and is placed between
the two master subdomains. While Poisson’s ratio v = 0.3 is constant on all subdomains,
Young’s modulus E is set to be 10° on Q™! Q™2 and 10% on Q°. The lowest subdomain
Q™! is fixed at its lower face, while on the upper face of the upper subdomain Q™2 a
rotation of 7 /4 parallel to the (z, y)-plane is applied. The material parameters suggest to
use a finer grid on the slave subdomain €2°) which is easily possible by using non-matching
grids. Since it is impossible to mesh a circle purely with parallelograms (apart from a one-
element-grid), we have to deal with general quadrilaterals on the subdomain interfaces.
In order to use a dual basis for the discrete Lagrange multiplier space, we employ the
techniques presented in Section On each subdomain, individual elasticity model
equations can be considered: linearized ([C3)-(LH), geometrically nonlinear (L7)-(C3),
and neo-Hooke (IC9)-(LCI).

Figure ZZT9shows the deformed domain on a coarse grid, once using the linear model on
all subdomains, and once using the neo-Hooke law everywhere. As was to be expected, the
linearized equations do not give a satisfactory result, especially for the upper cube Q™2
There, the displacement is almost a pure, but large rotation, which cannot be modeled
correctly by (L3)-(LH). Visually, the method using the neo-Hooke law everywhere yields
correct results. However, the problem setting and the solution suggest that it might
not be necessary to use the fully nonlinear and complicated neo-Hooke model on all

o4
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Figure 2.19: Deformed domains for (a) the linearized and (b) the neo-Hooke setting, (c)
the broken line L.

three subdomains. On the upper cylinder Q™?2, it should be enough to consider the
geometrically nonlinear setting, because large deformations, but relatively small strains
occur. On the lower cylinder Q™! also the deformations remain small, and the linearized
model might be sufficient. On the middle subdomain €°; both the deformations and the
strains are quite large, there, the neo-Hooke law should be mandatory. In Figure P20
the displacement in x- and z-direction as well as the effective stress are plotted along
the broken line L, which is indicated in Figure ZI%c). The mesh for the calculation
was obtained after one uniform refinement of the mesh from Figure ZT9 The notation
17k, 1,7,k =1,g,n, in Figure indicates that models i, j, and k are used on ™2, (),
and Q™! respectively. As suggested by the domain deformations, the fully linear model
11l fails almost completely. All considered quantities differ strongly from the reference
solution nnn which uses the neo-Hooke law everywhere. It is impossible to reproduce the
expected symmetry with respect to z = 1.5 in the z-displacement and in the effective
stress. Only on the lower cylinder Q™! the solution is quite accurate. The geometrically
nonlinear setting ggg still cannot resolve all features. Especially the effective stress on the
middle cylinder €2°; which is due to the relative large strains, is not properly described.

(a)os - — (b)oos (c)so =
~ =='ggg : _ 0.02 40t| =999
g 02{l—nnn i ' g A —nnn el &
g o I e AR Fa0l 0] by
&8 0.1 X . 8 : - Q
E 3-0.02 T . 3 20
T 7 * £
~ .’ = *. o -
O b N _o.04:| 3% 10FFs /,/-l-—
) 006390 0 ]
0 1 2 3 ! 1 2 3 0 1 2 3
z—-coordinate z-coordinate z-coordinate

Figure 2.20: Different model equations: displacements in z- and z-direction, effective
stress along the line L.
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Yet, the quantities on the lower and on the upper subdomain are very close to the
reference solution. The combination gnl, as discussed above, uses the “optimal” model
on each subdomain. The results cannot be distinguished from the reference solution. We
remark that the number of Newton iterations to solve the systems of nonlinear equations
was between 4 and 7, starting from the solution of the linear system and using a tolerance
of 10719 in the relative difference of two successive iterates as stop criterion.
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3 The Vector Field Case

Whether an interface method performs well on curved surfaces should not be taken for
granted and may require a modification of the method as will be demonstrated in this
chapter. Amongst others, a recent work [97] found that the dual mortar method worked
quite well for mesh tying over the range of solid mechanics problems benchmarked in
the paper. It was also found that the optimal convergence of the discretization error
was attainable for applications where curved surfaces were tied, although it offered no a
priori error analysis to validate this claim. After more extensive application, it has since
been found that the dual mortar method behaved poorly for elasticity problems with
curved boundaries when the slave side was considerably coarser than the master side.
On the other hand, the standard mortar method appears to be relatively un-biased to
the choice of master and slave sides and works quite well on curved boundaries where the
slave side is much coarser than the master side. In this chapter, two modifications to the
dual mortar method are proposed for two- and three-dimensional solid mechanics that fix
the aforementioned problem. Furthermore, a priori error results demonstrating optimal
convergence for this new approach are presented for the curved interface problem. This
is achieved by extending the results from Chapter

The following is an outline for this chapter. Section Bl introduces basic notation rel-
evant to the proceedings and in particular the mathematical description of the domain
decomposition/mesh tying problem. Section introduces the model problem of an in-
ternally pressurized cylinder. Here, the pathological behavior for the dual formulation is
diagnosed. Section presents two modifications of the dual approach and uses pertur-
bation arguments analogous to Chapter [ to provide a priori error results. Section B4
shows some numerical examples demonstrating the effectiveness and also the limitations
of the new approach.

3.1 Problem Description

We use the standard linear elasticity model (L3)-(ICH) to investigate the deformation of an
elastic body 2 € R? under given volume and surface forces. The domain € is subdivided
into two non-overlapping subdomains 2™ and €)°, sharing the possibly curved interface
' = 0™ N 0Q® with the unit normal vector n = ns. For simplicity, we assume that I is
a closed surface for d = 3 and a closed curve for d = 2. For the Neumann and Dirichlet
boundary Iy and Iy, respectively, we set [t = 9QF N Ty and I = 99 NIp, k = m,s.
In order to obtain a weak saddle problem formulation, we introduce the product space
X = (H%S(Qm))d X (H%B(QS))d, with H%I%(Qk) = {v, € HY(QF) : Uk|F1§ = 0}, equipped
with the broken H'-norm defined analogously to (22)). Moreover, the bilinear form a(-, -)
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3 The Vector Field Case

and the linear form /(-) acting on X are defined by

a(w,v) = Y (on(ur) gradvi)or, Uv) = Y (Frovier + (g vy, (3.1)

k=m,s k=m,s

where oy, is the linearized strain tensor, f, the given volume force, and g, the surface
traction on the subdomain QF, k = m,s. As for the scalar case, the coupling between the
two solution components u,,, ug is realized by establishing a weak transmission condition
in terms of the Lagrange multiplier space M = (H~'/2(I'))¢, namely the coupling bilinear
form bon X x M ,

bv,p) = (p, [v])r, veX pue M. (3.2)

The displacement u € X and the interface traction A = —og(ug)n € M are the solution
of the symmetric saddle point problem ([CTH).

As in Chapter [ we discretize (LI by means of piecewise linear or bi-(tri-)linear
finite elements on quasi-uniform triangulations 7; with maximum element diameters hy,
k = m,s, and h = max(hs, hm). The curved interface I' is replaced by polygons I'* and
I'*. Analogously to (ZI6]), the approximate coupling bilinear form b, acting on X} x M,
is defined by

bn(vn, 1y) = (K, Vs — Psvm)ry, vy € Xp, py, € Mp, (3-3)

where B, : (L*(I'™))? — (L*(I'%))¢ is given component-wise by (ZI4). The discrete
version of ([LT6) is given by (220), where the approximate forms ap(+,-) and [,(-) are
defined element-wise with respect to (B]). Again, the equivalent algebraic system can be
written as ([L22). We repeat the fact that in case of dual Lagrange multipliers [T20)], D is
a diagonal matrix, the interface traction A, can be locally eliminated, and the resulting
system for the displacement is positive definite.

3.2 Dual Lagrange Multipliers: A Drawback?

We consider a simple example in two dimensions. The model domain consists of a ring
) with inner radius r; = 0.9, outer radius r, = 1.1, and modules £ = 1, v = 0.3,
as illustrated in Figure BIl(a). It is fixed at the outer boundary, whereas at the inner
boundary, a traction of magnitude one constant in normal direction is applied. The
exact solution for the displacement in radial direction is u,(r) = c¢(r — r2/r) with ¢ =
0.572/(Arr? + pr(r? + r2)), A\ and pg, being the Lamé parameters. The domain () is
subdivided into two rings ™ and ° such that their interface I' is the unit circle. We
choose the inner ring to be 2™, and the outer ring to be .

A part of the computational grid is shown in Figure BII(b). The whole grid consists of
240 elements, constructed in such a way that each element edge on the slave side meets
four master edges, thus, the discrete Lagrange multiplier space M}, is defined with respect
to the coarse grid on I'5. For a first test, four different types of Lagrange multipliers (LM)
are used: the standard ones coinciding with the trace space 1}, the dual ones spanned by
piecewise linear discontinuous basis functions given by (), the dual continuous ones
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@

7

Figure 3.1: (a) problem setting, (b) computational grid.

(b) (d)

Figure 3.2: Basis functions: (a) standard, (b) discontinuous dual, (c) continuous dual,
(d) constant Lagrange multipliers.

where the discontinuous dual basis functions are modified by cubic polynomials [123], and
the piecewise constant ones spanned by basis functions which are constant from one edge
midpoint to the next [I20]. The basis functions associated with each node are illustrated
in Figure

In Figure B3 the isolines of the van Mises stresses of the numerical solutions on
the deformed domains are plotted. Whereas the use of standard Lagrange multipliers
yields a visually satisfying result, the behavior of all other solutions is dictated by strong
oscillations along the master interface I}

AR

Figure 3.3: van Mises stress: (a) standard, (b) discontinuous dual, (¢) continuous dual,
(d) constant Lagrange multlphers

The behavior is also reflected in the error decay for the used methods, documented in

Figure B14l The ratio of the number of slave edges to the number of master edges is kept
constant with 1:4, and starting a uniform refinement procedure from an initial triangu-
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Figure 3.4: Decay of the energy error under uniform refinement.

lation consisting of 60 elements, the error measured in the energy norm is calculated at
each refinement step. Comparing the results, the error for the method using the standard
multipliers is much less than for the three other methods. We note that, within the plot-
ted range, the decay of these other methods is near O(h*?), and the relative difference
to the standard approach decreases as the number of unknowns increases. Asymptoti-
cally, the qualitative behavior of all methods is the same as predicted by the theory. So
the oscillations can be considered to be a pre-asymptotic misbehavior. We stress that
this misbehavior only occurs when the Lagrange multipliers are defined with respect to
the coarse grid. When they are chosen corresponding to the fine grid, all four methods
behave qualitatively and quantitatively the same. This observation will be addressed in
more detail in Section B4

In order to explain the very different behavior of the different discrete Lagrange mul-
tipliers, we consider the following situation. Denoting by p?, ¢ = 1,...,ng, the finite
element nodes on I, we associate with each node p} the corresponding unit normal
vector n;, the standard piecewise linear scalar basis function ¢}, and the scalar Lagrange
multiplier basis function p;. In the solution of the above model problem, the interface
traction A is given by A = (fn. Here, we set 3 = —1 for simplicity. Out of symmetry
reasons, we choose the approximation X\, of A to be A\, = — Z?; n;u;. Let us neglect
for a moment the influence of I'j and Fs, and assume that all involved functions and
bilinear forms are well-defined on I'. We first consider the situation on the slave side.

Here, (2220al) yields that
<)\h7 US)F = Z njai(ﬂjv Qﬁ)r

ij=1

with some coefficients «a;;. In the case of dual Lagrange multipliers, we have the biorthog-
onality (u1;, ¢})r = 0 for j # ¢, and the above sum reduces to

> miai(1, ¢)r.
i=1
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Thus, a virtual displacement at the node p§ “sees” only a traction in direction of ;. On
the master side, the situation is different. Because of the non-matching structure of the
grids, there is no biorthogonality between p; and the basis functions ¢;" of the master
side. Therefore, a virtual displacement at the master node p;" “sees” the “full” discrete
traction, i.e. Ay = — > nu;.

To get a better feeling on how A\, differs for the different Lagrange multiplier spaces,
we focus on the slave edge e; with corner points p§ = (cos7/6,sin7/6)" and p§ =
(cosm/3,sinm/3)T, i.e., the “middle” slave edge in the pictures of Figure For each
of the discussed spaces, we choose A, = pfi i + p5uo with the corresponding scalar basis
functions p1, po. The effect of Aj onto the master side is documented in Figure The

Figure 3.5: The transfer of the discretized normal vector field —n onto the master side:
(a) standard, (b) discontinuous dual, (c) continuous dual, (d) constant La-
grange multipliers.

arrows show how A, transfers to the master side, the dashed lines indicate the correct
normal direction. For the standard Lagrange multipliers, the normal field is transferred
correctly to the master side. For the two dual LM, the normal vectors get drawn into
wrong directions near the endpoints of the slave edges, which can be explained by the
negativity of one of the basis functions near these points. For the piecewise constant LM,
the problem occurs around the center of the slave edge, reflecting the discontinuity of the
corresponding basis functions at this point. The influence of all these behaviors explains
the stress plots of Figure In particular, the reason for the opposed oscillations of the
dual LM compared to the piecewise constant LM becomes clear.

We remark that the problem only seems to occur when working with piecewise linear
or bilinear finite elements in combination with non-standard Lagrange multipliers. As an
example for higher order elements, we carry out the above test, this time using Serendipity
elements and quadratic Lagrange multipliers, once with standard and once with dual basis
functions. The left pictures of Figure suggest that the transfer of the discretized
normal vector field —m onto the master side is performed correctly. The result of the
numerical experiment, plotted in the right pictures of Figure B.6l consequently does
not exhibit any significant unwanted oscillations on the master side. The observation
that the flow of the isolines is still not optimal occurs for both the standard and the
dual multipliers, and is due to the fact that only affine and no isoparametric element
transformations have been used.
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(a) (b)

Figure 3.6: The case of Serendipity elements and quadratic Lagrange multipliers: transfer
of —n and van Mises stresses using (a) standard, (b) dual basis functions.

3.3 Modifications for Curved Interfaces

Our numerical results above illustrate how sensitive the quality of the mortar approxi-
mation depends on the choice of the Lagrange multiplier space, especially for curvilinear
interfaces. In this section, we extend our results for the scalar case from Chapter 2 to
vector fields in dimension d € {2,3}. In particular, we present two alternative modifi-
cations for lowest order dual Lagrange multipliers. Both have in common that only the
coupling of the Lagrange multipliers to the master side is changed, namely, (Pvy,, u)p; .
Formally, the coupling bilinear form by,(,-) is replaced by a modification b"°d(-,-). In
the first alternative to be given, the Lagrange multiplier . € M), as seen by the master
side is replaced by p -+ Ap, whereas for the second one, we replace the L2-scalar product
(-, ~)pi by a discrete one. Both approaches reduce to the original one in the case of a
planar interface. For several model problems, they result in a strong improvement of the
umodified method. However, the modifications turn out have no positive effect for more
general situations, which will be illustrated in Section by means of an example.

Before we introduce the two modifications, we address some common issues which are
needed for deriving them. With each node p on the smooth interface I', an orthonormal
basis B, € R¥? is associated, given by B, = (bg), e bz(,d)) with bl(,l) = n, being the unit
normal vector on I' in p, and the remaining columns being corresponding unit tangent
vectors. In the following, n, can be the exact normal on I' or a weighted sum of the
face normals sharing the node p. In the case that I' is piecewise smooth, we have to
decompose I' into smooth non-overlapping subsets, the boundaries of which have to be
regarded as wire-basket edges.

Our modifications will be given in terms of the difference of two bases B,, B,, where
p refers to a slave node, and, in Section B3] the nodes p and ¢ are both vertices of
one slave side element, whereas in Section B3 B, is associated with a master node
such that the supports of the corresponding basis functions intersect. For the upcoming
analysis in both cases, we assume that

1By = Byllo = O(h), (3-4)

provided that ||p — g|lcc = O(h) where p and q are the coordinate vectors of the nodes
p and ¢, respectively. For the first column of B, and B,, namely, the difference of the
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normal vectors n,, and mn,, this is an obvious fact. Whereas in two dimensions, the choice
of the tangent vector is unique up to the sign, the construction of two vectors spanning
the tangent plane in three dimensions is by no means unique. However, if I' is not a
closed surface, this construction is possible in an unambiguous and continuous way. To
this end, we fix one orthonormal system B, and require that the difference of the first
column bﬁl) and any normal vector 12, on I' is bounded from below by a constant. Then,
for each vertex p, the basis B, can be defined in terms of the unique Householder reflection
H, € R™? mapping b") onto n,, namely, B, = H,B.. We remark that the choice of b")
avoids any errors due to cancellation. For the sake of clarity, we will indicate by B, or
B, m whether the node p is associated with the slave or the master side, respectively.
For our a priori analysis, the stability of the grid transfer mapping P, will be important.
We remark that for the use of interpolation arguments in some of the following proofs, we
will ignore the fact that the discretized interfaces I'y depend on the mesh parameter h.
Since essentially they can be associated with a fixed surface, our results are still correct.

Lemma 3.1. For t € [0,1], we have that |Pwlirs < Clv|irm for all v € (H'(T}))%

Proof. Let v be any scalar component of v. We obtain

1Pl = [ (Ropdr, = 3 [ @ormonar;

= HleES%X}(D’yS)%1(65)}/1(1;0%11)2 drI
Z/ V| (DY) em | TR

< (max (D)1 ) (1l (D)) W

We recall that +; and ~,,, are piecewise linear interpolations of the smooth parameteriza-
tion 7. By the mean value theorem, the two maxima above can be estimated by max | D~|
and max | Dy~!|, respectively. We remark that a rigorous analysis would involve only lo-
cal relations of max |Dv| and max |D~~!|. The smoothness of « implies the assertion for
t = 0. We follow the same procedure for the H'-semi-norm:

[Pl = > / (gradg(Pyw))? drs

= max|(D%) (e,

(D)o T

< max|(Dy; )y,

/I(grads(v © V)2 dI

) (D)) o

< (max| (D37,
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which yields the desired result for ¢ = 1 by the same observations as above. For ¢ € (0, 1),
the assertion follows from an interpolation argument for operators, given for example in
|26, Thm. 12.1.5]. We note that, since the constant C' appearing in both estimates for
t =0 and ¢t = 1 does not depend on h, it also does not for ¢t € (0, 1). O

3.3.1 Momentum Preserving Modification

In this section, we derive a modification of the approach using linear discontinuous dual
Lagrange multipliers. In the sequel, if nothing else is particularly mentioned, the space
M, is always associated with these multipliers. From the viewpoint of efficiency, the
modification should preserve all the advantages of the dual approach. From the physical
point of view, it is important that the linear momentum is preserved in order to not add
any artificial surface tractions. Moreover, the good quantitative behavior of the standard
multipliers should be achieved. Therefore, we require that our problem formulation
satisfies the following properties:

P1) a diagonal matrix on the slave side,

P2) symmetry of the saddle point approach,

P3

preservation of linear momentum,

S

P5) preservation of quantities which are constant in normal and tangential direction,

P6

o N e e e

)
)
4) original formulation for straight interfaces,
)
)

preservation of the optimal asymptotic behavior of O(h).

The first two requirements suggest leaving the coupling of the slave side to the Lagrange
multipliers unchanged, i.e., the matrix D in (C22), and to symmetrically modify the
coupling of the master side to the Lagrange multipliers, i.e., M in (CZ2).

Formulation

We focus on a slave element 7® of the surface grid 7° with ng denoting the numbers of
its vertices. As in Section 242 we use the element matrices Drs and Myps defined by
23). Requiring that the modified Lagrange multipliers still preserve a lowest order
momentum, the modification A will be given in terms of

Agp, = dt — ¢d ! (3.5)

ppp q7qq *

It is obvious that (1, A¢,,)rs = 0, thus, a linear momentum will be preserved which
guarantees (P3). On T, any given discrete Lagrange multiplier € M), can be written
as plps = Z;’;l ay, i, with coefficients a, € RY, p = 1,...ns. Its modification Ap is
defined by

=1

Aplps = ZquAﬁbpq (Z(O‘p p) + ogb i))Abéig) ) (3.6)
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yielding the modified multiplier p™°¢ = g + Ap. In the formula above, the coefficients
Vpq are the elements of a modification matrix G € R™*" which has yet to be defined,
and Abgq) = bg) — bfj), 1t =1,...,d. Since the modification is given in terms of differences
of normal vectors at neighboring vertices, the requirement (P4) is met.
In order to motivate our choice for the modification Au, we introduce the matrix
N, € R¥™"s by
Ng=(n},...,n} ),

» Tong

where n} indicates the unit normal vector on I' in the slave node p, p = 1,...,ns.
Moreover, the symbolic vectors ®5 and Ag of length ng are given by

(I)S:( sl?"'v ZS)Tv AS:(Mla“-nuns)Ta

where, as before, ¢} and j, denote scalar nodal basis functions of the corresponding
spaces, p = 1,...,ns. With (P5), we require that the modification guarantees a discrete
preservation of quantities which are constant in normal and tangential direction. In
particular, we want to preserve these quantities when transferring between the trace space
W3 and the Lagrange multiplier space M),. This idea is motivated by the observation that
Zp n,¢; yields a quite good approximation of the normal field on I" whereas Zp Tpllp
gives a bad result as seen in Section Because of the duality between 1, and ¢}
this does not affect the surface traction on the slave side but on the master side. In
particular, focusing on the normal direction, this requirement can be expressed element-
wise by demanding that NgA; = N ®;. However, when usual dual basis functions are
used for M}, this cannot be achieved. But for our modification (B:6) with suitably defined
coefficients 7,,, we can show that

(N Ag)™d = N D, (3.7)

Lemma 3.2. Let the scalar dual basis functions be defined as in Section [2.4.3, namely,
A, = DTSMT’SICIDS. Then, the choice

1
G == §DTSM’]?51DTS (3.8)

yields (B1).
Proof. From (B6]), we observe that

(anp)m()d = [pTp + Z prqubpq(np - nq)a p=1...,n
q

which yields, using the symmetry of G, that
(NsAg)™ = NAs — 2N(G — Dg) D7 @

with a diagonal matrix D¢ defined by (Dg),p = > o Tpg- The definitions As = Drs M7 @
and (B8) imply

(NgAy)™ = Ny(Dps Mz — 2GD5 + 2D D7) &y = Ny(2Dg D7) b,
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We note that the row sums of Dps and Myps are equal,

(Drsl)y = (L @5)rs = Y (65, ¢5)rs = (Mps1),,  p=1,....n,,

q

yielding Dys MT_leTsl = Dps1, from which it becomes obvious that 2DgD;sl = Id, which
concludes the proof. O

We remark that for d = 2 and B, = (n,,t,), the choice G = $Drs My, Drs yields the
modification

1
Apy|rs = _§¢pq (o My + g - mg)Anyy + (o -t + g - ) ALy,) (3.9)
on the slave edge T® with endpoints p, q.

Analysis

The modification given in (B.6]) yields the saddle point problem

ah(uﬁlmd, ’Uh) + b?Od@)h, )\?Od) = lh<’l)h), vy € Xh, (310&)
O (u, ) =0, iy € M. (3.10D)

where b°4(-, -) indicates the modified coupling bilinear form, namely
bhmOd(,vha y’h) = (y’ha IUS)FZ - (IJ’IhI,lOda Psvm)f‘i; vy € Xha 1253 € Mh' (311)

As with the original approach described in Section 2332 we analyze ([BI0) as a per-
turbation of a problem of the form analyzed in Section 2311 By employing again the
isomorphisms Sx given in (Z247) and Sy, given in (Z53), together with their inverses Cx
and C,, respectively, and by setting

0" @, Fin) = b (CoxTn, Carfin), O € X, Jin € M,

we can equivalently reformulate (I0) as the problem of finding (u;™*?, A7) e (Xn, M, 1)
such that

T+ U@, NN = 1,(), s € Xa, (3.12a)

b;;mod<u;;mod7 ﬁh) — 0’ ﬁh c Mh- (312b)

an(u,™

Again considering the first Strang lemma (EZ56]), we observe that the consistency errors
in the stiffness bilinear form a(-,-) and the right hand side [(-) are already handled by
Lemmas EZT7 and ZT9, respectively. In order to provide a proof for the optimality of the
approximation property and of the consistency error in the coupling bilinear form b(-, -),
we aim to relate the two constrained spaces ‘7/1 and

Vit = {on € Xo W0, i) =0, fi € My} (3.13)
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3.3 Modifications for Curved Interfaces

in the same way as we relate Vj, and 17,{ in Lemma To this end, we proceed along
the following chain:

‘7]1 Lemma T8 V]; Cx Vh Lemma B3 thod Sx Vé,mod’ (3 14)

where the constrained spaces Vj, V;°d are defined by
Vi, = {’Uh € Xy bh('v,p,) =0, pe Mh},
ymed — Ly, € Xy b v,pu) =0, p e My}

In particular, we work on
thOd = {’U € Xh : (IJ’;N/US)Fi B (l'l';) + Al,l,;’ PS/UIH)I‘Z = 07 p € VS7 L= 17 c 7d} )

where V*® indicates the set of vertices of the slave side grid 7°. Moreover, p,;, = [1p€;
denotes the vectorial basis function of the Lagrange multiplier space M), in direction z;
associated with the slave node p, and Ap! stands for its modification according to (B5)).

Lemma 3.3. Let the modification be given by BH) and BXF). Then, for an arbitrary
v = (U, vs) € Vj, there exists Av € X, such that

v = v+ Av € Vod, (3.15a)
1Av|x, < CH P logliey, € (0,1], (3.15b)
[Avlors < CBY?|[ vy y2,0p, (3.15¢)
|v|lx, ~ lv™x, h small enough. (3.15d)

The analogous statement holds for arbitrary v™°¢ € Vmed,

Proof. Let Av € X}, be defined by

. A i, P’Um s
Av = (0 , Z (bjﬁp) , B, € R? with components B, = (B, B )F". (3.16)

pesyd (tp, &5)r=

By the norm equivalence ([A26]) and the inverse inequality ([A.28), it follows that

v =y + Av € Vmed (3.17a)

1|k, <Ch2 Y () (3.17b)
peEVSi=1,...d

IAv|§ s < CRTH > ()% (3.17¢)
peEVSi=1,...d

It remains to estimate the coefficients ﬁ;,. On a slave element T° € 7%, we obtain from
BH) for the Lagrange multiplier basis function Ap,;, i€{l,...,d}, associated with the
node p, that

d
AN;;|TS = Z'quAﬁbpq (Z(ei'bék))Abé?> : (3.18)
q

k=1
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3 The Vector Field Case

Due to the proper scaling of the difference A¢,, given by (B3), we can use the piecewise
constant L2-projection onto the slave elements, indicated by II,, and obtain, considering
the fact that the area of the support of y, and ¢ is O(h%=1), that

2

(52)2 _ ((A[L;, Psvm - HOPs’Um)Fi>
8 (r“p’ ‘b?a)ri
C @- )
< (h,dil)Q (Al'l']ﬂ Py — HOPsUm)OIi .

Setting I} = supp 1, we denote by 77 C T° the set of all slave elements 7® such that
I’ N T*® has a positive (d—1)-dimensional measure, and remark that |7?| < C. By using
the Cauchy-Schwarz inequality, it follows that, for ¢ € [0, 1],

(B < CN > I A@I[S o]l Povm — To Povmm[§ s

TseTr
< CO 2 Pvmlyrs [ Ay |I5 -

Considering ([B4)), (B3H), and the definition of G in (BH]), an investigation of the terms
appearing in (BI8) yields |[Apl |2 .o = O(h**!), and, therefore,
LR

(B < O Bw[ 1.

Summing up, the stability of the projection P, and (BI7H) imply (BI5H), and, choos-

ing ¢t = 1/2, (BI7d) yields (BI5d). The norm equivalence (BI5d]) and the analogous
statement of the Lemma follow by the same reasoning as in the proof of Lemma ZT0l []

With the following lemma, we complete the chain (BI4).

Lemma 3.4. For an arbitrary v, = (U, 05) € 17;1, there exists A%, ¢ X, such that

v =3y, + Amedy, e vmed (3.19a)
A%, x < ChTY2 0,0, t€[0,1], (3.19b)
1A%, lox < CH2Bml1jor, (3.19¢)
Tnllx ~ (07" x, h small enough. (3.19d)

The analogous statement holds for arbitrary 'v;;m(’d € Vh/’mOd.

Proof. Owing to the observation (Z79), it can be easily seen that

[vallx, ~ ISxvnllx,  |vklers ~ [(Sxvn)eler, va € Xp, t €[0,1], k =m;s,
(3.20a)

[Bnllx ~ ICx®Bhllx,,  [Bkler ~ |(CxO)lors, B € X, t €[0,1], k =m,s.
(3.20b)
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3.3 Modifications for Curved Interfaces

For the investigation of the last three connecting arrows in the chain ([BI4), we start
with v} € V; and obtain by using Lemma and the isomorphisms Sy, Cx that

/,mod
v, — v, =Cxv) — v =Cxv), + ACxv), — v;™ = v}, + SxACxv),
defining A™°? = Sy ACy, which gives

AT [x < CIACKvlIx < CRTY2(Cxv))mlerm < ChTY2 o,

m|t,F7

as well as

(A" )sllor < CIACxV))sllors < ChY2[(Cxv))ml1jarm < ChY?|uj[1j2r.

Incorporating the first connecting arrow in the chain (BI4), we now start with v, € Vi
and set by using Lemma .15

v = v+ AN = By + A, + AN, = Ty + (A AN + A))Dy,
defining A"m°d = A’ + Amed(Id + A’). With Lemmas and B3 this gives (BI090) by

| ABmodgs, || |ADy || x + [[A™Y(Id + Aoy || x

<
S Cht+1/2 (|;6m|t,F + |(A,6h)m|t,f‘) S Cht+1/2|6m|t,f‘a

since (A'"0p,)m = 0. Relation (B19d) is obtained the same way. Starting from (B.19b) and
following the same lines as in the proof of Lemma B3, we arrive at(B.19d]). O

Lemma 3.5. Let a(-,-) and V"™ be given by @) and @I3), respectively. There exists
a4 > 0 such that for h small enough

a(v;lmod ,v;lmod) > O/mOd”’U/mOdHX, /mod e V/mod (321)

/ d / d ~ 17 .
Proof. For an arbitrary v, € V,"™°, we choose v}, € V}, as in Lemma B4, and

observe, by using the cont1nu1ty of a(-,-) and (B.I9H), that

|a(On, A%)| < Cllon|[x [|A™ D] x < Chllvnlk-

With the fact that a(-,-) is coercive on \7h, which is a consequence of Lemma 7 and
Assumption ZT(b), and with (B.I9d)), this gives for A small enough

™) > (o OBy 2 0/
which is the desired result. t
Lemma 3.6. Let u € (Hy (Q))N]],_,(H*(2))? and V™o be given by BIF). Then
it holds that

1/2
inf = o < ch<z Hun;m) . (322)

l,modevl,mod

h h k=m,s
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3 The Vector Field Case

Proof. Follows the lines of the proof of Lemma O

Lemma 3.7. Let u € (Hyp () N[ ]j_p(H*(Q2%))? be the weak solution of (L3)-(LH),
and assume that X € M is defined by (LIQ). Let the coupling bilinear form b(-,-) and the
constrained space Vh"mOd be defined by B2) and [BI3)), respectively. For h small enough,
it holds that

1/2
b vl7m0d’ A
Sup ( 7mod ) < Ch(Z ||u||§,§lk> : (323)

smoteygmos [0 x o

Proof. Follows the lines of the proof of Lemma O
The same reasoning as in Chapter ] yields the following theorem.

Theorem 3.8. Let u € (Hy, (Q2))*N]Tj_p o(H*(Q2%))? be the weak solution of (L3)-(LH),

and assume that X\ € M is defined by (LID). Then the solution u? of BI2) satisfies
for h small enough:

I — wilx, < C(u)h.

Assembly of the Coupling Matrices

We provide a detailed account of how the modification () affects the assembly of the
matrix M from (Z68)) in two dimensions. We focus on a slave edge e and a master edge
em. The basis functions u§- = p;€; associated with the node p} are modified by

A 2\ Mo % 1 A 4 . .
A”j‘es:(/vl’]> d_lJ/] :_5 512 (njA’n—thAt), ZZSC;y) ] :172
With the endpoints pi* of the master edge en, we associate the basis functions ¢, =
orerle., k= 1,2, ¢ = x,y, which are extended by zero outside e,,. In addition to the
unmodified approach, one has to evaluate the integral

_(AM§7 Ps¢i)es
for the coupling of (p})™? with ¢.. Consequently, setting m; = (059, Psd)e,, the

following entries have to be added to the matrix M for the coupling of the node p;* to
the nodes p} and p5:

[ | (paf)med (pa)med (paz) ™ (p3)™t
L(ﬁi | (1—=mn1 -ny)myp (ng Xng)my  (ng-ne—1)my  (ng X ng)my, ) )
¢)Z | —('I’Ll X ng)mk (1 — N - ng)mk —(n1 X ng)mk (n1 Ny — l)mk

We note that ¢§, = £(u1 — o), thus, m; can easily be obtained reusing the information
from the original assembly process. Moreover, it is obvious that in case of a straight
interface, i.e., mq = no, the modification vanishes.
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3.3 Modifications for Curved Interfaces

3.3.2 Point-wise Algebraic Modification

In order to motivate our choice for the point-wise modification, we note that the discrete
system (C22) is for \; = A\, and D = D equivalent to

Ai Am A O 0 ul, fi
Ami Agm 0 0 DT | |uwm o
Ae 0 Ae DT oo ||w|=|r] (3.24)
0 —-M Dy 0 0 A 0
0 0 0 MY D, Am 0

The system above admits the definition of a discrete dual Lagrange multiplier on the
master side by
Am = =D *M7T), (3.25)

where the entries of the diagonal matrix Dy, are given by (1,¢;")r». Formally, (B24)
corresponds to a three field approach. The fluxes A\, and A satisfy a weak continuity
condition. We refer to [28] for more details. From (B.23), it can be seen that a Lagrange
multiplier Ay on the slave side which is constant in normal direction, yields a multiplier
Am on the master side which does not necessarily possess this property. In Section B2
this lack of preservation has been identified as the reason for the misbehavior of the dual
Lagrange multipliers. Our modification will replace M in ([B20) by a matrix M™°4, such
that quantities constant in normal direction are preserved.

Formulation

In the case of curvilinear interfaces, we cannot preserve quantities being constant in
normal direction and at the same time quantities being constant with respect to a fixed
coordinate system. This observation motivates our choice that we work with a non-
symmetric Petrov—Galerkin scheme, where we replace M in the last line of (B:24]) by the
modified matrix

M™d = BMBT, (3.26)

where B, € RMs@*Nsd and B, € RVNm?xNmd gre the block diagonal matrices with entries
B,s and B, n, respectively, i.e., each block consists of an orthonormal basis with one
basis vector being the unit normal vector associated with the corresponding node. By
Ny, we indicate the total number of finite element nodes on 7%, k = m,s. We note that
Dy, has the same block structure as By, with (d x d)-blocks of the form sld, s € R.
Therefore, we have that D_'B,, = B,D_!, yielding

Am = =D (BsMBI)' Ay = =B D' MBI )\,

which gives
BIAm =D 'MTBI),.

We note that the application of the rotation B to the coefficient vector )\ yields the
components in normal direction and with respect to the tangent plane in each node.
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3 The Vector Field Case

Thus, if )¢ is constant in a discrete way in normal direction and with respect to the
tangent planes, we have that BI\; € R can be written as ¢s = (a”,...,a")T with
a € R% Additionally observing that Dycy, = MTe, € RV»? with ¢, = (a¥,...,a")7,
we conclude with

B\ =c¢ <& Biln=cn (3.27)

Thus, the modification (B26]) guarantees that the normal and tangential components of
a vector field are transferred correctly between the master and the slave side in the sense
of (BZ7). We note that the mass matrix M in the fourth line of (B:24) is kept. Thus,
for the primal variable, we preserve constants with respect to a fixed coordinate system
whereas for the dual variable constants with respect to the normal direction are preserved
across the interface.

Analysis

Proceeding like in Section B3l we arrive at (BI0),[BI2), and have to relate the con-
strained spaces Vj, and Vo4 If we proceed along the chain (BI), it is sufficient to
show the third arrow analogous to Lemma The remaining arrows follow by the same
reasoning as in the proof of Lemma B4

Lemma 3.9. Let the modification be given by B28). Then, for an arbitrary v =
(U, vs) € Vi, there exists Av € X, such that

v = v+ Av € Vol (3.28a)
1A x, < ChY2||lvg|x,, (3.28b)
[Avor; < Chlvm|ory, (3.28¢)
o], ~ [[v™Yx,, h small enough. (3.28d)

The analogous statement holds for arbitrary v™°% € Vmed,

Proof. In terms of the scalar basis functions p,, the space Vj, can be written as
Vh = {’U € Xh . (Mpa [’U]h)pz = O, pE VS}

For v = (v, vs) € Xj with vy = 3 cpm ag'dy', vs = >y G505, we deduce from
B26) that
ymed — Ly e X, (up,'vs — Z Qpe0y’ Sgb;“) =0,pecV’
FS

geym

with @, = prsB;F,m. We note that, in terms of the reference orthonormal basis B, and
the Householder reflections H, and H, introduced above, we have that

Qpq = BpsBpm = H,B.BIH] = H,H, (3.29)
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3.3 Modifications for Curved Interfaces

thus, @),, is the rotation matrix which maps the orthonormal system B, ,, to the system
B,s. In the special case of a planar interface, ),, is the identity for all nodes and thus
Vi, = th"d. For v € V},, we define Av € X}, by

) (o B(Eon@n - 1000757))

Lo (3.30)

Av = <O, Z’ypgb;

pEVS ( ?}7 Np)F;

Using the duality (T24), it is easy to see that v™°¢ = v + Av € V™4, In particular,

(Mpa Z(ﬁz + 73)‘253 — P (Z qua;n(b;n))
5

qeVs qgeym

= 'Yp(ﬂpa Qb;)FZ + (:upavs — K (Z qua;n¢;n>>
I

qeym
h

= (,up,'vs—Ps'vm)F% = 0.

Using the equivalence of discrete norms ([A26]) and scaling arguments (A.28)), the con-
struction of Av by ([B30) implies that

1Av|%, <CRT2 Y "y, P A5 < OBy, (3.31)
peEVS peEVS
An estimation of the coefficients -y, gives
|'Yp|2 S C Z |a;n‘2Hqu - Id”c2>o7
qeypr,m

where VP denotes the set of all master nodes ¢ such that supp p, Nsupp ¢;' has positive
(d—1)-dimensional measure. Considering (B.29)) and the fact that B, = O(1), together
with applying assumption (B4, yield

1Qng = 1d[I%, = 1Bps By — Id[I3, = | Bys(Bym — B, o)ll5 = O(h%).

Summing up, we obtain

STl < o> e

peEVS qey™

By the same considerations as above, we have

Yo lag? < Ch Y vallf oy,

qgeym
and, therefore, taking into account (B3T]),

IAv]%, < Chllvw|k,.  and  [[Av|[5ry < CR?|vmllgrm,
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3 The Vector Field Case

yielding (B.28H) and (B:228d). The norm equivalence (B.28d) follows from (B.280) by the

same reasoning as in the proof of Lemma 3.3 as well as the analogous statements for
arbitrary v™°d € V;med, O

Unfortunately, Lemma, only admits a suboptimal approximation property for the
constrained space V4. We recall that a translation which is a rigid body motion in
linear elasticity is not in V;m°d. The main difference between Lemma and Lemma
is that we can exploit the fact that Ap is orthogonal on a constant with respect
to the L%scalar product. Thus the upper bounds (BI5H) and (BI5d) provide a higher
order than the bounds (B28H) and ([B28d), respectively. However, it is possible to derive
optimal a priori estimates by considering the non-symmetric Petrov—-Galerkin approach,
namely, to find u, € V}, such that

ap(up,v) = fr(v), v e Vel

For the above formulation, the approximation property is a standard result. It remains to
prove the wellposedness and to estimate the consistency error. We remark that Lemma
implies that dim V;™°d = dim V},, and, therefore, it is sufficient to prove the following
lemma for showing wellposedness, [39].

Lemma 3.10. Provided that h is small enough, there exists o such that

inf sup M > .
weVi yeymod [|wl|x, 0] x,

Proof. For w € Vj, set v = w + Aw € V™ with Aw given by Lemma This
yields

a'h(wvv) = ah(wvw)+ah(wvAw)
> allw|y, —Cllwlx,||Aw]x,
> (a—Ch'?)[|lw|,,

which gives the desired condition provided that h is small enough. U

We note that the implementation of this modification can be easily carried out. In
addition to M, we only have to compute for each node ¢ on the slave and on the master
side the local matrices B,. Working with a symmetric formulation, we cannot preserve
translations. Moreover for the symmetric approach only sub-optimal a priori estimates
can be shown. This results from the fact that we use a point-wise modification which does
not show L?-stability. The modification b"°4(-,-) can be also interpreted by replacing p
on the master side by u + Ap, where Ap is the sum of Dirac distributions.

3.4 Numerical Results

In the following, we present several numerical examples. First, we illustrate the effect
of the two modifications, where it turns out that they lead to almost the same results
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3.4 Numerical Results

as the method using standard Lagrange multipliers. We also show the robustness of
the modifications with respect to rotations of the grid and to the choice of the slave
side. Moreover, an example is considered where the surface tractions are constant in
tangential direction. We also present an analogous example in three dimensions. Finally,
an application to a two-body contact problem is investigated.

3.4.1 Effect of the Modification

As a first example, the effect of the modification is illustrated in Figure B7l The two
pictures in the left part show that, for the example considered in Section B2l the modified
approach yields a visually satisfying result in contrast to the unmodified method. This

1 NGRN
(a) (b) (C) discontinuous dual —+—
modiﬁcation 1 ...... > LTI
modification 2
—
© o1t
—
)
)
a0
—
=
o 0.01 ¢
0.001 . ‘ :
100 1000 10000 100000

degrees of freedom

Figure 3.7: Van Mises stress with (a) unmodified, (b) modified dual LM; (c) decay of the
energy error using standard, dual, and modified dual LM.

impression gets confirmed by the error decay shown in the right part of Figure Bl which
was derived in the same way as Figure The two modifications already improve
the results significantly for a very moderate number of unknowns. The measured errors
are for very coarse grids at most slightly worse than the ones from the method using
the standard LM. Apart from the coarsest grid, both modifications yield almost equal
results. We point out that all the benefits of the dual approach are preserved by the
modifications. As expected from the fact that the modification only enters with O(h%/?)
in the a priori estimates, the relative differences in the errors of the unmodified and the
modified approaches decrease as the number of unknowns increases.

3.4.2 Rotation of the Grid

In our second test, we investigate the behavior of the modified method under rotations
of the grid on the inner ring. The meshsize on the inner ring corresponds to an angle of
7/24, and we rotate the inner mesh by an angle of kr/144, k = 0,...,6, corresponding
to k/6 of the meshsize on the inner ring. In contrast to the above setting, the grid on
the master side is now not just a refinement of the one on the slave side for k =1,...,5.
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3 The Vector Field Case

The resulting deformed grids for £ = 1, 2, 3, are plotted in Figure 3.8 and a table is given
which documents the error measured in the energy norm. The modified method handles

angle | error

0 | 6.848-1072
7/144 | 6.847-1072
27 /144 | 6.845-1072
3m/144 | 6.844-1072
47 /144 | 6.845-1072
5m/144 | 6.847-1072
7/24 | 6.848-1072

Figure 3.8: Rotation of the grid on the inner ring by an angle of (a) 7/144, (b) 27/144,
(c) 3m/144.

the situation very well and yields convincing results. As expected from symmetry, the
results for £ = 0, 1,2, coincide with the ones for £ = 6, 5, 4, respectively. Our approach is
not at all sensitive to the applied rotation, the errors differ only in the fourth significant
digit.

3.4.3 Choice of the Slave Side

We carry out another test where the ratio of the number of edges on the inner ring to the
number of edges on the outer ring is out of {2:1,4:1,8:1}. In each case, once the Lagrange
multipliers are chosen with respect to the coarse (outer) grid, and once with respect to
the fine (inner) grid. For a robust method, we expect that this choice should only
moderately influence the numerical results. However, for the unmodified approach which
is illustrated in FigureB9)(a), it results in a huge difference. In contrast, the modification

0 0
(a) 10 g (b) 10
10 £ 10t E
107 £ 1072 .
102 10° 10* 102 10° 10*
degrees of freedom degrees of freedom

Figure 3.9: Different ratios of the mesh sizes: (a) unmodified dual, (b) modified dual
Lagrange multipliers.

yields a satisfying result, as shown in Figure B9(b). Only for the very coarse grids, there
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3.4 Numerical Results

is a noteworthy difference, which illustrates the stability of the modified approach. This
observation becomes especially important in the context of adaptive methods where it
is a priori not clear which side of the interface becomes the coarse (fine) one during the
adaptation process.

3.4.4 Tangential Surface Traction

In our last test, the surface traction on the inner boundary of ring €2 is chosen to be
constant in tangential direction, namely, g(z,y) = 0.5(—y,z)". The computational grid
is again the same as in Section B2 and the Lagrange multipliers are chosen with respect
to the coarse grid. In Figure B.I0, the deformed grids and the corresponding van Mises

Figure 3.10: Surface traction constant in tangential direction: (a) unmodified dual LM,
(b) modified dual Lagrange multipliers.

stresses are plotted for the unmodified and the modified approach. As in the preceding
examples, the original approach fails, whereas the modification yields visually a satisfying
and physically correct result.

3.4.5 Limitations of the Approach

Unfortunately, the positive effect of the modifications seems to be restricted to model
problems where the surface tractions on the interface are a linear combination of compo-
nents constant in normal and tangential direction. For more general situations, the mod-
ifications yield no improvement. As an example, we employ the same setting as for the
patch test in Section [, namely, as boundary conditions for the domain 2 = (0, 10)?, we
assume homogeneous Dirichlet conditions in z-direction on the left boundary {0} x (0, 10),
and in y-direction in the node (0,0). On the right boundary {10} x (0, 10), a constant
force of magnitude one is pulling in z-direction. All other boundary parts respect homoge-
neous Neumann conditions. The model of plane stress is used, with material parameters
E = 10" and v = 0.3, resulting in the linear exact solution w(z,y) = E~'(z, —vy)T.
This time, we use a decomposition of €2 into the circular disk 2°* of radius 2.5 centered
at (5,5)T, and the rest O™ = Q\ 5. The triangulation is chosen in such a way that
the ratio ¢, of slave edges to master edges is 1:4, as depicted in Figure BTl a). The
isolines of the z-component of the finite element solution w;, using standard, dual, and
modified dual Lagrange multipliers are shown in Figure BITI(b)—(d), respectively. While
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3 The Vector Field Case

Figure 3.11: Patch test with a curved interface: (a) triangulation, isolines of u, using (b)
standard, (c) dual, (d) modified dual Lagrange multipliers.

they are crossing the interface in a quite nice way in the first case, they are obviously
perturbed for the two other cases, and the modification does not improve this behavior.
This gets confirmed by the energy error, which is measured to be 6.9-107° for the stan-
dard approach, while it is 1.9-10~* and 2.3-10~* for the unmodified and the modified dual
approach, respectively. We note that for all three approaches, the energy error decays as
O(Rh*/?). Moreover, it the Lagrange multipliers are chosen with respect to the fine grid,
all methods give results of equal quality.

3.4.6 Extension to 3D

In order to present the effect of our modifications, we investigate a 3D example which is
analogous to the 2D example given in Section The global domain is a spherical shell
with inner radius r; = 0.9 and outer radius r, = 1.1, its material data given by £ = 1.0
and v = 0.3. The outer boundary {x € R?: || = 1.1} is fixed by enforcing homogeneous
Dirichlet boundary conditions, whereas on the inner boundary {x € R? : |z| = 0.9}, a
uniform radial pressure of magnitude -1 is applied. The symmetry of the domain and the
problem data yields the exact solution u(r) = a/r? + br, depending only on r(x) = |z|,
with b = 1/(3\p,+2pur,+4p1r3/r?) and a = —br3. In order to keep a full three-dimensional
setting, we exploit the radial symmetry only partially for the numerical simulation of the
problem, namely, by considering only the octant O, = {x € R® : z; > 0, i = 1,2,3}.
The interface I' is set to be the unit sphere intersected by O;, yielding the subdomains
O ={x € Oy : |z| € (r;,1)} and O* = {x € Oy : |x| € (1,7,)}. The additional
boundary conditions on the symmetry boundaries ¥; = (Q™ U Qs) N {x € R? : z; = 0},
1 =1,...,3, are given by u-n; = 0 and 0, = 0, where n;, = —e; is the corresponding
normal vector and o; indicates the tangential part of the surface traction o(u)n;. For a
detailed account on handling the Lagrange multiplier nodes on 3; N T, we refer to [50).
Visible but undesired oscillations occur only when the surface grid 7° on the slave
side is considerably coarser than the grid 7™ on the master side. To this end, we first
take a ratio of hs/hy, = 4/1, and the corresponding surface grids consist of 12 and 192
elements for 7° and 7™, respectively. In radial direction, we take two elements for each
subdomain, giving a total of 408 volume elements. In Figure B T2 the deformed domain
is visualized for four different approaches: the unmodified dual one, the modified ones
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Figure 3.12: Ratio hs/h, = 4/1, distorted domains: (a) unmodified dual, (b) modifica-
tion 1, (c) modification 2, (d) standard Lagrange multipliers.

as introduced in Sections and B33l and, as a reference, the one taking standard
basis functions. The solution of the unmodified dual method is subject to oscillations.
The two modifications give equally good results, the surface tractions and the displace-
ments, which are both constant in normal direction, are interchanged between the grids
in the expected correct way. We increase the ratio hs/h,, further to 8/1, taking 768
elements for 7™, and four elements in radial direction, giving 3120 volume elements.
The corresponding deformed domains are visualized in Figure For the unmodified

Figure 3.13: Ratio hs/h, = 8/1, distorted domains: (a) unmodified dual, (b) modifica-
tion 1, (c) modification 2, (d) standard Lagrange multipliers.

dual approach, the oscillations become worse, while the other three considered methods
remain stable. We remark that, although it is not backed up by our theory, also the
symmetric version of the first modification presented in yields good results, and,
like all other methods, exhibits an optimal error decay. For all examples that we have
tested so far, we could not experience any substantial quantitative difference between the
symmetric and unsymmetric variants of Section B.3.2 as well as the approach considered
in Section B:3Jl All modified approaches are in reasonable agreement with the method
using standard Lagrange multipliers. For the current example, these observations are
documented in Table Bl where we provide the concrete numbers for the errors measured
in the energy norm. As suggested by the oscillating deformations, the error for the dual
discontinuous multipliers is very large compared to all other methods which are in good
agreement with each other. If the Lagrange multipliers are chosen with respect to the
finer side, also the dual multipliers yield a good result in comparison with the standard
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3 The Vector Field Case

hs/hm | standard dual B3 nonsym. sym.
4/1 3.44e-02 7.76e-02 3.89e-02 3.72e-02 3.69e-02
1/4 3.29e-02 3.29e-02 3.28e-02 3.57e-02 3.46e-02
8/1 3.27e-02 9.30e-02 3.78e-02 3.61e-02 3.57e-02
1/8 3.22e-02 3.22e-02 3.22e-02 3.54e-02 3.41e-02

Table 3.1: Errors measured in the energy norm.

ones. For the first modification presented in Section B3l we illustrate the error decay in
the energy norm in Figure B.T4l compared with the standard and with the original dual
multipliers. The decays exhibit the same behavior as in the two-dimensional setting. The

(a) (b)
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Figure 3.14: Extension to 3D: decay of the energy error using standard, dual, and modi-
fied dual LM, (a) hs/h,, = 4/1, (b) hs/h,, = 8/1.

original dual multipliers result in a higher error which decays at a faster rate of O(h%/?)
in the beginning. The modification yields the desired effect, and the error decay almost
coincides with the one resulting from the use of standard multipliers. We emphasize
that the effect of numerical oscillations only occurs when the Lagrange multipliers are
chosen with respect to the coarse side. Thus, in this simple example, one could avoid any
complications by choosing the multipliers on the finer grid. However, in more general
settings, the ratio hys/hpm for two intersecting elements from the master and slave side
can vary drastically over the global interface I'. Moreover, the choice of the grid for the
Lagrange multipliers may be dictated by the problem formulation. Our modifications
introduced in Sections B:3.1] and admit the possibility to stay flexible and still keep
all the advantages of the dual approach.

3.4.7 An Efficient Solution Strategy for Contact Problems

In the following, we deal with the solution of problem ([CZ0). The setting is similar to
that of the example treated in Section The two bodies in contact are half-spherical
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shells, where the first one, 2™, with inner radius 1 and outer radius 1.3 is centered around
the origin (0,0, 0), while the second one, Q°, with inner radius 0.5 and outer radius 0.8 is
centered around the point (0,0, —0.2). Thus, the two bodies initially meet in the point
(0,0,—1). The material data is given by v = 0.3 everywhere, £ = 200 for Q™, and
E =600 for ©°. The outer boundary {x € 0Q™ : |x| = 1.3} of Q™ is fixed by enforcing
homogeneous Dirichlet boundary conditions, whereas on the inner boundary {x € 0Q° :
|z — (0,0,—-0.2)T| = 0.5} of %, a surface traction o(u)n(x) = (0,0, —500 exp(—20(z? +
73))) is applied. The symmetry of the domain and the problem data is exploited by
considering only the octant {x € R3 : z; < 0, i = 1,2,3}. In Figure BT3 the distorted
domains as well as the contact pressure are visualized. The considered method using

(b)‘

Figure 3.15: Two-body contact problem: (a) distorted domains, (b) contact pressure.

dual Lagrange multipliers yields reasonable results. No noticeable differences between
the two alternatives presented in Sections B23.2 and B3] could be observed.

The employed numerical solution process deserves special attention. We employ a
primal-dual active set strategy (PDASS), [72], in order to deal with the nonlinearity of
the contact condition ([LIJ). Starting from an initial active set, the PDASS checks in each
step the sign of the normal stress component for an active node to determine whether the
node stays active, and for an inactive node the non-penetration condition to determine
whether the node stays inactive. Proceeding like this, a new active set is calculated, and
the active nodes provide Dirichlet conditions and the inactive nodes give homogeneous
Neumann conditions for the linear system to be solved. The biorthogonality of the dual
basis functions spanning M,' is of crucial importance for the realization of the PDASS. In
particular, the weak formulation of the non-penetration condition, i.e., the third equation
of (CIY), naturally reduces to a point-wise relation which is easy to handle. Moreover,
the Lagrange multiplier can be efficiently eliminated yielding a positive definite linear
system for the remaining unknowns in each iteration step of the PDASS. Thus, suitable
multigrid solvers can be applied. Limiting the maximum number of multigrid iterations
per PDASS step yields an inexact strategy.
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4 Application to Acoustic Problems

In many technical applications a sensor or/and actuator is immersed in an acoustic fluid,
e.g., ultrasound transducers for non-destructive testing as well as medical diagnostic and
therapy, ultrasound cleaning, electrodynamic loudspeakers, capacitive microphones, etc.
Very often, the numerical simulation of the actuator mechanism within the structure is
quite complex, since in most cases we have to deal with a nonlinear coupled problem (e.g.,
the electrostatic-mechanical principle used in many micro-electro-mechanical systems),
where in addition to the nonlinear coupling terms each single field is nonlinear (e.g.,
geometric nonlinearity in mechanics, moving body problem in the electrostatic field),
[74]. Moreover, in most cases the discretization within the structure has to be much
finer than the one we need for the acoustic wave propagation in the fluid. A very similar
problem arises in computational aero-acoustics, when solving the inhomogeneous wave
equation according to Lighthill’s analogy, [82]. The inhomogeneous term of the wave
equation is calculated by the fluid flow data within the fluid region, and to obtain reliable
results, the discretization of the wave equation within this domain has to be very fine
(up to 1000 linear finite elements per wavelength). However, outside the flow region,
the homogeneous wave equation is solved, and one could have a relatively coarse mesh
(about 20 linear finite elements per wavelength), [7, [75]. The same situation also occurs
for the direct simulation of aero-acoustics, [107].

In this chapter, we face one common feature of these problems, namely that the compu-
tational grid in one subdomain can be considerably coarser than in the other subdomain.
In order to keep as much flexibility as possible, we intend to employ the framework es-
tablished in the previous chapters, namely to use independently generated grids which
are well suited for approximating the solution of decoupled local subproblems in each
subdomain. The analysis of numerical methods for the problems under consideration is
also subject of many research papers. In [I7], the authors analyze a purely displacement-
based problem formulation for the elasto-acoustic setting. A time dependent linearized
fluid-structure interaction problem involving a very viscous fluid and an elastic shell in
small displacements is examined in [8T]. In [60], a method is proposed for handling the
interface in finite element fluid-structure interaction based on Nitsche’s method. Con-
cerning both the acoustic and the elastic wave equation, iterative procedures based on a
decomposition into many subdomains and their discretization by means of finite differ-
ences are investigated in [99]. The coupling of spectral elements and finite elements on
non-matching grids for the solution of wave propagation problems is examined in [79]. A
suitable general functional framework for domain decomposition methods for the acoustic
wave equation is presented in [7], where, in addition, 2D algorithmic considerations and
numerical results restricted to the use of regular grids with a special mesh-size ratio of
1/2 are given. Moreover, a FEM-BEM coupling on non-matching grids in the context of
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structural-acoustic simulations is presented and tested in [41].

The rest of this chapter is organized as follows. Mainly to settle our notation, we
present the single field models for elasto-dynamics and acoustics in Section BTl In Section
HE2 we derive the coupled problem formulations. Numerical results are provided in
Section B3 while in Section B4l we investigate an extension to the case of nonlinear
structures and present a corresponding solution algorithm.

4.1 Single Fields

We introduce the single field problems of elasto-dynamics and of linear acoustics. They
constitute the extensions to the transient regime of the corresponding stationary prob-
lems treated in the preceding chapters. We provide the strong and weak continuous
formulations, the semi-discrete formulations obtained after space discretization, and the
totally discrete formulations after additional time discretization.

4.1.1 Elasto-dynamics

We investigate the deformation of an elastic body ¢ C R? with density p, : 2° — IR
under given time dependent volume and surface forces f and g, respectively, yielding
an extension of the stationary boundary value problem ([3))-(6) to a second order
hyperbolic initial boundary value problem. The boundary of €2¢ with unit normal vector
N, is the union of disjoint subsets Iy and I}, on which natural and essential data are
given, respectively. The strong formulation for linear elasto-dynamic problems then reads
as follows: given wug, uy, f : Q° — RY, find u : Q° x (0,7) — IR? such that

pett —divo(u) = f in Q° x (0,7), (4.1a)

with (L), (), boundary conditions analogous to (LH), namely,

u=0 onI§ x (0,7), o(u)ne=g only x (0,7), (4.1b)

and initial conditions
u(-,0) = ug, u(-,0) =u; in Q° (4.1¢)
For the weak formulation, it is natural to use the space X¢ = (H%S(Qe))d, and the

resulting variational problem reads: find w € L*(0,7;X¢), u € L?*(0,T; L*(Q¢)), and
i € L?(0,T; H *(Q°)) such that for all times ¢ € (0,7)

(pev, w(t))ge + ac(u(t), v) = ly(v) = (F(t), v)ae + (g(t),v)rs, v € X, (4.2)

together with initial conditions (f.Id). We employ the standard setting of Sobolev spaces
for evolution problems, the space L?(0,T; X®) is introduced in Definition In (£2),
(-, -)qe indicates the duality product on X°® x (X*¢)', and the bilinear form a.(-,-) is
defined analogous to (BI]). The analysis of the variational form of second order evolution
equations like (L2)) is subject of many textbooks, |34, 40, 83, M02]. The main condition
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for guaranteeing the wellposedness of the problem formulation is that the bilinear form
ae(-, -) satisfies a Garding inequality,

ae(v,v) = al|v|[ oo — Allv[[5 o,

with constants o > 0 and A > 0. It can be shown that the weak solution w is indeed
more regular with respect to time, namely,

u € C°([0,T]; X) N CH([0,T]; L*(22°)).

Performing a spatial discretization with standard nodal finite elements, we approximate
X*® by Xj. Given approximations wgp, w1, € X of the initial data ug, u;, we seek a
spatially discrete solution wy, : t — uy(t) € X such that

(Pevn, Wn(t))ae + ae(un(t), va) = li(vs), vp € Xj. (4.3)

Following [T02], an a priori estimate can be given, assuming that w € C?(0,T; X¢)
and under the simplifying condition that the bilinear form ae(-,-) is elliptic on X*®. In
particular, the discretization error e, (t) = u(t) — u,(t) at time ¢ satisfies

len(®)]l1.00 + [|€n(t)]lo.e
S lwon — Vrwol|1.0e + [[urn — Yhw||oqe

+ [Jut) = Vpu)|oe + [[a(t) = Cput)|ooe + /0 [i(s) = Wnir(s)llo.0e ds,

with the elliptic projection operator ¥, associated with ae(-,-). Thus, the error can be
bounded in terms of the error in the initial data approximation and of the projection
error. Under further assumptions on the spatial regularity of the solution u and its time
derivatives, each single error term above can be further estimated in the standard way,
employing the approximation property of the operator W, associated with the Galerkin
approximation of X by X;.

After introducing a basis of X7, we may write (L3)) in matrix form as

Myt (t) + Koun(t) = £, (1), (4.4)
or, more generally, as
Mty (t) + Cutn(t) + Kyun(t) = (1), (4.5)

with a damping matrix C,. Above and in the sequel, we use the same symbol for a finite
element function and its corresponding coefficient vector. Starting with (EX]), one can
employ a suitable ODE integration scheme, as for example Newmark’s method, [90, [73].
For the time discretization, we decompose the interval [0, 7] into subintervals [¢,,¢,1],
n=20,...,N, — 1, with t, = nAt, At = T/N;. In the time step corresponding to the
time ¢, 1, an equilibrium equation has to be satisfied, namely,

Mu'i:"nJrl + CuunJrl + KuunJrl = fn+17 (46)
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where w, 1, U,41, and 4,1 denote approximations of wp,(t,11), @y (tny1), and @y (t,41),
respectively. Given two parameters 5 and -, the defining feature of Newmark’s method
is to compute the approximations w,, and ., as functions of the displacements w1,

~

’l:’/nJrl(unJrl) = a1Upy1 — ’l:Ln, (47&)
~ y=B. =28,
U, = a1, + 3 W, + % U (4.7b)
i'l'n—l—l(un-l—l) = A2Up41 — ﬁ'na (47C)
= L. 1-20.
Uy = AUy, + ﬁAtu" + 23 ﬁun, (4.7d)

with a; = v/(BAt) and ay = 1/(B3At?). This admits to express (L) as a system of linear
equations in the remaining unknowns w1,

Kty = fry — Cuttn — My, (4.8)
with the effective stiffness matrix
K: = Ku + alC’u + CLQMu. (49)

Thus, in each time step a linear system of the form (Z8)) has to be solved. An appropriate
analysis is again carried out in [I02]. For the choice of parameters 5 = 1/4, v = 1/2, it
is well known that the Newmark scheme is unconditionally stable and of quadratic order
with respect to time. In more detail, assuming u € C?(0,T; X®¢) N C*0,T; L?(Q°)), we
have for the discrete solution u,, at time ¢,, that

[wn = u(tn)lloe S [lwon = Wnttolloge + lurn = Warnfloge + [lu(tn) = Waults) oo

tn
i / lii(s) = Unia(s)]lo.0e + A4 (5)]lo.0e ds,
0

where the superscript (4) indicates the fourth time derivative. If the approximation of
the initial data is performed well enough and if finite elements of order k£ are used, we
therefore expect a convergence order O(h*+1 + At?) for the L2-norm of the discretization
error.

4.1.2 Computational Acoustics

For the description of the acoustic wave propagation within a domain Q* C IR?, we use
the wave equation for the velocity potential ¢, i.e., v, = —grad ¢ with v, denoting the
acoustic velocity field. The acoustic pressure p, is then related to the acoustic velocity
potential ¢ by ‘

Pa = ,Oa@/) (410)

with p, : 9 — R the mean density of the fluid. Analogous to the elasticity setting,
the strong formulation for linear acoustics is an extension of ([LT]) towards an hyperbolic
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problem. Indicating with ¢ : 2* — IR the speed of sound, it reads as follows: given
f, Yo, 1 : * = R, find ¢ : Q* x (0,7) — IR such that

¢ 24p —divgrady = f in Q* x (0,7), (4.11a)
with boundary conditions
=0 onIf x (0,7), 0¢Y/On,=g onI{ x (0,7), (4.11Db)

and initial conditions

W(-,0) = 1o, ¥(-,0) =11 in Q. (4.11c¢)
In (@ITal), we denote by f any excitation function for generating the acoustic wave.
Setting X* = Hpe(0?), the weak form of II) reads: Find ¢ € L*(0,T;X?), ¢ €
L2(0,T; L*(0?)), and ¢ € L*(0,T; H*(Q*)) such that for all times ¢ € (0,7

(¢ 2w, P(t)) g + (grad v(t), gradw)ge = (f(1), w)as + (9(t), w)ra, we X?, (412)

together with (fLTTd). Spatial discretization by means of standard nodal finite elements
yields in matrix form

My, + Kyt = . (4.13)

Many applications within computational acoustics are open-domain problems, i.e., the
bounded domain 2* was obtained from an unbounded domain by introducing an artificial
boundary I'* in addition to [} and I'§. In order to correctly solve such problems with the
finite element method, we have to define appropriate boundary conditions on I'*. Simply
using homogeneous Dirichlet or Neumann boundary conditions would result in a total
reflection of the outgoing waves at the boundary. Therefore, special boundary conditions
have to be applied for absorbing the waves impinging on the artificial boundary imposed
on the acoustic domain. Here, we employ a widely used locally absorbing boundary
condition of first order (see [33, B8]),

(0/0t — cO/0ny) Y =0, (4.14)

where n, denotes the unit normal vector on I'*. We note that an extension of this method
to waves in solids (especially piezo-electric materials) can be found in [67].

To derive the correct formulation including the absorbing boundary condition as given
in (LI4), we start from the weak form (see (BL12)) without setting the boundary integral
on I'* to zero

(72w, Ph(t))ags + (grad ¥ (t), gradw)gs — (w, grad 1h(t) - na)ra = L(w), w € X?, (4.15)

where we set [;(w) = (f(t), w)aa + (g(t), w)ra. Substituting [{LI4)) into (I3 results in

(2w, P(t))qa + (gradw, grad (t))qa — (¢ tw, 7w () Yra = I ,(w), w € X?, (4.16)

where o : H'(Q?) — H'Y2(09?*) denotes the usual trace operator, see Theorem [A-T3 We
remark that one may not change the order of taking the trace and of differentiating with

87



4 Application to Acoustic Problems

respect to time, since w(t) is an L2-function in general which does not allow for a trace in
the usual sense. The additional surface integral may be seen as a damping term acting
only on the surface of the computational domain. The character of the acoustic problem
(E10) is the same as the one of the elasto-dynamic problem (fZ2)). Besides having to take
into account the additional surface integral, its analysis is completely analogous. In [7],
it is shown that

e CO0,T5 X% N CHO, T LA(QY),  Fo0 € L0, T: LA(I™)), (4.17)

and that 1 depends continuously on the data f, g, g, 1, with respect to the appropriate
norms.
The spatial discretization of (EI6) leads to

My, + Cytdn + Kythn = fi, (4.18)

and for the time discretization one can also apply a Newmark scheme. In analogy to
(X)), one obtains

quwn-f—l = fn+1 - Cqubn - Mw’&nv

where 1, , 1, and K are given analogous to ({L.7Dh), (L.7d]), and (E), respectively.

4.2 Coupled Systems

In the following, the coupled problems of elasto-acoustics and of acoustics-acoustics are
presented. For each system, we first focus on the interface conditions. They are quite
different from each other: for the mechanical-acoustic system, the time derivative of the
Dirichlet data from one side is coupled with the Neumann data from the other side,
while for the acoustic-acoustic coupling, the Dirichlet data from both sides as well as
the Neumann data from both sides are coupled in the usual way. After presenting the
interface conditions, we observe how they enter into the variational formulations. The just
mentioned difference results in the fact that for the purely acoustic system, the coupling
is performed via a Lagrange multiplier space exactly as in the preceding chapters, while
for the fluid-structure problem, there is no need for introducing additional unknowns.
Subsequent to the continuous weak formulation, the semi-discrete problem obtained after
spatial discretization is presented for each system.

4.2.1 Coupled Mechanical-Acoustic Systems

In general, we distinguish between two situations concerning mechanical-acoustic sys-
tems. In the first case, a strong coupling between the mechanical and the acoustic field
occurs, requiring that the corresponding equations including their couplings have to be
solved simultaneously. A typical example is a piezo-electric ultrasound array immersed in
water. If, however, the pressure forces of the fluid on the solid are negligible, a sequential
computation can be performed, leading to a weak coupling. Thus, in a first simulation
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the mechanical surface vibrations are calculated, which are then used as the input for an
acoustic field computation. For example, the acoustic noise of an electric transformer,
generated by the vibration of the windings, can be obtained in this way. In our case, we
will concentrate on the strong coupling.

Solid-Fluid Interface

At a solid-fluid interface I', as depicted in Figure E}a), the continuity requires that
the normal component of the mechanical surface velocity of the solid must coincide with
the normal component of the acoustic velocity of the fluid. Thus, the following relation
between the velocity v, of the solid expressed by the mechanical displacement u and the
acoustic particle velocity v, expressed by the acoustic scalar potential v arises:

0 = n(ve—v,) = na + n-gradyy onT x (0,7), (4.19)

where m is the unit normal vector field on I'. In addition, one has to consider the fact
that the ambient fluid causes a surface force fr = —mp, = —p.ni, see ([{EIN), which
acts like a pressure load on the solid. Therefore, a second coupling condition is given by

o(u)n + pnip = 0 onT x (0,7). (4.20)

Coupled Field Formulation

Let us consider a setup of a coupled mechanical-acoustic problem as shown in Figure
ET(b), where at the interface I' we have to consider the solid-fluid coupling. Now, within

(a)

v

n Fluid

Solid

Figure 4.1: (a) solid-fluid interface, (b) setup of the coupled elasto-acoustic problem.

the domain Q¢ the initial boundary value problem (EII) for the mechanical field, within
the domain Q? the initial boundary value problem (EIT) for the acoustic field, and along
the interface I' the coupling conditions according to ({19) and (E20) have to be satisfied.
Transforming to the weak form, assuming for the moment that homogeneous Neumann
data is given on I'*) we obtain for the mechanical system

(pev, U(t))qe + ac(v,u(t)) — (v, o(u(t))n)r = l:(v), (4.21)
and for the acoustic system
(¢ 2w, ¥(t))ge + (grad w, grad(t))qs + (w, grad(t) - m)p = 0. (4.22)
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In (@22), we have set the excitation f inside Q* to be zero, since in the coupled case
the mechanical vibration of the surface acts as an excitation for the acoustic field. It
should be noted that the plus sign in (E22) in front of the first boundary integral over
I is due to the choice of n to point outward with respect to the structure €2°, see Figure
ET(b). Incorporating the coupling conditions ({LI9) and (E20), we arrive at the following
coupled system of equations

——
(o, (1)) + ae(1(1), ©) + (pav, 00D )r = L(w),  (4.23)
(¢ 2w, P(t))qa + (grad ¥(t), gradw)ga — (w, You(t)-n ) = 0. (4.24)

Before we perform a domain discretization, we multiply (24 by —p, in order to obtain
in ({24)) a boundary integral similar to the one in ({23]). Thus, the matrices, occurring
from an FE - discretization of these two boundary integrals, will be the transpose of each
other and hence symmetry of the system matrices can be obtained. We finally arrive
at the variational problem of finding (u,v) € L*(0,T; X x X?) such that for all times
te(0,7)

——
(e, W(t))qe + ae(u(t), v) + (Pav - 1, YY(t) )r = li(v), v e X®, (4.25a)
(2 paw, Y(t))aa + aa(path(t), w) — {paw, You(t)-n)p = 0, w e X® (4.25b)

In contrast to the problem settings considered before, no additional Lagrange multiplier
has to be introduced.

We remark that an alternative coupled problem can be derived, if, instead of the
potential-based formulation, a displacement-based problem formulation is chosen also
for the fluid domain. A rigorous mathematical error analysis is provided in [I7] for the
case of matching grids which could be extended to the non-matching situation. There,
due to the displacement-based formulation, the weak form of the subproblem for the fluid
is an H4-problem requiring a non-standard discretization by means of Raviart-Thomas
finite elements. Here, we are able to use standard Lagrangian nodal finite elements in
both domains.

Spatial Discretization

For the spatial discretization, we use two independently generated triangulations 7, and
7, on ° and ?, respectively, and approximate the displacement uw on 7, and the po-
tential ¢ on 7, by finite elements. The two triangulations inherit two (d—1)-dimensional
grids 7€ and 7° on I'. Due to the flexible construction of both grids, the finite element
nodes on 7° and 7* will in general not coincide. On the contrary, motivated by different
spatial scales required for the resolution of the local subproblems, the difference in the
mesh sizes can become quite large.
The discretized version of (Z3), (EE24) reads in matrix form

() (@) (e ) () (0 ) (2)-(0)
L]+ ]+ = , (4.26)
0 —My) \y Cry —Cy) \tn 0 —Ky) \¥n 0
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where the damping matrix Cy, resulting from the absorbing boundary condition (fI4)) has
been included again. The block diagonal entries M, M, Cy, K,, Ky can be assembled
locally without needing to transfer any information across the interface. The coupling
between the two grids is represented by the matrices C,, and C’;Fw which realize the
boundary integrals in ({L23]) and ([24]). Their entries are given by

Cuyp = [Cpql; Cpy = / pa Pppgndl’ € R, (4.27)
13

where ¢7 is the scalar basis function associated with the node p on 7°, and ¢ is the
one for node ¢ on 7?. Thus, the same assembly procedures as in the case of the mortar
coupling can be used. It should be emphasized that the coupled system of equations
remains symmetric. This is not the case if instead of the acoustic velocity potential an
acoustic pressure formulation is used.

4.2.2 Acoustic-Acoustic Coupling

For this type of coupled problem, we will use the framework of mortar methods as studied
in the previous chapters. The global domain and its decomposition are again given in
Figure 1] but this time both subdomains Q! and Q? (replacing Q¢ and Q?, respectively)
are occupied by an acoustic fluid. Thus, in each subdomain we have to solve the wave
equation for the velocity potentials v; : Q° x (0,7) — IR,

c2ap; —divgrady; = f; in Q' x (0,7), i = 1,2, (4.28)

again completed by appropriate initial conditions at time ¢ = 0 and boundary conditions
on the global boundary I"*. We emphasize that, in contrast to Section EE2Zl all of the
following considerations apply equally to the formulation of the linear acoustic equations
in terms of the acoustic pressure.

Interface Condition

For simplicity, we use the same equation and primal variable in both subdomains, and
the interface is just artificial, i.e., no material change occurs. We refer to [, [[9] for the
treatment of more general situations. Therefore, in the strong setting, it is natural to
impose continuity in the trace and flux of the velocity potential, i.e.,

Y =19 and grady; -m =gradyy-m on I

Analogous to the stationary case treated in Chapter ] the flux coupling condition will
be enforced in a strong sense by introducing the Lagrange multiplier

A= —grady; -n = —grads, - n, (4.29)
whereas the continuity in the trace will be understood in a weak sense as

b(v, 1) = (Y1 — P2, w)r =0, (4.30)
for all test functions u out of the Lagrange multiplier space M = H~/2(T").
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Coupled Formulation

We proceed as in Section ELZ] and obtain from ({28, again ignoring for the moment
the boundary condition on I'?,

(cw;, Pi(t))or + (grad ¥y (t), gradw;)gi — (w;, grad ¥y(t) - ma)r = (fi(t), wi)as,

for all test functions w;, ¢ = 1, 2. Inserting the definition of the Lagrange multiplier (Z229)
and summing up, we obtain the symmetric evolutionary saddle point problem of finding
= (Y1,9) € L*(0,T; X) and X € L?(0,T; M) such that for all times ¢t € (0,7

(cPw,d(M)e + al@(t),w) + bw A1) = (f(t),w)e, weEX, (4.31a)
b((t), 1) =0, € M. (4.31Db)

A suitable general functional framework for (E3T]) is presented in [7], consisting of a
combination of the theory of evolutionary variational equations, [34], and the theory of
stationary saddle point problems, [27]. In particular, the same regularity (EI7) as for the
purely primal formulation (ZI6]) can be established subdomain-wise for ¢). The Lagrange
multiplier A can be interpreted as a linear mapping from H}(0,T) to M. Both 1) and A
depend continuously on the data with respect to the corresponding canonical norms.

Spatial Discretization

Again switching to the algebraic formulation and assuming that we have chosen the
Lagrange multipliers with respect to Q!, the discretization of ([E3Tal), (E31H) yields

M, 0 0 Vip 0 0 0 @Z)l,h K, 0 D (W Jin
0 My O [thop | +]0 Cyp O | thos [+ 0 Ko M| | ton|=|rfon
0o o o \3 o 0o o \3 pT M o) \ \ 0

The coupling matrices D, M are given by (L23)), the damping matrix C), results from the
absorbing boundary condition (EI4)) on I'®. In [7], a rigorous error analysis is presented.
Assuming enough smoothness of the potential ¢, namely, ¢» € L*(0,T; H*(1)), =
L>(0,T; HY()), ¥ € L*(0,T; L*(2)), and of the Lagrange multiplier \, namely, A €
L>(0,T; HY(T')), A € L?(0,T; L*(I")), it can be shown that the approximation error
efr = Uyt — 1)y, can be bounded by

HeﬁH%O(X) + HéﬁH%O(L%Q)) + H’Voéﬁ”%%m(ra))

< e )% + Héﬁ(O)HaQ initial data approximation,
+ 11 = CallEo ) + 19 — Unt 172220y projection error in 1,

+ [0t — Y0¥ o2y + 108" — Y0Watill72(z2ry)  Projection error in yo1),

+ X = ®uA|Zooary + I\ — (I)h)"”%ﬁ(M) projection error in A,

with suitable projection operators ¥, and ®,.
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4.3 Numerical Results

We present several numerical experiments for the elasto-acoustic and aero-acoustic cou-
pling. In order to focus on the features of the nonconforming approach, many of the
problem settings are kept quite simple. In particular, for the aero-acoustic coupling, we
will not perform a numerical approximation of the fluid flow equations, and instead only
consider the application of Lighthill’s analogy, namely that a nonzero right hand side
is entering the acoustic wave equation. Moreover, for the presented examples, it would
often not be necessary to resolve the small subregion with a finer grid than the large one.
However, as outlined in the introduction, we are interested in problem settings where it
is mandatory that the mesh on the small subdomain is substantially finer than the one
on the large subdomain. This may be due to the need for resolving small-scale nonlinear
effects or complicated geometries.

In Section L3l we investigate the elasto-acoustic coupling, whereas results for the
aero-acoustic coupling are presented in Section In all numerical experiments, we
use the Newmark scheme for time integration with parameters § = 1/4, v = 1/2. In
each time step, the resulting linear system is solved exactly. Since we do not have any
moving bodies involved, the system matrix which has to be inverted is the same in each
time step. Thus, it is possible to factor this system matrix only once, and then to reuse
the factorization in each step.

4.3.1 Elasto-Acoustic-Coupling

Four examples for the mechanical-acoustic system are presented. First, a simple two-
dimensional setting is considered in order to validate the nonconforming approach. Then,
we demonstrate by means of an axisymmetric problem, how the numerical results may be
of poor quality, if one has to employ distorted elements for achieving matching interface
grids, in contrast to the use of structured grids made possible by dropping the matching
requirement. Following this, we demonstrate the gain in flexibility for the nonconform-
ing approach by investigating the emission of acoustic waves from several cylindrical
structures. Finally, we present the simulation of a piezo-electric loudspeaker.

Two-dimensional Example

We start with a two-dimensional example. For the fluid domain Q* = (—0.05,0.06) x
(0.001,0.1) m?, the parameters of air are taken, ¢ = 343m/s, p, = 1.205kg/m3. On the
lower edge of Q2 we append the structure 2° = (0,0.01) x (0,0.001) m? consisting of
silicon, £ = 1.62:10" N/m? v = 0.2, p, = 2.3-10°kg/m3. The structure Q2° is fixed on
its left and right edge, on its lower edge a pressure force g is acting with a frequency
f = 1000Hz, g(t) = (0, 10°sin(27 ft))T N/m?2. A time step size of 10us is used and we
apply a plane strain formulation for the mechanical structure.

We compare the results obtained with conforming grids with the method using non-
conforming grids. In Figure L2 a zoom of the computational grids is shown on the left.
For both calculations, the grid on 2° consists of 64x16 uniform quadrilateral elements.
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Figure 4.2: 2D example: (a) grid, (b) acoustic velocity potential, (c) deformed structure.
Top row: conforming grids, bottom row: nonconforming grids.

For the nonconforming approach, the grid on 2* has 44 x40 elements, yielding a ratio of
the mesh size on * to the one on 2° of 16:1. In order to achieve a truly nonconforming
situation, the nodes on the lower edge of (2* meeting (2° were also moved slightly to the
left. For the conforming approach, the “unperturbed” grid on 2* was manually refined
four times in the region meeting 2°. The pictures in the middle show the isolines of
the acoustic velocity potentials after 15 time steps, the pictures on the right the von
Mises stresses on the deformed structures with displacements magnified by a factor of
500. The results for both calculations behave equally well, no qualitative difference can
be detected. This example reveals the clear advantages of the nonconforming approach.
For the generation of a subdomain grid, no information from the other subdomain has to
be used. We are able to use the grids which are best suited for the solution of the local
subproblems. Moreover, if one attempted to move the structure 2° to the left or right,
it would not be necessary to remesh the fluid 2* and to reassemble the corresponding
mass and stiffness matrix. Only a reassembly of the coupling matrices would have to be
performed.

Axisymmetric Problem

As a further test, we consider an axisymmetric problem. The structure ¢, a cylin-
drical plate of radius 0.2m and height 0.01m, is subject to a pressure force g(t) =
(0, 0, 10%sin 27¢)T N/m? acting on its bottom for the time interval [0, 1ms]. For the
acoustic fluid 02, we choose the cylinder of radius 1.4 m and height 0.7 m, attached to §2°.
Via transformation to cylindrical coordinates, we reduce the originally three-dimensional
problem to a two-dimensional one. We compare the calculations for four different grids,
as illustrated in Figure For the structure €2°, we always use a grid consisting of
48 x4 elements. In order to have a reference solution available, we choose a rather fine
uniform grid of 11025 elements for the fluid 2*. For the other three grids, we choose
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Figure 4.3: Axisymmetric example, computational grids: (a) reference, (b) and (c)
matching, (d) non-matching.

roughly the same number of elements (around 3100), assuming that this is the maximum
number because of memory restrictions. We test two situations with matching grids and
one with non-matching grids. The isolines of the velocity potential at time ¢t = 1.3ms
for the four calculations are shown in Figure L4l The two conforming situations give

(d)

a) (b)
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{y/
{%ﬂ%wa
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Figure 4.4: Axisymmetric example, isolines of the acoustic potential: (a) reference, (b)
and (c) matching, (d) non-matching.

rather rough unphysical solutions, while the nonconforming one remains quite smooth.
Of course, there might be matching grids yielding better results than the ones which are
shown. But the advantage of the nonconforming approach is that the user does not have
to worry about these issues and can choose optimal grids with respect to the subdomain
geometry and the available computational resources.

Excitation by Multiple Structures

As a first real three-dimensional example, we present the emission of acoustic waves by
multiple structures which admits the steering of the waves by exciting the structures in
a specified chronological order. In particular, we use for the structure Q¢ 25 cylindrical
silicon chips with diameter 50 um and height 1 pm. They are placed as a (5 x 5)-array,
each plate having a distance of 50 um to its nearest neighbors. An excitation force
with frequency f = 1MHz is applied on their lower end. For the acoustic domain
* which is assumed to be water, a cuboid of length and width 1200 um and height
420 pum is chosen. Due to symmetry reasons, we use as computational domain one quarter
of the original one. In Fig. EH(a), a part of the finite element meshes is shown, for
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Figure 4.5: (a) cylindrical plates attached to the fluid domain, (b) isosurfaces of the
acoustic potential, deformed plates

which a uniform grid of 40x40x28 cubes is used to discretize the acoustic domain and
a grid of 768 hexahedrons is employed for each full cylindrical chip. Thus, having a
meshwidth of h, = 600 um/40 = 15 um, we use ¢/(fh,) = 1500ms~!/(1 MHz-h,) = 10
elements per wavelength for Q?. If one had to employ matching grids, it would be quite
difficult to generate them, and if the mesh-width could not be very small over the whole
domain, the resulting element shapes would possibly result in a poor approximation of the
solution. The nonconforming approach admits to use the grid desired for each subdomain
regardless of the grids for the other subdomains. Moreover, it is very easy to add more
plates or to change their position. Only the corresponding part of the coupling matrix
would have to be (re-)calculated. Figures and EE7 show snapshots, taken every 10
time steps of 3.5ns, of the evolution of the acoustic velocity potential ¢/ along with the
deformation of the structures (magnified by a factor of 1000). For the results presented
in Figure L8l the cylindrical plates are excited simultaneously, while for Figure L7, they
are excited successively. For both calculations, the waves emitting from the structures
add up as expected to constitute the superposed global sound beam. Given a target point,
it is possible to optimally steer the acoustic wave towards this point by appropriately
adjusting the chronological order of excitation of the silicon chips. This principle is used
in so-called capacitive micro-machined ultrasound transducers (CMUTs), [76]. There,
the deformation of the structure is induced by an electrostatic surface force acting on
the boundary. We will address a similar electric-mechanical-acoustic system in the next
example by means of a piezo-electric structure, where a volume coupling of the electric
and the mechanical field is considered via the constitutive law.
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Figure 4.6: Evolution of the acoustic velocity potential and of the deformed structures,
synchronous excitation: snapshots after 10, 20, ...,80 timesteps.
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Figure 4.7: Evolution of the acoustic velocity potential and of the deformed structures,
successive excitation: snapshots after 10,20, ...,80 timesteps.
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A Piezo-electric Loudspeaker

In our next example, we choose a piezo-electric material for a part (0P of the structure €2°,
where mechanical quantities interact with an electric field. The new additional unknowns,
namely, the electric potential ¢, the flux density d, and the electric field e, correspond to
the displacement u,, the stress o}, and the strain €, respectively. While the evolution of
the mechanical displacement w,, is still governed by the equilibrium of forces (ETIal), we
have to satisfy a second partial differential equation realizing the conservation of electric
charge. Moreover, the coupling between the electrical and the mechanical part takes place
within the constitutive relations and is characterized by the elastic stiffness tensor C, the
piezo-electric tensor B, and the dielectric permittivity tensor £. Overall, the following
coupled problem formulation is obtained: Find (up, ) : QP x (0,7) — R%*! such that

oty — div op(up, @) = f,
divd(u,, p) =g,
ap(up, ¢) = Cep(uy,) + BT grad ¢,

) = Bep(u,) — Egrad ¢,

where the strain e,(u,) is given by (L), complemented by appropriate boundary and
initial conditions, [4]. The piezo-electric part () is attached to an aluminum part (4
such that Q¢ = Qp U Q4a, as depicted in Figure For 24, we seek the displacement u,

(a) 2] (b) |

aduminum 0.25mm

0.0

Figure 4.8: Piezo-electric loudspeaker: view of the (a) (x,y)-plane, (b) (x, z)-plane.

as solution of the standard model of linear elasto-dynamics (fTal), (C4), and (LC3H). The
coupling between (P and (29 is again realized by the mortar approach as carried out in
Chapter Bl For this particular example, the piezo-electric part 2P is chosen to be the lead
titanate zirconate composition PZT-5 with density p, = 7.75025-10° kgm 3. The elastic
stiffness tensor C, the piezo-electric tensor B, and the dielectric permittivity tensor £ are
given in Voigt notation [I16]| by

C11 C12 (13 0 0 0 0 0 b31
C12 C11 (13 0 0 0 0 0 b31
c13 c13 3 00 0 0 0 b ew 00
C = 13 13 33 , BT — , E = 0 e11 0 ,
0 0 0 C44 0 0 0 b15 0 0 0 e
0 0 0 0 cu 0 bis 0 0 33
0 0 0 0 0 (611 — 022)/2 0 0 0

where

c11 = 1.26-10"Nm™2, ¢ =c¢13 =841-101°Nm™2, ¢33 =1.17-10" Nm~2,
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cay =2.310°Nm=2, b3 = —6.5Cm 2, bss = 23.3Cm~ 2,
bis = 17Cm2, e11 = 1.51-1078CV Im™!, e33=127-10°CV ' im1

For the aluminum membrane 9, we have the density p, = 8.4-10°kgm~ and the Lamé
parameters \;, = 2.30769-101° Nm~2, u, = 1.53846-10'° Nm~2. The membrane Q9 is
fixed at all of its thinner sides as visualized in Figure .8 while the remaining boundary
of the composed structure 2° remains free. Between the lower and the upper end of the
piezo (P, a potential difference Ap(t) = sin 27 ft of frequency f is applied by means of
a Dirichlet boundary condition for the electric potential ¢.

From the geometry dimensions given in Figure L8 it can be seen that the ratio of
length to thickness is 160 for the aluminum part Q4 and 600 for the piezo-electric part
QP. From this large ratio, a strong locking effect has to be expected. We investigate
this locking effect by comparing the results of the motion under a constant potential
difference Ay = 1 obtained by using piecewise trilinear elements with the ones from
employing Serendipity elements. In order to have a more uniform element quality in
terms of the ratio h/d of length to thickness, we start with 2x2 elements in Q% and 4x4
elements in (P, and perform a uniform refinement procedure only in (x,y)-direction,
thus, always using only one element in z-direction. In Figure EE9(a), the frequency of
the resulting motion at the barycenter py of the upper boundary of Q9 is plotted, while
in Figure 9(b), the maximum vertical displacement of the same point is visualized,
both times against the maximum ratio h/d of the employed elements. The results for

(a) ‘ | ‘ linear —— (b) 1005 | linear —— |
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Figure 4.9: Comparison of linear with quadratic elements: (a) frequency, (b) vertical
displacement in py against the maximum ratio h/d of the elements.

trilinear elements clearly exhibit the typical signs of locking, namely, an overestimation
of the frequency, an underestimation of the displacements, and a very slow convergence
towards the correct values. In contrast, a rapid convergence can be observed if the
quadratic Serendipity elements are used. Thus, in order to avoid locking, we discretize the
structure by Serendipity elements in this example. We remark that there exist numerous
alternatives for reducing locking effects for lowest order elements, [23], 112, [TT4].

In the following, we investigate the elastic response of the structure to applied poten-
tials of the form Ap(t) = sin(27 ft) with different frequencies f. The finite element mesh
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is kept fixed at 16x 16 elements in (2P and 8 x8 elements in {29, corresponding to the value
h/d = 37.5 in Figure In particular, we examine the applicability and the effect of
introducing a damping matrix C, in the formulation (H), which should be responsible
for the damping of undesired eigenmodes. We use the easy model of Raleigh damping
which is characterized by C, being proportional to the mass and stiffness matrices, i.e.,
C, = aM, + BK,. At first, a low frequency f = 50Hz is considered. Performing 200
time steps of size At = 5-107%, the vertical displacement at py is recorded and depicted in
Figure LT0(a). The dashed line corresponds to the undamped formulation. The applied
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Figure 4.10: Vertical displacement at py for different frequencies of excitation: (a) 50 Hz,

(b) 500 Hz.

frequency is well below the first eigenfrequency which has been determined by the last
test to be at roughly fy, = 720 Hz, as depicted in Figure EE9(a). While the time step size
is motivated by the applied frequency, it is too large to fully resolve the effects of the
eigenmodes, a feature which is clearly desired in this particular context. The remaining
influence can be easily damped out, resulting in the solid line exhibiting a stable sinu-
soidal motion. Here, the damping parameters are set to o = 2.51-10%, 3 = 1.59-10~* in
P, and to o = 1.63-10%, 8 = 1.03-10~* in Q9. The influence of the eigenmodes increases
considerably for the next applied frequency f = 500 Hz, which is in the same range as f.
As visualized in Figure EET0(b), the undamped motion is clearly disturbed by the lowest
eigenmode. Nevertheless, it is still feasible to extract a stable sinusoidal motion at the
applied frequency by employing the Raleigh damping. While the parameter 3 has been
left unchanged, the parameter o has been increased by a factor of 10.

The situation becomes more critical if f is chosen to be greater than f,. As an example,
we consider f = 5000 Hz. The resulting vertical motion of py is given in Figure LTIl As
before, the overall motion is a superposition of motions of different frequency. However,
the frequency f we want to extract is now truly in between several eigenfrequencies, and
not the lowest one like in the examples before. By manually adjusting the parameters «
and [ of the classical Raleigh damping, it seems impossible to extract a desired stable
sinusoidal motion at the applied frequency. The solid line in Figure EZTT] corresponds to
the result of the damped formulation with o once more increased by a factor of 10 and 3
decreased by a factor of 10. Obviously, a more sophisticated strategy is needed to damp
out eigenfrequencies which are lower than the applied frequency. The development of
such a strategy is clearly beyond the scope of this thesis.
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Figure 4.11: Vertical displacement at py for an excitation of frequency 5000 Hz.

It remains to investigate the elasto-acoustic coupling. Since the acoustic medium is
chosen to be air, we can neglect the influence of the acoustic field onto the structure.
Thus, the system (.26) is decoupled by setting C,,; to zero in the first line of (£26). In
every time step, the structural equation is solved first, taking into account the changes in
the applied electric potential. Afterwards, the acoustic response is calculated by imposing
the normal velocity of the structure as inhomogeneous Neumann condition at the fluid-
structure interface. For the solid, we use the same mesh as before: one layer in vertical
direction of 16x16 elements in (P and 8x8 elements in 29, respectively, adding up to
about 12000 degrees of freedom. The acoustic domain 2 is set to be a cuboid of 3m
width and depth, and of 1.5m height, centered above the structure. On Q?, we also use
quadratic Serendipity elements on a structured grid of meshsize 3/32m, yielding 16384
hexahedrons and about 70000 degrees of freedom. The choice of the meshsize is motivated
by the expected wavelength: since the excitation frequency is set to f = 500 Hz, we end up
with roughly 7.3 quadratic elements per wavelength, which is enough to give reasonable
results. A time step size At = 5-107°s is used for performing 180 time steps. Figure
shows the resulting velocity potential in four nodes p; at distances i-0.1875m, 7 =1,...,4,
located directly above the center of the solid. As expected, the frequency coincides with

x10°
T

o N DM O ©
R

velocity potential
velocity potential

Figure 4.12: Velocity potential at p;, © = 1,...,4, for an excitation of frequency 500 Hz.
the frequency of excitation by the structure. Moreover, the amplitude of the acoustic

waves decreases as the distance to the vibrating structure increases. If we had to choose
the meshsize conforming to the solid, namely 1/200 m, and did not want to distort the
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elements by coarsening them, we would end up with (3-200/32)3 = (75/4)% > 6000 times
the number of elements for the acoustic part, which would be clearly beyond the capability
of present single processor architectures. This effect would become even stronger, if the
wavelength increased and larger elements could be chosen to approximate the velocity
potential.

4.3.2 Acoustic-Acoustic-Coupling

We present the results of several numerical examples. By means of the propagation of an
acoustic wave emitted by a point source, the first one demonstrates that our approach
is very robust with respect to a large difference in the grid sizes of two subdomains,
and also with respect to the choice of the master and the slave side. We also study
the convergence behavior by constructing the source term out of an exact solution. As
for the elasto-acoustic problem, we again illustrate the negative effects of having to
use distorted elements in order to obtain matching interface grids by investigating the
numerical approximation of a single acoustic spherical pulse. Finally, we demonstrate
the applicability of the nonconforming method to scattering problems, where once, the
incoming wave is simply generated by a non-trivial boundary condition, and once, the
source term is given by fluid flow data.

Point Source

In a first test, we choose the domain Q = (—0.05,0.05) m? and decompose it into ; =
(—0.0125,0.0125) m? and Qy = Q\ ;. A point source is located at (0,0) and realized
as a Dirichlet node dictating the solution to be u(0,0,t) = sin(27 ft) with a frequency
f = 1000 Hz. As medium, we choose air: ¢ = 343m/s. A time step size At = 10us is
used. Figure shows the initial grid and two zooms towards the interface of the actual

() (b)

Figure 4.13: Acoustic point source: (a) initial grid, (b) and (c¢) two zooms into the com-
putational grid.

computational grid, which was obtained by refining the grid on €2; six times and the one
on ), three times. Thus, on the lower interface side, we have a completely nonconforming
situation, whereas on the other sides, the inner interface grid is a pure refinement of the
outer one, with a mesh size ratio hy/hy = 1/8. In Figure ELT4] the isolines of the solutions
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Figure 4.14: Solution at time ¢ = 280us, Lagrange multipliers defined with respect to
the: (a) fine side, (b) coarse side.

(a) (b)

for two settings after 28 time steps at ¢ = 280us are plotted. For Figure EI4(a), the
discrete Lagrange multiplier space was chosen with respect to the fine grid on §2;, for
Figure ELT4(b), it is defined on the coarse grid of 2. There is no qualitative and no
noteworthy quantitative difference between both solutions. Thus, for this example, the
choice of the grid for the Lagrange multiplier space does not influence the numerical
solution. More important, both solutions are well behaved near the interface and no
artificial reflections occur despite the very large difference in the mesh sizes h; and hs.

Convergence Behavior

We study the error decay with respect to a given analytic solution. The global domain
is 0 = (—1,1)2, with subdomains €; = (—1/3,1/3)? and Qy = Q\ Q;. In order to
separately investigate the dependence of the error on the discretization parameters h
and At, we perform two different tests. Once, we keep the time step size At fixed and
perform a uniform refinement procedure of the grids on 2; and (2, starting from the
initial triangulation plotted in Figure EI5(a). The exact solution is set to ¢(x,t) =

1 po
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Figure 4.15: Investigation of spatial accuracy: (a) initial grid, (b) error decay.
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t? exp(—50|x|?), which is quadratic in time. Thus, we do not expect to get any error due
to time discretization. For the error decay visualized in Figure EI5(b), the L2-norm and
the H'-norm of the error after 10 time steps of size At = 0.1 have been calculated for
each refinement step. As expected by the theory, the L>-norm decay is O(h?), and the
H'-norm decay is O(h). In order to investigate the dependence of the error on the time
step size At, we set the exact solution to ¥ (x,t) = %Cth(.Tl — x3). Thus, the spatial
part x; — x5 can be exactly interpolated on the initial grid from Figure EETH(a), and we
do not expect any error due to space discretization. Keeping this grid fixed, we record
the discretization error at time 7' = 4-10~2 for varying time step sizes At;, = 4-107%.27%,
kE=0,...,9. The result is given in Figure As could be expected by the properties
of the Newmark scheme, both the H'- and the L?-norm decay with order O(A#?).

error at time T = 4-103

10 10° 10°®

time step size At

Figure 4.16: Investigation of temporal accuracy: discretization error at time 7' = 4.1073
for varying time step sizes At = 4-107*.27% k=0,...,9.

Spherical Pulse

We furthermore investigate the numerical approximation of a single acoustic spherical
pulse of frequency 1000 Hz and magnitude 1. The computational domain in the (r, z)-
plane is shown in the left picture of Figure ET7l The pulse is imposed in form of an
essential boundary condition on 'y C 9Q!. As before, we assume that the grid on Q*
has to be substantially finer than that required by the acoustic wavelength. Therefore, we
use 2-40-40 = 3200 elements on 2!, as depicted in the right picture of Figure ET7 In order
to compare the conforming method with the nonconforming one, we take 6400 elements
on Q7 in both cases, choosing n, = 80, n,, = 40 for the conforming and n, = 160, n, = 20
for the nonconforming case. In Figure LT the isolines for the velocity potential at time
t = 1.6ms are visualized. Whereas the conforming method exhibits numerical noise
before and behind the pulse, the nonconforming approach is much closer to the expected
solution. Inside the pulse, the radial symmetry of the isolines from the conforming
method is observably disturbed. The poor quality of the conforming method can be easily
explained by the fact, that, in order to obtain matching interface grids, the mesh on 2
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Figure 4.17: Spherical Pulse: (a) axisymmetric domain (dimensions in meter), (b) pa-
rameters for the computational grids.

(a) (b)

Figure 4.18: Isolines of the acoustic velocity potential at time ¢ = 1.6 ms: (a) matching
and (b) non-matching grids.

is simply too coarse to correctly resolve the solution. In order to examine the transient
behavior more closely, we visualize the evolution of the acoustic potential at the point
(0,0.1m)T in Figure In addition to the comparison of both approaches, we employ
a reference solution, obtained with a uniformly fine grid of 54500 elements. As expected
from the observations above, the conforming approach exhibits quite strong oscillations,
while the behavior of the nonconforming method is quite smooth and visually coinciding
with the reference solution. We remark that even the reference solution is subject to
small unphysical oscillations directly after the pulse.

Scattering of Planar Waves

In our next example, we examine the scattering of a wave by a rigid obstacle. As obstacle,
a circle of radius 1 is chosen, which has perfectly reflecting walls realized by homogeneous
Neumann boundary conditions. It is obvious that the close neighborhood of the circle can
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Figure 4.19: Evolution of the acoustic potential at the point (0,0.1)T.

not be meshed by a uniform triangulation. Therefore, we choose a quadratic subdomain
Q! of side length 10/3 which contains the scattering circle. Inside this subdomain, a
unstructured mesh of relatively small meshwidth is used, while outside, it is now possible
to employ a structured grid for obtaining an optimal quality of the solution with respect
to the grid size. Figure E.20(a) visualizes the initial grid which is refined three times
more for the actual computation. On the left boundary of the computational domain,
a Dirichlet boundary condition is imposed which realizes the inflow of a planar wave
traveling in x;-direction,

vi(x,t) = sin(z — ct),

where the speed of sound is set to ¢ = 1. On the upper and lower boundary, homogeneous
Neumann conditions are used, while on the right boundary, we employ the first order
local absorbing boundary conditions ([{LI4)). For temporal integration, we choose a time
step size of At = 0.05. Figure EE20(b) shows the scattered waves at time ¢t = 13.5.
As expected, we can observe a superposition of incoming and reflected waves yielding
amplifications as well as reductions depending on space and time. The presence of non-
matching grids at the artificial interface does not produce any undesired effects.
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Figure 4.20: Scattering by an obstacle: (a) initial grid, (b) scattered waves at ¢t = 13.5.
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Flow Induced Noise

Our final example examines the sound generation due to airflow around an obstacle, [9].
In Figure E2T)(a), the situation in three dimensions is illustrated. A cuboidal block is

Figure 4.21: Flow induced noise: obstacle subject to airflow.

subject to an incoming airflow. The scattered fluid flow is responsible for the generation
of acoustic waves. As carried out before, one often is interested in the sound field quite
far away from the obstacle. Since the approximation of the full flow problem over the
whole area of interest would be too time-consuming, the assumption is made that it is
sufficient to solve the flow problem only in the subdomain Q! = Qp, to calculate a source
term for the acoustic wave equation according to Lighthill’s analogy [82], and to solve
the wave equation on both Q' and on the exterior domain 2 = Q4.

We restrict our example to a reduction of the problem to two dimensions. The obstacle
is taken to be the square Q° = (—0.01m,0.01m)?, the fluid flow region is given by
Q! = (-0.2m,0.6m) x (—0.11m,0.11m) \ Q°, and the remaining purely acoustic region
is set to Q2 = (—2.84m, 3.24m) x (—2.75m,2.75m) \ 2° U Q. On both subdomains, we
employ structured quadrilateral grids. On Q!, the grid size is h; = 0.01 as required by
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4.3 Numerical Results

the flow problem, while on Q2 a grid size hy = 0.055 is sufficient, as required by the
acoustic wave length. We perform 60 time steps of size At = 10~*s. Figure shows
the isolines of the acoustic velocity potential close to the inner region Q' after 60 time
steps. The inflow is from left to right. Clearly, the highest values occur in the immediate

L
) \
i

Figure 4.22: Flow induced noise: velocity potential close to the inner region Q!.

proximity of the obstacle. More important for demonstrating the applicability of our
approach is the fact that the isolines cross the artificial interface in a reasonable way.
Figure visualizes the sound field further away from the obstacle.

Figure 4.23: Flow induced noise: velocity potential in the whole computational domain.
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4 Application to Acoustic Problems

4.4 Decoupling Nonlinearities

In this section, we extend the elasto-acoustic problem formulation ([E23) to geometrically
nonlinear structures. The arising coupled system consists of nonlinear equations for the
structural part, while for the acoustic part, we still obtain linear equations. We present
an algorithm which takes into account this special structure and yields an efficient solver.

4.4.1 The Coupled System

We first present the discrete system arising from nonlinear structural mechanics after
space and time discretization. After that, the corresponding system for linear acoustics
is given. Finally, the fully coupled global system is introduced.

Nonlinear Structural Dynamics

The notation sets up on [78]. For the time integration of nonlinear structural dynam-
ics, we will consider the generalized a-method, which extends Newmark’s method by
introducing two additional parameters a,,, ay € [0,1] and setting

’L.l,n+1_am = (1 — O[m)’i:l,n_’_l + O[m’i:l,n, 'l:Ln+1_af = (1 — Oéf)ibn+1 + Oéf’uln, (432&)
Unti-ap = (1 - af)“’n-l—l + apy, fn-l—l—ozf = (1 - af)fn-l—l + affn' (432b)

Applying ([E32)) to nonlinear structural dynamics on the spatially discrete level yields
the system
Myt y1-q,, + Cuun-ﬁ-l—af + N(un-i-l—ocf) = .fn+17afv (4'33)

with the constant mass matrix M, the constant damping matrix C,,, the internal forces
N and the external load f.

Setting a; = (1 — ay)v/(BAt) and ay = (1 — ay,)/(BA?), the generalized mid-point
velocities and accelerations can be given as functions of the end-point displacements u,, 1
in analogy to (1) by

~

’l:l,nJrl,af (un+1) = a1Upy1 — ’l:Ln, (434&)
- 1—as)y— 1— —9
an = agu, + 2=V =B A= a) = 20) e )
B 20
’i,.l,nJrl,am (un+1) = A2Up 1 — ’l.:Ln, (434C)
~ 1—a,, . 1—oa,, — 20 .
Uy, = oW, + @ Uy, @ 5un. (4.34d)

This gives the effective structural equation

0= Gu(tnt1) = N(un-i-l—ozf) _.fn+1—af +Cu"‘lfn-i-l—ozf (Wpt1) + Mytint1—a, (Unt1). (4.35)

The application of Newton’s method to (E3H) amounts to solve in each iteration step ¢
the linear system

Ki(ug ) Au = —Gu(ug ), Au = ugzill — Uy, (4.36)
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4.4 Decoupling Nonlinearities

with the deformation-dependent effective tangential matrix K*(uy, ) given by
Ki(upi1) = Kpii g, (Unp) + a1Cu + a2 M, (4.37)
where K}, . (u, ) denotes the tangential stiffness matrix

aN(ugLJrlfaf )

4.
aunJrl ( 38)

Krtz—f—l—ocm (’u’gz—l—l) =

Linear Acoustics

The generalized a-method (32) applied to the weak form (EI8) of the wave equation
(ETTa)) for the acoustic velocity potential ¢ gives

M@Manrlfam + C@Manrlfaf + wanJrlfaf = 07 (439)

with constant matrices My, Cy, K. Now, the consideration (34 yields a linear system
to be solved at each time step,

K bnir = Cythy, + My, (4.40)
with the constant effective acoustic stiffness matrix

K;Z = Kw —+ 0,101/, + CI,QMw. (441)

The Global System

We set u = (u, )T and the matrices

C, c, C M, M, 0
C=|2")= v Puy M=[=*|= u . 4.42
(Ciﬂ) <Cwu Cw) ’ <M¢> < 0 Mw) ( )

The global system coupling structural dynamics with acoustics reads

G(Uny1) =0, (4.43a)
K,y = Gn, (4.43b)
with

G(Upi1) = N(Unj1-a;) + <a15u. + ang/fu) Upyq — fn+1faf — U, (4.44)
K = (0 Ky)+aiCy + asMy, (4.45)
Gn = Un, (4.46)

where we set R R
i, = Ci, + Mi,. (4.47)
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4 Application to Acoustic Problems

4.4.2 lterative Solution

We exploit the structure of the global system (f43) by constructing iterative schemes,
where the nonlinear equations (fL43al) are decoupled from the linear equations ({.43H) in
each iteration step. We first present the most straightforward alternative by means of a
non-overlapping block Gaufk—Seidel scheme. Since this scheme turns out to be inefficient,
we improve it by admitting the diagonal blocks to overlap. Finally, we investigate an
inexact variant by fixing the maximum number of Newton steps.

Non-overlapping

Instead of applying Newton’s method to the global system (fZ43]), we make use of the
linearity of ({.430) by employing the Gauk-Seidel scheme

G(uFt k) =0, (4.48a)
Kju™ =g. (4.48b)

We are now able to apply Newton’s method only to (f48al). The overall iterative solution
procedure is given by Algorithm [l We remark that most of the matrices only have to be
assembled once in the very beginning, and only the relatively small tangential stiffness
matrix K*(u) has to be calculated in every Newton step. Unfortunately, the iteration
count, for the Gaufs—Seidel scheme is far too high to yield an efficient algorithm, as we
will show by a numerical example.

Algorithm 2 Iterative solution by a block Gauf—Seidel scheme

Set up the matrices M, C, Kw, K, 22, (E2T)
for all time steps n =1,... do

Calculate f, , i, 4, g. (@340, (E34d),(@47), (E46)
for all Gaufs—Seidel steps £ = 1,... do

for all Newton steps ¢ =1, ... do
Calculate K*(u), KX (u), G(u). E38), (E30), ()
Solve KfAu = —G(u).
Update u «— u + Au.
Check for Newton convergence.

end for
Calculate g = g — a1Cyy- (z9%85))
Solve K} = g. (295

Update u (damping possible).
Check for Gaufs—Seidel convergence.
end for

Update 1, . (E34a), (340

end for

We investigate the sound emission of a vibrating structure in water. The structure
° is of width 0.2m and height 0.01m and has the material parameters of silicon,
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4.4 Decoupling Nonlinearities

pe=2.3-103kgm=3, F=1.62-10"" Nm~2, v=0.2. It is fixed at its left and right bound-
ary, and a surface traction of 10%sin(27r1000¢t) Nm~2 is acting in vertical direction at
its lower boundary. We assume the structure to behave geometrically nonlinear. The
acoustic fluid domain 2? of width 1.4 m and height 0.7 m is centered above the structure.
The mean density is p, = 103kgm™3, the speed of sound is ¢ = 1.5-10ms~!. Due to
symmetry reasons, we can set the computational domain to one half of the original one.
In Figure L24(a), the computational grid is plotted, visualizing the structure in the lower

no damping ——
"best” damping -

80

70

60 r

40 | 1

Gauss-Seidel iterations

30 1

® L L L L L L L L

0O 2 4 6 8 10 12 14 16 18 20
time step

Figure 4.24: Test of Gauf-Seidel scheme: (a) computational grid, (b) iteration count
versus time step

left part. Figure L24(b) shows the iteration count of the Gaufk-Seidel scheme for the first
20 time steps. Depending on the time step, it ranges between 43 and 80 which is far too
high for a block two-by-two system. Damping substantially improves the convergence
behavior. At the end of each Gauk-Seidel step, we choose

u= wgnew + (1 _ w)gold'

A quite good improvement is achieved for w = 0.7, as also shown in Figure ELZ22(b). The
iteration count is decreased to 19 and is very robust with respect to the solution behavior.
However, it is still too high for obtaining numerical efficiency.

Overlapping

In order to improve the convergence behavior of the Gauf-Seidel method, we further
decompose v into (1,12, \), where u couples with ¢; via Cyy and Cy,,, and ¢y with 1),
via the Lagrange multiplier A in the same manner as in the preceding chapters. For the
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4 Application to Acoustic Problems

matrices, we have

Clu. Cyu Cu 0 0 M, M, 0 0
O — Cl. . Cwu Cl 0 0 . Ml. . 0 M1 0
1o, o 0o Co)l M| |0 0 M
Ch. 0 0O 0 O M, 0O 0 O
We modify ([4]) towards the overlapping scheme
Go(,ukJrl’ ll'chl’wéc’ )\k) — 0’
Kz.ﬂk—i_l =49,
with
0 Kiun 0 K _ N
K;Z = 0 0 KQQ KQ)\ + a10¢. + ang.,
0 Kyy Ky O
N(u)—f u
G°(u) = Ci.. Mg u— 1|~ ),
() (Kn@/)l + K1,\>\) (@G, 4 M)y (1/11)

g=1.

o O OO

(4.49a)
(4.49D)

(4.50)

(4.51)

(4.52)

For the resulting algorithm, only the Newton iteration has to be changed, i.e. the shaded

region in Algorithm Pl The modified Newton scheme is given in Algorithm Bl

Algorithm 3 Newton iteration for overlapping scheme

for all Newton steps ¢ =1,... do
Calculate K*(u), K:(u), G°(u).

Set up K = ( K, Kf)'

Solve K*A (12‘1) = —G°(u).

u u u
Update <¢1) — (%) + A (%).

Check for Newton convergence.
end for

(€.33),(@.37),@.51)

We use the same example as above to investigate the behavior of the overlapping

method.

In particular, we vary the thickness of the overlap. The thicker horizontal

line inside the acoustic domain in Figure FE25(a) indicates the upper boundary of the
overlapping region. Thus, four element layers of overlap are used. In Figure EE25(b), the
iteration counts for different numbers of overlapping layers are visualized. Already a very
small number of layers results in a strong improvement. With four or eight layers, the

count is around 5 or 4, which is quite reasonable.
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Figure 4.25: Test of overlapping scheme: (a) domain decomposition, (b) iteration count
versus time step, varying the overlap

Inexact Strategy

So far, in each Gauf—Seidel step, there have been made so many Newton steps as nec-
essary to meet the stopping criteria of the relative difference of two iterates to be below
1071, In Figure EE26 the number of Newton iterations is plotted versus the time step

ig [[] GauB-Seidel step 6

:% 101 [l GauR-Seidel step 5

w8 [ ] GauB-Seidel step 4
c .

S 67 [ ] GauB-Seidel step 3

é ; B GauB-Seidel step 2

0 [[] GauB-Seidel step 1

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
time step

Figure 4.26: Overlapping Gaulk—Seidel scheme, four layers of overlap: Newton iterations
versus time step.

for the Gauk—Seidel scheme using four layers of overlap. In particular, the total number
of Newton iterations per time step determines the height of the columns, whereas each
column is subdivided to display the number of Newton iterations per Gauf—Seidel step
within each time step. The first observation to be made is that the total number of
Newton iterations per time step is almost constant, as already suggested by the stable
behavior of the Gauf—Seidel scheme. Moreover, the number of Newton iterations in each
Gauf—Seidel step is very low. Starting from the solution of the previous time step, it
only takes four Newton iterations in the first Gaul—Seidel step, three in the second, and
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between one and two in the subsequent steps. Nevertheless, the efficiency of the scheme
can further be improved by employing an inexact strategy.

To this end, only one single Newton step is performed in each Gauft—Seidel step. Figure
shows the resulting iteration count for the Gauf-Seidel scheme versus the time
steps for different numbers of overlapping layers. Up to eight layers, almost no difference
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Figure 4.27: Overlapping Gauf-Seidel: inexact (solid line) vs. exact (dashed) strategy.

between the exact and the inexact method can be observed. This means that the number
of Newton steps per time step reduces significantly to the number of Gaufs—Seidel steps
per time step. We remark that the resulting number of Newton steps per time step for
the inexact strategy seems to be bounded from below by the number of Newton steps for
the first Gauk—Seidel step of the exact strategy. Thus, if the size of the overlap further
increases, the iteration count for the inexact method becomes worse than the one for the
exact method. However, in the reasonable range between four and eight layers of overlap,
the inexact strategy is clearly superior.
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In this chapter, we focus on overlapping domain decomposition methods, which have
become an area of strong research over the past years [T00), 113, 122, and the references
therein]. As in the non-overlapping case, it is strongly desirable to keep as much flexibil-
ity as possible by discretizing the problems on non-matching grids. Again, the challeng-
ing task is to find suitable projection operators between the involved grids. Standard
Lagrange interpolation operators often result in a loss of accuracy due to insufficient
stability properties, while mortar techniques lead to optimal a priori error estimates also
in the case of overlapping subdomains [2, B0]. However, the methods in the mentioned
references applied to nested domains do not yield optimal results.

Problems involving nested domains have been extensively studied in the context of the
Navier—Stokes equations. The region near the moving object of interest is discretized,
and the resulting local grid moves together with the object through an underlying global
grid. So-called Chimera methods are used to establish a bi-directionally coupled problem
formulation by cutting out parts of the global grid, thereby creating an artificial boundary
[68, IT8]. An alternative approach to handle nested domains is provided by fictitious
domain methods [53], [86].

In this chapter, we analyze the case of one subdomain which is nested inside the
global domain of interest. Both the global domain and the subdomain are discretized
by triangulations which may be completely independent of each other. The coupling
between the two grids is managed by a projection operator onto the interface which has
to satisfy certain stability and approximation properties. We lay special emphasis on the
case of different meshwidths and different polynomial orders of the finite element spaces
on the two grids. The developed method is ideally suited for transient problems, where
the position of the subdomain may change during the computation. In this case, no
remeshing will be necessary, and only the matrix responsible for the coupling has to be
reassembled. In contrast to the above mentioned Chimera type methods, no elements of
the grid on the global domain will be cut out in our approach. Moreover, unlike using a
fictitious domain method, we calculate two solutions on two independent grids, and the
values of the solution outside the subdomain are of physical relevance and interest.

We examine a one-directional coupling, where the solution on the global domain defines
the boundary data for the problem on the subdomain. However, the presented coupling
technique has been applied to several bi-directionally coupled problems, including the
motion of a conductor through an electromagnetic field as carried out in Chapter B, where
different model equations and discretization techniques are coupled, demonstrating the
flexibility of the approach.

Starting with the setup of the continuous model problem in Section Bl we introduce
a discrete variational formulation, for which an a priori estimate is obtained in Section
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The corresponding algebraic system is derived in Section Section B4l is dedi-
cated to the presentation of several numerical results, including a P;—P; coupling and an
application to a unilateral contact problem.

5.1 Continuous Setting and Discretization

5.1.1 Problem Description

We consider the model problem (L) with Iy = 99 and assume that €2 is an open
bounded domain in R¢, d = 2,3, with polygonal boundary 9. The corresponding
variational problem consists of finding ug € Hj(Q2) such that

CLQ(UQ,UQ) = (f, 'UQ)Q, Vo € H&(Q), (51)

where aq(w,v) = (gradw, grad v)q is the standard bilinear form.

As depicted in Figure bl(a), let w C Q be a polygonal subdomain of 2 such that its
distance to 0f) is bounded away from zero, and denote by w® = Q \ @ its complement in
). We first solve Problem (B.1I), and consecutively an additional problem in w, taking
as Dirichlet data the restriction of the solution ug of (BII) to the interface I' = dw, in
short: Find (uq,u,) € Hy(Q) x H!(w) such that

aQ(UQ,UQ) = (f, UQ)Q, Vo € HS(Q),

) (5.2)
Ay (U, V) = (f,V0)w,  Vw € Hy(w),

where H!(w) = {v, € H' (w) : vy|r = uqlr} and a,(w,v) = (gradw, gradv),,. It is
obvious that in the continuous setting Problem (E£2) yields u, = ugl|,, but when we
discretize the variational problem (E.2), the situation becomes more involved, see Figure

BII(b).

5.1.2 Equivalent Generalized Saddle Point Problem

As has been carried out in [46], it is possible to derive an equivalent formulation of (2.2
in terms of a generalized saddle point problem. Starting from the strong form of the

() (b)

Figure 5.1: (a) nested domains, (b) overlapping non-matching grids.
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additional problem on w, namely,
—divgradu, = f, inw, u,|r = ualr, (5.3)
we use Green’s formula to obtain
o (U, Vo) + (U, Oty /OMY aprscrs = (fo Vo)ws Ve € HY (W),

with n denoting the unit outward normal on w, and with M = H~Y/?(T"). Introducing
the Lagrange multiplier A = Ju,,/0n, we set

bi(v, 1) = (U, Warsar, v = (va,v,) € X = Hy(Q) x H'(w), p € M.

As usual for the non-overlapping case, we realize the continuity requirement along the
boundary I' in (B3]) by the bilinear form

bZ(U7M):<UQ_UW7M>M’><M7 UGX, M€M7
On the product space X, a composed bilinear form a(-,-) : X x X — R is obtained by
a(w,v) = ag(wq, ve) + a,(wy,,v,), w,ve X.

Proceeding like this, we have derived the following generalized saddle point problem: find
(u,\) € X x M such that

a(u,v) + bi(v,\)=(f,v)axw, vEX, (5.4a)
07

ba(u, ) we M. (5.4b)

As for standard saddle point problems, see Section in the appendix, the bilin-
ear forms b;(-,-) define coupling operators B; : X — M’ and Bf : M — X' by
(Bov, w)arxar = (v, BX ) x«xr = b;(v,p) for v € X and p € M. The validation of the
following coercivity- and inf-sup-conditions guarantees the unique solvability of problem
BE) in X x M/Ker BT, |27]:

Jdag > 0: sup M > ap, wy € Ker By, (5.5)
vo€Ker By ||w0||X ||U0||X
sup _alwo, o) > ap, vy € KerBy. (5.6)
woEKer B2 ||w0||X ||U0||X
bi(v, .
Jko > 0 : inf sup (v, ) > ko, i=1,2. (5.7)

HEM yex ||U||X||M||M/KerB;.r

We note that the above conditions can be relaxed, |18, BT, OT].

It is obvious that problem (E4) has a unique solution, since the problem on the global
domain €2 is not influenced by the problem on the subdomain w, and its solution wuq
yields the boundary data for a well posed subdomain problem. Nevertheless, we provide
a complete proof within the saddle point setting.
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Theorem 5.1. With the above definitions, problem (5-4) is uniquely solvable.

Proof. We validate the conditions (E3)—(27). Our main tool is the harmonic exten-
sion operator H : M’ — H'(w), given by Definition A23 i.e.,

a,(Hw,v,) =0, v, € Hy(w), (Hw)|r=w. (5.8)
We observe that the trace of H'(w) onto I is the space M’, and that
bl((07v)7:u) :bz((07 _0)7#’)7 ve M.

Taking v = (0, £Hw), w € M’, condition (B7) is a consequence of the definition of the

H~'2norm and of the fact that ||Hwl|;. < C||w||yr, see Theorem [A26
Let us focus on condition (B.5). The kernels of the coupling operators are

Ker B, = Hy(Q) x Hy(w), and Ker By = {v € X : va|r = vu|r}.

We uniquely decompose v,, € H'(w) into vg+wv; such that vg = H(v,|r) and v; € HJ(w).
For an arbitrary wy = (wq,wp + wy) € Ker By, we consider vy = (wq,w;) € Ker By.
By using the properties of the harmonic extension and the Poincaré-Friedrichs type

inequality (A12), we get

2 2
HwnHiQZc( / wndr) +c\wg|igzc( / der) Telwnl, > clwsll,. (5.9

Condition (B.3)) follows from (&), using the ellipticity of a(-,-) on Ker Bj:

a(wo, vo) = an(wo, we) + au(wr, wr) > clwallfg + cllwrlf,
> cllwalliq + clws +wrlliq + cllullf, (5.10)

> cllwoll% + cllvollx = ellwollxl|vollx-

The proof of condition (B6) is similar. For an arbitrary vy = (vg,v;) € Ker By, we set
wy = (va, H(trvg) + vr) € Ker By, and obtain (BI0). O

5.1.3 Discretization

The discretization and the derivation of a priori error estimates is carried out for the
purely primal problem (B.2). If no ambiguity can occur, we write u = uq for the global
solution. We use two different shape regular triangulations 75 on €2 and 7, on w, with
H and h indicating the maximum element diameters, respectively. These overlapping
triangulations may be completely independent of each other, hence, in general, they do
not match on w. Moreover, the edges and faces of the triangulation 7, on the interface
" also do not coincide with edges and faces of 7y, see Figure BII(b). We use standard
conforming finite elements of order p and ¢ on 75 and 7}, respectively. The associated

discrete spaces with no boundary conditions are denoted by S7,(€2) and S} (w), respec-
tively, and we set S{ ;;(Q) = S} (Q) N Hy(Q) and S, (w) = Sf(w) N Hy(w) to be the
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5.2 A Priori Error Estimate

spaces taking into account homogeneous Dirichlet conditions on 02 and I, respectively.
The trace space of S} (w) on I is indicated by W

We note that the restriction of a function vy € S%(Q) onto the interface T is, in
general, not an element of W)!. Thus, the Dirichlet problem on S} (w) cannot be solved
directly, and a suitable projection operator IIj, from S%,(€2) onto W} is required. In order
to get an optimal a priori error estimate, the projection II;, has to satisfy the stability
property stated in the following assumption, which is the analog of Assumption ZTI(c)
from the non-overlapping setting.

Assumption 5.2. The operator IIj, : H*(Q) — W} is a projection onto W}, i.e., v, =
vp, v, € W, and satisfies

HHh’UHl/QI S C||’UH1/271‘*, v E H1<Q), (511)
with a constant C independent of the meshsize h.

Such projection operators are well-known from the preceding chapters and play an
important role within the framework of mortar finite elements. We note that Assumption
implies that the operator II, satisfies an approximation property on H'/?(T), i.e.,
v —ILvl|1 0 < ChYv|gs1/ar, v € HTQ).

We are now able to formulate the discrete variational problem. Find (ug,u) €

0.(€2) x S§ ; (w) such that

a’Q(quUH) = (f> UH)Qv vp € S(Z]),H<Q)> (5 12)
GW(uhavh) - (fv Uh)wa Up € Sg,h(w)7 .

where S, (w) = {v € Sj(w) : v|r = Hpug}. In contrast to the continuous formulation
(E32), it is obvious that the discrete solution wu; on the patch cannot simply be the
restriction of the global discrete solution uy, due to the nonconforming setting. Of
course, this is also not intended by the approach, and u; should rather give a better
approximation than uy to the exact solution wu.

5.2 A Priori Error Estimate

Expecting that uy, is closer to v on w, the finite element solution upg is defined by

3 C
Upp = {UH Tn “h (5.13)
up in w.
We note that, in general, upg ¢ H((2). The error e = u — upr measured in the broken
H'-norm || - ||1 b is split up into the error in w® and w:
el p0 = Nl —uml? e + llu—unlli - (5.14)

It is obvious that, e.g., for orders p = ¢ = 1 and u € H*(Q), the norm ||e|1 p ¢ is bounded
by C' max(h, H)|u|zo. In what follows we establish a more accurate and more local upper
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5 Overlap

bound, which is especially useful when the parameter pairs (H, p) and (h, ¢) become quite
different.

To estimate the second term of the right hand side in (14, we employ a Scott—
Zhang type projection operator of order ¢ denoted by P, [I09]. We will make use of the
approximation property of P, namely

v— Pyllir < chdvlgirw,, T €T, ve H  (wp), k=h, H, 5.15
) T q YWT

where wr indicates the set of elements in 7, sharing at least one vertex with 7'
Let z, € Sj(w) be the finite element solution satisfying

A (2n, vn) = (f, 0n)ws v € 55, (W),

zn = Pyu, on .
The following result is well-known, we give a proof for completeness.

Lemma 5.3. There exists a constant C' independent of the meshsizes such that
v — znlliw < Chuliyqe, uw€ HM(w). (5.16)
Proof. Using the triangle inequality and P, we get

lu = zalhw < llu = Paallvas + l126 = Prclyo. (5.17)

In terms of the coercivity and the continuity of the bilinear form a, (-, ) on H} (w)x Hj (w),
and the Galerkin orthogonality, the second term of the right hand side in (517 is bounded
as follows:

lzn — Phu||iw < Cay(z — Pyu, zp, — Pyu) = Cay,(u — Puu, 2z, — Puu)
< Cllu — Puul|1ullzn — Prull1w-

Using this upper bound in (EI7) and applying the approximation property (EIH), we

obtain (B.I6). O

The next lemma estimates the difference uw;, — 2;, using the stability property of the
projection II; given in Assumption

Lemma 5.4. There exists a constant C' independent of the meshsizes H, h such that for
u sufficiently regqular

lzn = unllrw < C (W'ulrige + lu = wmlliwe) - (5.18)

Proof. The difference z;, — u;, is discrete harmonic on w with respect to test functions
in S§,(w). Using this fact and the resulting norm equivalence ([A23), together with the
stability property (BI1) of the projection operator ITj,, we obtain

20 — unll1w < Cllzn — unllij2r = C||Pou — Ipugl1 2,0

<C (HHhPhU - HhU”1/2,F + HHhU — HhuHHl/QJ‘)
<C (thu —ullijer + flu— UHH1/2,F) .
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5.2 A Priori Error Estimate

The rest follows from the trace theorem and the approximation property (&1H) of
the Scott—Zhang projection operator P. O

To obtain a more local a priori estimate for ||e[|1p o, the remaining term ||u — wg |1 we
has to be considered in more detail. We apply a modified version of [T17, Theorem 9.1| to
derive an upper bound in terms of the best approximation and the error in the L?-norm
on a larger subdomain B D w®. Let us first introduce some notation. With Ay C A; C 2,
set

0<(Ap, Ay) = dist (04, \ 052, 0A; \ 09),
and further, C>(A) = {v € C=(A) : (suppv, A) > 0} and Sf ,;(A) = S5 (Q) N Hj(A)
for an arbitrary subdomain A C 2. We can now state our main result. The proof is
based on the techniques given in [T17].

Theorem 5.5. Let B D w€ such that O~ (w¢, B) > 0. Then for H sufficiently small, there
ezrists By C B, which can be written as a union of elements of the triangulation Ty, and
it holds that

|u —upliwe <C min |lu—vg|1,p, + Cllu —ugllo,sy (5.19)
’UHES%(Q)

where C' < oo depends on O (w®, B).

Proof. We choose subdomains Ay, Ay, By which can be written as unions of elements
of the triangulation 7y such that w® C Ay C Ay C By C B and 0-(w°, A1), 0-(A;, As),
0<(As, By) > 0. The situation is illustrated in Figure b2(a). Note that the meshwidth

by 17

,
i
P2
|
k

8BH 8A2 8141 Ow®
Figure 5.2: (a) nested subdomains, (b) support of p;.

H has to be sufficiently small to guarantee the existence of the domains A;, Ay, By. Let
pi : C®(Q) — [0,1],i = 1,2, 3, satisfy

Po € CZO(Al)u Pojwe = 17 p1 € CZO(AQ)v P11A; = 17 p2 € CZO(BH>7 P2|A2 = 17
as depicted in Figure E2(b). On Ay, we can write
u—ug = p2(u—vpg) = Pi(p2(u —vy)) + Pi(p2(u — vg)) — (ug — vn),

where vy € S3(Q), and Py denotes the projection from H'(Q) into Sf ;;(€2) with respect
to the H'-semi-norm | - |; o, namely,

(grad Pyw, grad vy )o = (gradw, gradvy)o, w € H'(Q), v e S§ 4 (Q).
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5 Overlap

The stability of P, with respect to the H!-semi-norm is immediately given by

\leﬁﬂ = (grad Pyw, grad Pyw)q = (grad w, grad Pyw)q < |w|y ol Piw|1 .

We get
u = wpliwe < |p2(u—vi) = Pi(pa(u — vn))|1we (5.20)
+ [Pi(p2(u —vr)) — (um — vg)|rwe. .
The first term on the right hand side of (E20) is bounded by
|p2(u —vu)|10 < [lp2 grad(u — vy)llo,0 + [[(u — vi) grad paflo0 (5.21)

< COllu —vyl1,8y,

due to the stability of the projection P, and since p; € C2°(By). Note that the constant
C'in (2ZT]) becomes large in case of a small distance 0-(Ay, By).
Let us consider the second term on the right hand side of (520 and define

2z = Pi(p2(u—vn)) — (ug — vm).
Note that zp is discrete harmonic on A,, since for wy € ng (A7),
(zm,wp)1,0 = (p2(u —vy) — (ug — vE), wh)1,o = (U —up, wy)i,o = 0. (5.22)

We will derive an upper bound for |z |1 e by estimating it by the L*-norm of zy on A,.
Let Zy : H}(Q)) — St 1(€2) denote the Lagrangian interpolation operator of degree p on
Ty. We use the identity

div(zy grad pg) = grad pg grad zy + zpy div grad po,
and apply integration by parts to obtain

(zu, zg div grad po)q = (2, div(zg grad po))a — (zn, grad po grad 2z )q
= —2(grad zy, zy grad po)q
Using this observation yields
lenl? e < (grad 21, po grad zir)a
= (
= (

grad zy, grad(pozr ) )a — (grad zy, zy grad po)q
grad zy, grad(pozp ) )a + %(ZH, zp div grad pg)q.

Since by construction Zy (pozi) € S§ ;7(Az), we can make use of (E22), and derive

|ZH‘%,wC < (zm, pozm — IH(/)OZH))LQ + CHZH”S,AI

(5.23)
< |zuliailpozn — Zu(pozm)i,a, + Cllzullf 4,

where the constant C depends on 0. (w€, A;). Let us focus on the term |pozy—Zm (pozm)|1.4,-
Since A; is the union of elements, we derive, using the Bramble-Hilbert lemma,

ooz = Zu(poza) 3 4y < CH™ Y pozulyr (5.24)
TCA;
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5.2 A Priori Error Estimate

Since Dz = 0 for |a] = p+ 1 on each element 7', the right hand side of (B224]) can be
estimated by a sum of terms of the form

CH?|(Dpo)(D%zu) I3, lal +18]=p+1, |a] > 1.

Using the smoothness of py and the standard inverse assumption on 7" (A 21), each term
is bounded by
CHX Py |3, 161 2 1,

where the constant C depends on 0 (w®, Ay). Since p+ 1 — || = |a| > 1, this can be
estimated by
CH |z lf -

Summation over all ' C A; gives
\pozrr — Zu(pozm)|i,a, < CH||zp |14,
Using this upper bound in (Z3), we obtain

|zi|1we < C(||zr 0,4, + H1/2|2H

1,A4,)- (5.25)

Thus, a factor of H'/? in the H'-semi-norm is gained by considering the larger subdomain
A;. We intend to apply the standard inverse estimate (A28) on the H'-semi-norm of
217, hence one more factor of H'/? is necessary to get rid of the dependence on negative
powers of H. This can be achieved by moving on to the next larger subdomain A,. Note
that supp p; C A and therefore Zy(p12g) € S&H(Ag). Replacing w®, Ay, and pg by A;,
Ag, and pq, respectively, the same arguments as before yield

|zrl1,a, < Clllzallo.a + H'Y? z1]1,,), (5-26)

with C' now depending on 0. (A, Ay). Combining (B2H), (B26), and using ([A2]]), we

derive
|z|1we < Cllzmllo,a, + Hlzm]1,4,) < Cllza]l0,4,- (5.27)

With the definition of zy, this gives

\zi|1we < C||Pr(p2(u —vu)) — (um — vi)|lo,4,
< Cllu = umlloa, + C|Pi(p2(u —v)) — p2(u — vp)|

0,Az-
Using a Poincaré-Friedrichs type inequality and the fact that supp p, C By, we obtain

2i)1we < Cllu = upllo,a, + ClPi(p2(u — v)) = p2(u — vm)le
S C”U—U,H 0,A> +C’|p2(u—vH)|17Q (528)
< Cllu = ugllo,a, + Cllu = vnll1,p,-

Combining (520), (221]), and (528) yields the desired estimate (E19). O

Estimating (E19) by C(H?|u|py1.5 + HP™|uly11.0), the following global a priori esti-
mate is an immediate consequence of Lemmas B3 B4 and Theorem
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Theorem 5.6. Let B D w® such that 0-(w®, B) > 0. Then for H sufficiently small and
u reqular enough,

lu — upgllise < ChYulgr1w + CHP |ulp1,p + CHP M ulpi 0. (5.29)

Once the derivatives of u on the subdomain w are large compared to the derivatives
on w° the quality of the finite element solution upg may be improved by considering
meshwidths h < H and orders ¢ > p. We point out that in order to achieve this
improvement, the approximate solution vy has to be good enough in accordance with the
term CHP ™, 1 o in (229). This term is the fundamental difference of our approach to
the estimates obtained by standard adaptive finite element methods. It is due to the fact
that in our one-directionally coupled approach no pollution effect is taken into account.
If the nature of the considered problem is such that the L*-term C||u—uy||o 5, in (EI9)
dominates the upper bound in (529, it is necessary to involve a bi-directionally coupled
approach, i.e., to give a feedback from the subdomain w to the global domain €2. This
has been investigated in the recent work [52]. At the expense of a bi-directional volume
coupling, the last term in (529) vanishes.

5.3 Algebraic System

In this section, the algebraic form of the coupled problem (B5I2) is considered. We
decompose the nodes of 7, into inner and boundary nodes, and write v, = (v;,vg) €
S (w), again not distinguishing our notation between a finite element function and its
coefficient vector. The matrix A; associated with the Dirichlet problem on Sj,(w) in
terms of the bilinear form a,(-, ) reads

(A Apr
An = ( 0 Id)-
Denoting by ) the matrix corresponding to the projection operator II;, the coupled
algebraic system reads

Ay 0 0 Ugy fr
0 A A ur | = f[ ) (5-30)

where Ay is the global stiffness matrix associated with the Dirichlet problem on Sf ;;(€2).
Since the first line of system (B30) is decoupled from the rest, we solve (B30) in two
successive steps, i.e.,

Ug = A;ilfH, ur = A;}(f[ — AIFQUH)- (531)

For the solution of (B3T]), we can use standard multigrid or domain decomposition tech-
niques. We note that the stiffness matrices Ay and A, do not change if the position
of the subdomain w changes inside the global domain 2. Moreover, no remeshing is
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5.3 Algebraic System

necessary. Thus, the introduced technique is ideally suited for transient problems with
moving subdomains. However, the matrix (), which represents the projection operator
IT;, has to be reassembled whenever the subdomain w changes its position. Therefore,
an adequate choice of II, is important in order to obtain efficient algorithms of optimal
complexity.

We propose to use as operator II, the extension of the mortar projection from the
non-overlapping setting treated in the preceding chapters. Thus, it is defined using test
functions out of a Lagrange multiplier space M,

I, : H'(Q) - W7, (I, v)r = (v,v)r, v € M. (5.32)

The Lagrange multiplier space M is of crucial importance to obtain a well defined
operator II; for which Assumption holds. One approach is to take the trace space
W, [21]. As an alternative, we propose that M, consists of dual basis functions as
introduced in Section AT [120]. Both approaches have the advantage that the mass
matrix system resulting from (B.32) is easy to assemble due to the locality of the support
of all involved basis functions. For the dual basis functions, the required spaces for
higher orders ¢ > 1 are constructed and analyzed in two dimensions in [80, 94]. In
three dimensions, no general results for unstructured grids and arbitrary high order ¢
dual Lagrange multiplier spaces, having a reproduction property for P,_,, are available.
However, in contrast to the mortar setting, here the Lagrange multiplier space does
not have to satisfy this reproduction property. Thus, we can always work with a dual
Lagrange multiplier space defined on a reference element, by gluing the local pieces
together.

Denoting by D and M the mass matrices corresponding to the left and right hand side
of (B:32), respectively, we derive the algebraic system

0 A[[ A[F ur = f[ y (533)
-M 0 D up 0

The last equation of system (B33) implies that ur = D 'Muy. Denoting by @ the
product D~'M, system (B30) is obtained. Due to the reduced number of nodes on the
interface I', the inversion of D is computationally cheap compared to the complexity of
the global algorithm. Moreover, the use of dual Lagrange multipliers yields a diagonal
and trivial to invert mass matrix D. We note that, in contrast to standard mortar element
methods, no modifications of the Lagrange multiplier basis functions in the neighborhood
of the corners of I' are required.
For the element-wise assembly of the mass matrix M, integrals of the form

(Qm, pin)rs (5.34)

have to be computed, where 7% is again the side of an element of the triangulation 7,
meeting the interface I', ¢y is a basis function of the finite element space Sg (), and pp,
is a basis function of the Lagrange multiplier space M;. We point out the close similarity
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of (B34) with (CZ3). However, in contrast to the non-overlapping situation, now the
area of intersection of the (d — 1)-dimensional side 7 with the d-dimensional support of
¢ has to be calculated. This is fairly feasible in two dimensions, but may become rather
challenging on unstructured grids in three dimensions. It can be circumvented by using
higher order quadrature formulas, reducing the task to the calculation of products of the
form ¢y (s)un(s) at some quadrature points s. Nevertheless, fast algorithms are required
to detect the functions ¢y whose supports contain these quadrature points, in order
to preserve optimal complexity. We propose recursive searching algorithms by using a
possibly available grid hierarchy or a quad-/octree type organization of the triangulation
Ty. The assembly of the second mass matrix D poses no difficulty, since the involved
basis functions ¢; and uy are defined with respect to the same triangulation 7, N T

5.4 Numerical Results

We show several numerical results illustrating the performance of the algorithm. In
particular, five test examples are chosen. The first two couple piecewise linear finite
elements on both grids, whereas the third deals with piecewise linear elements on 75 and
piecewise quadratic elements on 7,. The fourth example deals with a 3D problem, and
the last provides an application to a unilateral contact problem in 3D.

(a) (b) (c)

W)=
@@

Figure 5.3: Numerical Test 1: overlapping triangulations: (a) initial, (b) after three uni-
form refinement steps, (c) isolines of the finite element solution upg.

Consider the model problem (ICT]) on 2 = (0, 1) with source term f derived from the
exact solution u(x,y) = sin(2wz)sin(47y). A circular patch of radius 0.25 is placed in
the domain {2 with its center at (0.45,0.35). The left picture in Figure shows the
initial overlapping triangulations 7y and 7. Piecewise linear finite elements are used on
both grids, thus, p = ¢ = 1. We consecutively solve the problem by means of Equation
(BE3T) and perform a uniform refinement step. The finite element solution upg which is
defined by (BI3)) is visualized in the right picture of Figure At each step, the errors
eg = u—ug, €, = ul|, — up, and epg = u — upg, are calculated in the L?-norm and the
H'-norm, documented in Tables Bl and

For comparison, we also include the error €, calculated from the finite element solution
uy, € S{(w), where the values of the exact solution u are imposed as Dirichlet boundary
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5.4 Numerical Results

# elements lexllo.0 lenllo.w lergllo.0 [€nllo.w
192 2.01-1071 5.97-1072 1.91-107! 2.56-10~2
768 5.81-1072(3.46) | 1.66-1072(3.60) | 5.48-107%(3.49) | 6.86-1073(3.73)
3072 1.51-107%(3.85) | 4.19-1073(3.96) | 1.42-1072(3.86) | 1.75-1073(3.92)
12288 3.81-1073(3.96) | 1.04-1073(4.03) | 3.57-1073(3.98) | 4.40-107%(3.98)
49152 9.54-107%(3.99) | 2.63-107%(3.96) | 8.95-107%(3.99) | 1.10-10~4(4.00)
Table 5.1: Numerical Test 1: L?-norm of the error.
# elements lemlli0 lenll1w lere b0 enll1w
192 3.81-10° 1.25-109 3.65-10° 9.95-10!
768 2.01-10° (1.90) | 5.66-10"%(2.21) | 1.89-10° (1.93) | 5.11-1071(1.95)
3072 1.02:10° (1.97) | 2.67-1071(2.12) | 9.51-10~1(1.99) | 2.58-10"1(1.98)
12288 | 5.11:1071(2.00) | 1.31-1071(2.04) | 4.77-10"1(1.99) | 1.29-10~1(2.00)
49152 2.56-1071(2.00) | 6.50-1072(2.02) | 2.38-107%(2.00) | 6.46-1072(2.00)
Table 5.2: Numerical Test 1: H'-norm of the error.
data, i.e.,

a’w(ﬁhv U) = (f> U)wv

In the parentheses, the factor of error reduction from the last refinement step to the actual
one is given. The error ey of the standard FE method decreases in the expected way.
The solutions u;, and upg obtained by the overlapping method confirm the theoretical
results obtained in Section In particular, this example illustrates nicely the stability
of the interface coupling. On the subdomain w, the errors e, and €, measured in the
L?-norm differ by a factor of 2.5, whereas there is almost no difference in the H!'-norms,
which demonstrates the quality of the approach. Because of the solution behavior, we
cannot expect to profit from choosing h < H or ¢ > p.

tpr = Zpulr, v E Sg’h(w).

(a) (b)

v
%

Figure 5.4: Numerical Test 2: overlapping triangulations. Initial (left), after three uni-
form refinement steps (middle). Peak structure of solution u (right).

In a second test, we consider the exact solution u(z,y) = exp(—100((z — 0.45)% + (y —
0.35)?)). Again, a circular patch of radius 0.25 is placed in the domain  with its center
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at (0.45,0.35). Since the solution tends to zero with an exponential decay, we may have
a coarser triangulation far enough away from (0.45,0.35), see Figure b4l Therefore, we
choose an initial triangulation with h/H = 1/4. Again, P; elements are used on both
grids. For comparison we also solve only the global problem. Figure shows the decay
of the errors ey and epg in the L?- and H'-norm under uniform refinement.

(a) 3 [ «w_  one domain —+— (b) “one domain  ——

107 ¢ - overlapping - e overlapping
g O(h?) e z 10t L x (9143 N—
g g
(SR o
g 10 £
8 [ -

10° ¢ B <

L -2
10 ‘
10t 10° 10* 10°

degrees of freedom degrees of freedom

Figure 5.5: Numerical Test 2: error decay in the (a) L?*-norm and (b) H'-norm.

As before, the errors ey and erg both satisfy the a priori estimates. Moreover, choosing
the same number of unknowns for the standard and the overlapping method, the solution
upg obtained by the overlapping method is significantly better than the solution ug
obtained by the standard method. Of course, similar results can also be obtained by
using adaptive refinement strategies on 2. However, in case of a moving time dependent
source term, this results in a time consuming remeshing and reassembly procedure at the
beginning of each time step, which is not necessary for the overlapping method.

We keep the setting of the last test, and now use P; elements on 7y and Py elements
on 7;,. In Figure b6, the error e, on w measured in the L?- and H!-norm is compared
with the P; —P; coupling from the previous example. In the case of the L?-error, there is
no improvement in the asymptotic behavior, and the values of the error are even higher
for the same number of degrees of freedom. In contrast, for the H'-norm, the error decay
on the subdomain w is almost optimal with respect to the piecewise quadratic finite
elements used on 7. In agreement with (229, the error e, behaves like c;h? +co H, and,
moreover, ¢y <K Cj.

For a first 3D example, we set the global domain 2 = (0, 1) and the solution u(z, y, 2) =
sin(27x) sin(37y) sin(4rz). The subdomain w now is a spherical patch of radius 0.25 with
its center at (0.6,0.4,0.6). The triangulation 7y of the global domain 2 consists of hex-
ahedrons, whereas 7}, is composed of tetrahedrons. Consequently, piecewise trilinear Q,
elements are used on 7y, coupled with PP, elements on 7;,. The assembly of the coupling
matrices is performed by the use of quadrature formulas. The left picture of Figure B.1
shows, on a cutting plane through the domain €2, the isolines of the composed finite ele-
ment solution upg, smoothly crossing the interface I'. The decay of the error epg, which
is illustrated in the right picture of Figure b7 agrees with (229).
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Figure 5.6: Numerical Test 3: error decay in the (a) L*-norm and (b) H'-norm.
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Figure 5.7: Numerical Test 4: (a) isolines, (b) error decay.

For the following example, we apply our approach to the solution of a unilateral fric-
tional contact problem, as illustrated in Figure A cylindrical ring €2 of outer radius
0.4, inner radius 0.3, and height 0.25 is subject to a surface traction concentrated on a
small part of its inner boundary. It is pressed against a planar obstacle which constitutes
a tangent plane prior to the contact. On (2, we have to solve a variational inequality of
the following form: find (uy, Ay) € Xy X M}, such that

CLH(U,H,’UH) + bH(’UH,AH) = f(’UH) s vy € Xy , (535&)
b‘}{(’U,H, Vg — )\H) <0 , Vg € AH()\H) . (535C)

In (B35)), the bilinear form ay(-,-) and the space Xy are obtained from (C3)—(LH) with
corresponding boundary conditions, whereas the bilinear form by (-, ) = 0% (-, -)+b% (-, )
and the spaces M;;, Ay are responsible for incorporating the contact conditions. A close
account and discussion of these contact conditions is given in [36]. There, we also show
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5 Overlap

Contact with Coulomb Friction

Figure 5.8: Unilateral contact problem: global domain €2, overlapping patch w.

how the advantages of the dual approach can be fully exploited for the efficient solution
of ([33)).

In order to improve the solution uy of (E3H), we solve on the patch w problem (B30])
with H replaced by h, where the elements of the solution space X} respect the boundary
condition u;, = Il,uy with II;, denoting the mortar projection onto I'. In Fig. B9 we
demonstrate the effect of our approach, (a) visualizes a reference solution obtained on

Figure 5.9: (a) reference solution, (b) solution uy, (c¢) solution

a quite fine global grid, (b) shows the solution uy calculated on a coarse global grid.
Comparing with the reference solution, we observe that wy does not approximate the
solution very well. In Fig. EJ(c), the improved solution u, is plotted on the patch w. It
is obvious that u; resolves the characteristics of the reference solution much better.
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6 Application to Electro-Mechanical
Problems

In this chapter, we present an application of overlapping domain decomposition tech-
niques to an electro-mechanical problem. The great flexibility of the approach enables
us to deal with different model equations and discretizations on the two subdomains of
interest. Especially in the presence of a moving subdomain, the method is very appeal-
ing. We start with the problem setting in Section &1l and continue to the variational
formulation in Section After introducing the discretization in Section B3, we focus
on the details of the numerical solution algorithm in Section First numerical results
are given in Section 6.0 and the final Section is dedicated to present the simulation
of an electromagnetic brake.

6.1 Problem Setting

Low frequency electromagnetic devices are often modeled numerically on the basis of the
eddy current formulation [5]. Two main families of formulations are widely used, the
one based on magnetic and the one based on electric fields. In this paper, we restrict
ourselves to the magnetic field approach. The space R? is decomposed in the conducting
region w and the external region R?\ w. Denoting by h, b, ¢ and e the magnetic field,
the magnetic flux density, the current density and the electric field, respectively, the
quasi-stationary Maxwell equations restricted to the conducting region w read as follows:

curlh = ¢, curle = —b, divb=0. (6.1)
The densities and the fields are linked by constitutive equations, namely,
b = uh, L=oce in w, (6.2)

where 1 = pou, > 0 is the magnetic permeability (the symbol o denotes the magnetic
permeability of the air while i, > 1 is the relative permeability of the medium), and o > 0
stands for the electric conductivity. Moreover, we assume that the material parameters
are time independent and associated with linear isotropic media, and that the external
source ¢, is zero within the conducting regions. As a result, we obtain the following field
equations in R3 \ w:

curlh = ¢, divb =0, b=ph. (6.3)

The problem is well posed by adding regularity conditions at infinity and suitable interface
conditions on I' = Jw. In particular, [h]xn =0, [b] - m =0, exn =0and ¢t -n =
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6 Application to Electro-Mechanical Problems

0, where m is the outer normal on I', and [v] stands for the jump of v on I'. These
interface conditions have also to be verified at any surface where o or i is discontinuous.
Additionally to the boundary conditions, we have to impose suitable initial values for
the vector fields at a given time ¢y. In particular, the initial condition on b has to satisfy
divb = 0 and [b]-n = 0 at any interface. The condition divbd = 0 is satisfied at any time
provided that it is verified by the initial condition. We point out the fact that the vector
fields ¢ and b are automatically forced to be solenoidal by (61]). By introducing artificial
boundary conditions, we can work on a bounded domain 2. Furthermore, we consider
the same geometrical setting as in Chapter B namely, that w is a simply connected
polyhedral subdomain of 2 and @ C €, and set w® = Q \ w.

From (EJ))-(633), we see that the solenoidality divb = 0 and the constitutive law
b = uh are satisfied in the whole global domain (2, yielding

divuh =0 in Q. (6.4)
In a weak form, this reads
(uh, gradv)g =0, v e Hy(Q). (6.5)

Inside the conductor w, we can combine the first two equations of (E.II) and the constitu-
tive laws (E2)) to eliminate all unknown quantities but the magnetic field h, and obtain

curlcurlh + oph =0 in w. (6.6)

Transforming to the variational form, this yields by the partial integration formula ([A9)
that '
(curl b, curlw),, + (ocuh, w), =0, w € HS™(w), (6.7)

where H"(w) = {w € (L*(w))?| curlw € (L*(w))?, (wxn)|r =0}.

For the current density ¢, the solenoidality condition dive = 0 admits the introduction
of a vector potential £ such that ¢ = curlt. Then in w, the difference between the vector
potential ¢ and the magnetic field h is irrotational by the first equation of (6II), thus,
it can be written as the gradient of a scalar function @, i.e., h = t — grad ¢. A similar
argument holds for the insulating region, where we assume knowing a vector potential ¢
such that ¢y = curlt,. Combining external and conducting regions, we write h as

h— {t — grad <,5~ ?n w, (6.8)

ts —gradp in Ww°

By inserting (E.8) in (63) and (67), we obtain a coupled eddy current problem in terms
of the vector potential ¢ defined only in the conducting region w and the scalar potential
¢ defined everywhere in €2, as will be carried out in the next section. This system is
completed with appropriate interface conditions on dw stating, e.g., that ¢ is continuous.
This is nevertheless not enough to define ¢ and ¢ uniquely. In fact divt is not specified,
and thus there are many different gauge possibilities. One of them is to require that £ has
the same divergence as h in w but this eliminates ¢ on w. We prefer another condition,
given in the next section.
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6.2 Variational Problem

Remark 6.1. In the considered configuration, the conductor w can freely move in (2.
In presence of moving conductors, we have to choose the reference system with respect
to which we write the eddy current problem. Let R be a reference system linked to €2
and R, be a reference system linked to w. If v is the conductor velocity, the appropriate
form of Ohm’s law in the reference system R reads

t=oc(e+vxb)inw, and t=ocein ).

The motion of w is directly considered in the convective term v x b. This is a typical
feature of the Eulerian description, i.e., the use of a single reference system for both parts
) and w. To get rid of the explicit velocity term, it is advisable to use as many different
frames as the number of parts, that is, in our case, to reformulate with respect to R, the
equations in €2 and with respect to R, the equations in w. This is the Lagrangian de-
scription, where the spectator is attached to the considered part and describes the events
from his material point of view. This approach makes disappear the explicit velocity
term from Ohm’s law, provided that each part is treated in its own “co-moving” frame
(Rq with Q and R, co-moving with w). If two different reference systems are used, one
has to couple both by suitable transmission conditions at the conductor boundary. We
stress the fact that for the analysis of eddy current problems in domains with moving
parts, there is some freedom in the choice of the reference frame, provided that the mo-
tion can be regarded as quasi-stationary with respect to electro-dynamics. This freedom
is a consequence of the low frequency limit. However, this is not possible for the full
set of Maxwell’s equations, where already a small acceleration can have a significant
effect (see [37] and the references therein). For a convenient Lagrangian description of
electro-dynamics in the language of differential forms, we refer to [43]. Thanks to the
characteristic of the eddy current model, we can adopt the “piecewise Lagrangian ap-
proach” (a Lagrangian approach on each part). This allows us to work with independent
meshes and discretizations. To do so, we use mortar techniques realizing the coupling
of scalar and vector potentials on non-matching grids. This approach has been intro-
duced in [85] and analyzed in [84]. Classical techniques often rely on the use of boundary
elements [89], or on the fictitious domain approach [65].

6.2 Variational Problem

In this section, we define a variational formulation based on the decomposition (E.8). We
restrict ourselves to the system obtained after time discretization of (6] and (61). Using
an implicit Euler scheme with time step size At, we approximate k by (At)~!(h — hgq).
Inserting this approximation and the decomposition (6.8)) into (67), we obtain

(cv curl £, curlw),, + (i, w), — (grad @, w), = (hog, W)y, w € Hg“ﬂ(w),
with a = At/(ou). Applying (E8) to (63) amounts to

(Bgrad @, gradv)g — (¢, gradv)., = (Bts, gradv)ee, v € Hy(Q),
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6 Application to Electro-Mechanical Problems

with @ depending on . Thus, we have to face a variational problem at each time step:
find (¢,p) € HS™ (w)x H}(2) such that

ag(p,v) + b(E,v) = (f, gradv)ye, ve Hy(Q), (6.9a)
b(w,p) + au(t,w)=(f, w),, w € H™(w). (6.9b)

Here, the continuous bilinear forms are defined by

b(w,v) = —(w, gradv),, w € H" (W), ve HNQ),
ao(p,v) = (Bgrad @, gradv)e, @, v € Hy(Q),
a,(t, w) = (a curlt, curlw), + (¢, w),, t, we H"™ (w),

where the coefficients o, 5 > 0 are assumed to be piecewise constant. In a more general
approach, they would still be uniformly positive definite. Note that the unknowns ¢ and
¢ denote the approximations at the current time step, f. depends on the approximations
of t and @ at the previous time step, and f denotes the scaled source term depending on
t,. Choosing t € H™(w) and ¢ € HZ(Q2), t and  satisfy at each time step the interface
conditions, namely, ¢ is continuous at I' and [t]xn = 0. In our approach, the strong
coupling between t and ¢ at the interface is replaced by a weak one.

It is easy to see that if (¢, ) is a solution of (B3), then (£ + grad x, @+ x), x € Ha(w),
is a solution as well. In order to get uniqueness, we choose x such that ¢ = @ + x is
harmonic on w. Using the harmonic extension operator H : HY?(I') — H'(w), see
(A22), we can state the modified variational problem: find (t,¢) € H{™(w)xHL()
such that

ag(p,v) + b(t,v) = (f, gradv),e, v e Hy(Q), (6.10a)
b(w,p) + a,(t,w)=(f., w),, w € HS™(w), (6.10Db)

where b(w, v) = —(w, grad Hv|p),, for v € H}(Q) and w € H§"!(w). The bilinear form
given by
a(('w, w)7 (’U, U)) = aw(wv ’U) + b(w7 U) + b(va U)) + CLQ(U), U)a

where v,w € H"(w) and v,w € H(Q), is elliptic on HS" (w)x H(9); see [84]. Con-
sequently, the variational problem (EI0) has a unique solution. The first line (G102l
and the definition (A222) of the harmonic extension yield b(¢,v) =0, v € Hj(w). Using
w = gradv, v € Hj(w), in the second line (EI00), we find that ¢ is divergence free if f,
is divergence free. Hence, t is implicitly gauged, and ¢ restricted to w is harmonic.

As for the model problem in Chapter B, we can again derive a saddle point formulation
which is equivalent to (EI0). In order to see, this we start from the strong formulation
(E2), (E6)) for the magnetic field h and its decomposition into ¢ — grad ¢ on w and
ts —grad ¢ on w®. We now assume the just validated gauging condition on ¢, namely, we
use the Coulomb gauge, and t is chosen to be solenoidal. From (&4l), we obtain

ag(p,v) — (t,on)r = (Bt,, gradv)ye, v € Vo= Hy(). (6.11)
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6.3 Discretization

Taking v € H{(w), this implies that ¢ is harmonic on w, thus, there exists v = ¢|r €
H*'Y2(T) such that ¢|,, = H~. Furthermore, due to the solenoidality of ¢, it holds that

(t, on)r — (¢, grad Ho), = 0, 5 € HY2(T).
After time discretization, we obtain from (E.6) at each time step:
Gu(1,8), (0.w)) + (b ) = (foy )y () € Vi = HAD)XHE™ (@), (6.12)
with
a,((7,1), (0, w)) = (acurlt, curlw), + (¢, w), — (w, grad Hy),, — (t, grad Hd),,. (6.13)

This suggests the introduction of the Lagrange multiplier A\ = t-n € M = H~Y(I),
and of the coupling bilinear form

b((v,8,w), 1) = (6 — v, Warsar, (v,6,w) €X = Vo xV,, e M.

yielding the saddle point formulation (II8) with a(-,-) = aq(-,-) + @w(-,-) and b(-, )
replacing a(-, -) and b(-, -), respectively.

6.3 Discretization

As in Chapter B, we use two different quasi-uniform triangulations 7z on €2 and 7, on w.
On 7Ty, we use standard conforming finite elements of lowest order for the approximation
of the scalar potential . The associated discrete space having zero boundary conditions
on 99 is called Sy (Q) = S§ (). For the discretization of the vector field t, we use
lowest order curl-conforming Nédélec finite elements on 7,. The basis functions w, are
associated with the edges e of the triangulation 7, and are also known as edge elements,
[88]. They can be defined in terms of the standard H'-conforming nodal basis functions
¢p by
we = ¢p grad og — ¢4 grad ¢,

where the edge e = {p, ¢} is oriented from node p to node g. The orientation of the edges
can be chosen arbitrarily. We set Ej,(w) = span{w, | eedge € 7,} and Ey(w) = Ep(w)N
H§"(w). Note that the elements t € Eyj(w) have vanishing tangential components on
I'. Finally, we denote by Sy, (w) the space of standard conforming finite elements of lowest
order associated with 7j, on w, and its trace space on I" is called W}, (I"). We remark that
no boundary conditions are imposed on S, (w).

In order to formulate the discrete version of the variational problem (610, we have to
replace the harmonic extension H in the definition of the bilinear form b(-,-). A natural
choice is to involve the discrete harmonic extension H;, : Wj(I') — Sp(w) defined by
([A23). The restriction of v € Sy (2) on T is, in general, not an element in Wj(T).
Thus, we cannot apply directly the discrete harmonic extension to the restriction of
v e Sou(2) on I'. To overcome this difficulty, we use the mortar projection operator
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I1;, as defined in (B32)). In terms of the operators H;, and IIj, we formulate the discrete
variational problem: find (¢, o) € Epn(w)xSo u(€2) such that

ao(pm,v) + bp(ty,v) = (f, gradv)ee, v € Sou(Q), (6.14a)
bn(w, or) + au(ty, w) = (f., w).,, w e Eyp(w), (6.14b)

where by (w,v) = —(w, grad Hyll,v), for v € Sy 4 (2) and w € Ey;(w). This approach is
characterized by an optimal error estimate, as stated in the next lemma which is proved
in [&4].

Lemma 6.2. For h/H small enough, the discrete variational problem (6.14) has a unique
solution and there exists a constant C independent of the meshsize such that, for t €
(HY(w))? with curlt € (HY(w))? and ¢ € HA(Q), 1 < 3 < 2, we have

11t = talll + llp = wulla < C (Al + [l cwrltl1) + H* gl

where ||[¢]]|. = (|t[3,, + | curlt|[3)"/? is a norm which is equivalent to the standard
Hilbert space norm on HS™ (w).

6.4 Implementation and Algorithmic Details

We carry out some details on the implementation of the coupling bilinear form by,(-, ). In
particular, we have to apply the operators IIj,, H;, and grad to a function v € Sy z(€2),
and the result should be given in terms of coefficients for the edge element basis functions
in By (w). For the realization of IT}, yielding the matrix Q = D~'M, we refer to Section
b3l for a detailed account. The second step of the coupling is the definition of the discrete
harmonic extension Hpv. This corresponds to solve a Dirichlet boundary problem in w
for the Laplace operator with a zero source term and given boundary data on I'. We
denote by S the matrix associated with the harmonic extension H;, from W, (I") to Sp,(w).
Finally, we have to realize the coupling between the global scalar potential and the local
vector one. We remark that the values of w), € Ey;(w) on the boundary edges are zero
due to the homogeneous boundary condition on I'. As it is classical, the vector grad Hv
can be decomposed in terms of the same edge element basis as wy; the coefficients of
the decomposition are circulations along the considered edges defined from nodal values
at the end points of the edge. The passage from the nodal values to the associated
circulation can be done efficiently by introducing the incidence matrix G, see also [22].
As we have seen, an edge is not only a two-node subset of the set of all mesh nodes, but
an ordered subset where the order implies an orientation. Let e = {p, ¢} be an edge of
the mesh oriented from node p to node ¢q. Then, we can define the incidence numbers
G(e,q) =1, G(e,p) = —1 and G(e,r) = 0 for all other nodes r. These numbers form a
rectangular matrix G which describes how edges connect to nodes.

According to the example given in Figure where {«, 3,0, x, €} are the mesh nodes
and {a,b,c,d,e, f, g, h} the mesh edges, the node-to-edge operator is represented by the

138



6.4 Implementation and Algorithmic Details
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Figure 6.1: Computing the node-to-edge incident matrix G in two dimensions.

8 x5 matrix G that reads

1 -1 0 0 0
1 0 0 -1 0
0 1 0 -1 0
1 0 -1 0 0
G = 0 -1 0 0 1
0o 0 -1 1 O
0o 0 0 1 -1
0 0 -1 0 1

Let v € Sp(w), then w = gradv € Ej(w). Using the node-to-edge incidence matrix G,
the algebraic representation has the form w = Gv. Figure illustrates the action of
the node-to-edge and edge-to-node operators G and G7.

(a) T+ A e = (b) o+ T~ _ Ta
+

“
2 4
in+J\j

\_/r\\-l-/

Figure 6.2: The action of the (a) node-to-edge and (b) edge-to-node operators G and G™,
respectively.

We associate with —(w, gradv),,, w € E,(w) and v € Sy(w), the rectangular matrix
B. 1t can be written as B = —M, GG, where M, is the edge element mass matrix on w.
The stiffness matrix A associated with the bilinear form a,(-,-) on Fj(w)x Ep(w) can
be decomposed in A = M, + C where C' is associated with the curl part of a,(,-), i.e.,
the elements of C' are given by (C)ee = (acurlw,, curlw,),, for all edges e, e’ of 7.
Observing that C'G = 0, due to the fact that curlgrad(-) = 0, we find B = —AG. If
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we now decompose the edges into boundary and interior edges, we can write A as a 2x2

block matrix )
_ (A A (A Apr
A_(AFI AFF) and A0—<0 Id)’

where A is the matrix associated with the Dirichlet problem on Ej ,(w) defined in terms
of the same bilinear form a,(-, ).

We finally present a numerical algorithm to solve the discrete problem (EI4). Let us
denote by K, ¢ the standard stiffness matrix associated with the bilinear form aq(-,-) on
H}(Q)x H} (). The algebraic form of the discrete problem (6.14) reads: find two vectors
t;, and g solving the linear system

Aoty + PBSQyp = Iy, Koopn +QTS"B™t, = F. (6.15)

The right hand side vectors take into account the homogeneous Dirichlet boundary con-
ditions, and P is a cut off matrix; i.e., P(vr,vr)T = (v,0)T. The application of P is
necessary to guarantee the homogeneous Dirichlet boundary condition of ¢, on T

As iterative solver for (EI0]), we propose a block Gauf-Seidel method. Starting from
©%, we first compute ¢} and then ;" by

Aoty + PBSQyly = Fe, Kooy +QTSTBY ™ = F. (6.16)
The following lemma guarantees the convergence of the algorithm, see [84].

Lemma 6.3. Let " = oy — ¢}, be the iteration error in the n-th step, then there exists
a constant 0 < 6 < 1 not depending on H and h such that

ag(e"t ") < Bag(e”,e").
The convergence of % to v yields the one of t} to t.

Figure illustrates the algorithm. It is compatible with the presence of a conductor
w that can move inside ). The construction of the mortar projection Il is the only part
of the algorithm that is influenced by the motion of w. Thus, only the matrix () has to
be reassembled whenever the conductor w changes its position in (2.

In the rest of this section, we present an equivalent formulation of (EI6]). In particular,
we show that (6I6) is equivalent to a preconditioned Richardson iteration only involving
three solves per iteration step in contrast to four in case of (6&I6). We denote by K, the
standard stiffness matrix associated with the Laplace operator on w corresponding to the
bilinear form (grad v, grad v'),,.

Lemma 6.4. The following identity holds
STBTA;'PBS = Sk — G{+SAGrr,

where Sy and Sk, is the Schur complement of A and K, respectively, i.e., Sax = Arr —
ArfA Apr.

140



6.4 Implementation and Algorithmic Details

solution of a
div grad problem on (2
e = Ko b(F — QTSTBT,)

W, (F) to SO,H (Q)
QTSTBTt,

harmonic restriction
from Sy (w) to Wp(T)
STBTt,

. J

mortar lifting from J

no

[stopping criteria ok? J

sto yes scalar 'and vect-or g N
potential coupling bilinear form a,(.,.) and

. - in presence of edge-to-node projection
mortar projection from a moving conductor BTt,
SO,H(Q) to Wh(l“) L J
Qey N
solution of a

curl curl problem on w
t, = Ay '(F. — PBSQey)

from Wi () to Si(w) node-to-edge projection
SQ(,O and bilinear form a,(., .)
H

BSQpy

harmonic extension J {

Figure 6.3: Numerical algorithm for the scalar and vector potentials coupling.

Proof We start by rewriting
A A A7 —ATA Id 0 A A
-1 o 11 T II 77 4T 11 T
angea= (3 A (0 ) (5 o) G an)

_ ( Id 0) (AH AIP) _ <AH Apr ) (6.17)
ArrA; Sa 0 0 Ar; ArfAj A '

_(An Aw) (0 0N _, (00

- \Ar; Arr 0 Sa/) 0 Sa)°

Recalling that —B = AG = M_.G and thus GTAG = GTM.G = K,,, we find

T AT _ T (L 1 K Kir\ (K Kir)
STGTAGS = S'K,,S = (—Kr/K;;', 1d) <Km Ko I = Sk..

where we have used another 2x2 block decomposition into interior and boundary vertices.
Finally, we have to consider the second term on the right hand side of (6I7) in more
detail. To do so, we use the block decomposition

(G Gir
o= (% Gn)

noting that Gr; = 0 since an interior vertex cannot be an endpoint of an edge on the
boundary. The block decomposition of G yields

T ~T O O . O 0 * . T
TG <o SA) GS = (x,1d) (0 T S Gpp) (1 d) — GL.84Grr .
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Summarizing the results, we find
STBYA;'PBS = STGTAA ' PAGS = Sk, — G++:8AGrr. O

Using the first equation in (B13), we find t, = A, ' (F. — PBSQyy;). Then, the elimina-
tion of ¢, in (E10) and Lemma 6.4 yield a linear system for ¢

(Kog — Q" (Sk, — GrSAGrr) Q) = F — QTSTBTA'F, = Fyr . (6.18)

If h/H is small enough, the matrix Koo — QT (Sk, — GirSaGrr)Q is symmetric and
positive definite, see [84]. Applying to (EI8) a Richardson iteration (see [T03] for more
details) with K & as preconditioner yields

el = o 4 KO‘;](FH — (Koo — Q" (Sk, — GFrSAGr)Q)¢l)

» ) . (6.19)
= Ko o(Fu + Q" (Sk, — GrrSaGrr)Qwy) -

Lemma 6.5. The block Gaup-Seidel method (618) with ¢ = Ky, Fy is equivalent to
the preconditioned Richardson iteration ([619) with the same Y.

Proof The block Gauk—Seidel method yields the following recursive definition of tﬁ“

tyt = Ay N (F, — PBSQyY) = Ay (F. — PBSQyy ' + PBSQ(el ' — o))
=t} — A PBSQ(¢ — o),

where we set o' = 0 and t), = AJ'F.. Using ¢}, = K /,Fy, we find for the block
Gaufs—Seidel method

Kool = F —QTSTBTty + QTSTBY Ay ' PBSQ(¢yy — o)
ot = ol + Ko QQUSTBYAT PBSQ(¢t — o) -

By means of Lemma [64) we get that the Gauk—Seidel method (G.I6) is equivalent to
P =0+ KooQ' (Sk, — GirSaGrr)Q(el — ¢ ') - (6.20)

Comparing (E19) and (620), the assertion can be easily shown by induction. O

Due to Lemmas and B0 the convergence rate of (EI9) does not depend on the
meshsize and can be improved by applying a Krylov subspace method. When the dif-
ference between two successive iterations ", and ¢, satisfies a stopping criteria, then
we can compute tzﬂ by means of the first equation in (GI6]). At this point, the moving
conductor reaches its new position, and the algorithm (ET9) starts again.

The preconditioned Richardson iteration to obtain ¢’ is illustrated in Figure
In each iteration step, we have to solve one Dirichlet problem on w associated with the
Laplace operator, one Dirichlet problem on w associated with the curl operator, and one
Dirichlet problem associated with the Laplace operator on 2.
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Figure 6.4: Illustration of the preconditioned Richardson iteration.

6.5 Numerical Results

We apply the block Gauk—Seidel method (G.I6]) in two dimensions to the example shown
in Figure The computational domain € is the square (—0.1m,0.1m)? containing a
ferromagnet of permeability 1 = 5-107*H/m. Two coils generating the source field ¢, are
located on a part of the ferromagnet (shadowed part of Figure B0 left). The conductor
w of width 0.012m and height 0.09m moves with the constant velocity v = —0.2¢e,m/s,
its barycenter having the initial position zo = (0,0.01m)*. The conductivity o of w is
set to be 10°S/m, its magnetic permeability is the same as the one of the surrounding
air, pp = 47107 "H/m. The used time step is At = 0.00625s.

| 200
100+ ‘
(a)100} (b)
O__
-100t ) . .
—lIOO (I) 1(I)O

Figure 6.5: (a) conductor w moving through the magnetic field induced by ¢, (dimensions
are given in millimeters), (b) overlapping non-matching grids (zoom).
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6 Application to Electro-Mechanical Problems

The triangulation 7y of the domain ) consists of 1536 quadrilateral elements shar-
ing 1616 nodes. The conductor w is discretized by means of 512 triangles yielding 808
edge element unknowns. We remark that the motion of the conductor is performed
without involving any remeshing procedure. Moreover, since K o, Sk, and Sy stay
constant during the whole simulation, it is sufficient to carry out the corresponding
LU-decompositions only once. The presented algorithm consists of two nested iterative
schemes. An implicit Euler scheme is used for the outer iteration with zero initial condi-
tion. The inner iteration is the preconditioned Richardson method given in (GEI9). We
use || — %/l < 107 as stopping criteria for our inner iteration scheme. For
the considered example, the number of iterations is between 5 and 11 for all time steps.
Figure illustrates the preconditioned Richardson iteration for a fixed time step. To
support the theoretical result of Lemma &3l we consider different meshsizes and show
the number of required iteration steps versus the number of unknowns. We observe
convergence rates which are independent of the meshsizes.

iterations
o P N W A O O N ®

100 1000 10000 100000
degrees of freedom

Figure 6.6: Time step 8. Number of iteration steps with respect to the number of un-
knowns

Figures and show the distribution of the magnetic field outside and inside the
conductor w corresponding to two different positions of the moving part w. The distri-
bution of the induced field in the conductor is in agreement with that predicted by the
Lenz law, i.e., the induced currents create a field which contrasts the one generated by
the sources in order to give a zero total magnetic field in w.

In Figure B9 the components of the magnetic field in horizontal direction are plotted
along the vertical axis of symmetry, which is indicated by the dashed line in Figure
B3 left. The inducing component —3J,p generates a reaction field ¢, in w trying to
compensate the first one. Thus these two components have opposite signs. After the
first time step, the resulting total field (t — grad ), inside the conductor is almost
completely suppressed because of the instantaneous penetration by the inducing field, as
shown in Figure [60(a). As the conductor moves along, this effect becomes less intense.
Moreover even when the barycenter of w is exactly at the origin of the system, the field
distribution in w is not symmetric with respect to the horizontal axis, as illustrated in
Figure E9(b). This is due to the motion of the conductor towards the bottom.
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6.5 Numerical Results

(b) i

Figure 6.7: Time step 1: (a) generated field — grad ¢ in € between the poles, (b) induced
vector potential ¢ on w, (c¢) magnetic field h =t — grad ¢ on w.

()]

Figure 6.8: Time step 8: (a) generated field — grad ¢ in €2 between the poles, (b) induced
vector potential ¢ on w, (¢) magnetic field h =t — grad ¢ on w.

2500 2500

2000 (a) 2000 (b)

1500 \ : 1500 e
/ A A

1000 /\ 1000 i »/ \
500 -,.:'. '.,.' 500 ::_‘,‘ i

0 : ; : .
-500 F“"' 1 500 /f ]
-1000 \/ Byp o 1 1000 \ / / ,",.- ...... P |

-1500

-1500 S

-2000 -2000
-100 -50 0 50 100 -1 -0.5 0 0.5 1

Figure 6.9: Field intensity in horizontal direction along the vertical axis of symmetry:
(a) time step 1, (b) time step 8.
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6 Application to Electro-Mechanical Problems

6.6 An Electromagnetic Brake

So far, the motion of the conductor was given in advance. In general, this motion is
influenced by the electromagnetic forces acting on w. In order to account for this effect,
we use the simple model of a damped harmonic oscillator for the mechanical part. Let ¢
be the distance between the two equilibrium positions of w which correspond to take or
not to take into account the gravity force, respectively. We denote by m the mass of w
and by z the vertical position of the center of w at time ¢, with the initial conditions z(0),
2(0). Then at any given time, there are four forces acting on m: the gravity force —mg
pulling downward, the spring force k(¢ — z), the damping force —bZ and the external
magnetic force (F),),. Neglecting any motion parallel to the (z,y)-plane, the Newton’s
law of motion for a point mass (the center of w) reads:

m,é:—mg+k(€—z)—bz”+(/(curlH) x wH).,, (6.21)
where we assume that w has free space permeability 1, and, therefore, no forces due
to magnetization need to be taken into account. If we write ([E2]) at the equilibrium
position, i.e. z =0 and F,, =0, we get mg = k{. Then, (E2ZI]) simplifies into

m'z’—l—bé—i—kz:(/(curlH)qu)z. (6.22)

w

To discretize (6.22), we apply a second order explicit finite difference scheme of time step
size At.

In the following, we present some numerical results for problem (EI4]) explicitly coupled
with the discrete form of (E22). The considered domain (2 is the cube (—0.1m,0.1m)>?
containing a ferromagnet of relative magnetic permeability p,. = 1000, and a cylindrical
conductor w having permeability ;1o = 4710~"H/m. The geometry parameters are illus-
trated in Fig. The ferromagnet contains a coil (shadowed part in the right picture
of Fig. EI0) consisting of 500 windings each of which carries a constant current of 50A,
which yields a source current density ¢, = 41.67 A/mm?. The conductor w moves with
a velocity v || €, determined by the solution of the coupled problem. Its barycenter has
the initial position Z, = (0,0,0.02m)*.

Both the geometry and the source term are axisymmetric with respect to the vertical
axis. Therefore, by transformation to cylindrical coordinates, we can reduce the problem
dimension and choose the right half of the (z, z)-plane as computational domain [66]. The
left picture of Fig. ELITlshows a zoom of the computational grids, being quadrilateral in (2
and triangular in w. The mechanical parameters are chosen to give a damped oscillating
system (i.e., b> — 4km < 0). Here, m = 0.1kg, b = 0.05Ns/m, and k& = 20N/m. Using as
initial conditions z(0) = 0.02m and 2(0) = 0, we perform 200 time iterations of step size
At = 0.01s. We run five different tests, thereby varying the conductivity o of w from 10°
to 108S/m.

The results are illustrated in the right picture of Fig. BTl plotting the vertical position
z of the center of the conductor against the time t. We observe that, for o = 10° S/m, the
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Figure 6.10: (a) domain geometry, (b) (z, z)-plane, dimensions in mm.
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Figure 6.11: (a) overlapping grids (zoom), (b) vertical position y of w with respect to
time for different values of o (given in S/m).

motion almost coincides with that described by the homogeneous form of (6222). In this
case, the magnetic force related to the induced currents in w is rather weak and within
the computational time interval, the conductor cannot hold the equilibrium position. As
soon as o > 5-10°S/m, the contrasting effect of the eddy currents to the motion is more
visible and the amplitude of the oscillation decreases. For the large conductivities 5-107
and 108S/m, the conductor stays within equilibrium position after roughly 1 and 0.5
seconds, respectively.
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7 Concluding Remarks

This thesis is devoted to the development and analysis of nonconforming discretization
schemes for coupled problems. In order to be able to deal with the naturally arising non-
matching interface grids, the framework of mortar finite elements in combination with
dual Lagrange multipliers has been chosen, which guarantees the stability, optimality and
efficiency of the resulting numerical algorithms. Some extensions to the original approach
have been proposed, and their validation has been performed both theoretically and by
means of several non-trivial applications.

A large part has been dedicated to the extension of the mortar method to the case of
curvilinear interfaces. For a scalar model equation, a rigorous convergence analysis in
the spirit of variational crimes has been carried out. Reformulating the discrete problem
formulation on affine elements as a perturbation of a blending element approach, optimal
a priori error estimates have been derived, based on abstract assumptions for the discrete
Lagrange multiplier space. The analysis has been expanded to the linear elasticity setting
by investigating modifications for dual Lagrange multipliers necessary to ensure stability.

Moreover, the extension of lowest order dual Lagrange multipliers from simplicial or
parallelogram-shaped surface elements to arbitrary quadrilateral elements has been pro-
posed by means of two alternatives. For both possibilities, the optimality of the approach
has been shown by validating the reproduction property for constants which immediately
implies the approximation property, while the stability already follows from the biorthog-
onality of the dual basis functions.

In addition, the use of non-matching grids for coupled problems in computational
acoustics has been studied. Two settings have been examined, the first one considering
an aero-acoustic problem given by the wave equation for the acoustic velocity potential in
both regions, the second one realizing a fluid-structure coupling of a displacement based
formulation for an excited elastic structure with the wave equation for the surrounding
acoustic fluid. The advantages of being able to deal with non-matching grids in both
settings have been clarified by several applications. Moreover, a solution method for the
case of nonlinear structures has been introduced and tested.

Whenever moving subdomains are involved, it is very appealing to use an overlap-
ping decomposition. The mortar framework has been extended to the case of nested
domains. For a simple one-directionally coupled model problem, a detailed error analysis
incorporating the use of different meshwidths and finite element spaces has been carried
out. Moreover, an equivalent formulation as a generalized saddle point problem has been
presented.

As a particular application of an overlapping decomposition of nested domains, the
eddy currents resulting from the motion of a conductor through an electromagnetic field
have been investigated. The unknown magnetic field has been decomposed into the dif-
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7 Concluding Remarks

ference of a local vector potential and the gradient of a global scalar potential. According
to the different model equations, different discretization schemes have been used which
were successfully coupled by weak matching conditions. The simulation of an electro-
magnetic brake has been considered as an example clearly depicting the advantage of
using an overlapping decomposition.

Overall, this thesis is intended to contribute to the evolution of mathematically sound
and numerically efficient algorithms from purely academic examples towards the simula-
tion of real-life problems. Increasing the complexity of coupled problem settings further
and further, the issue of robust data transmission between the decoupled subproblems
becomes more and more important. The construction of the required projection opera-
tors by naturally adapting the continuous variational formulations, like it is done within
the mortar framework, is very promising and worth to be considered for industrial appli-
cations.
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A Appendix

A.1 Functional Analysis

We follow closely the presentation in [39]. Henceforth, (2 is a measurable open set of R?
with boundary 0€). Whenever it is well-defined, its outward normal is denoted by n.

Definition A.1 (LP-spaces). Let M(Q2) be the space of (equivalence classes of) scalar-
valued functions on (2 that are Lebesgue-measurable. For 1 < p < oo, set

LP() = {f € M(Q) : | fllope < o0}, (A1)

where

1/p
Flope = (/ Ifl”dQ) <<
Q

| fllo.co,o = esssup|f(x)| =inf{M > 0;|f(x)| < M a.e. on Q}.
TEN

Definition A.2 (locally integrable). The space of locally integrable functions is de-
noted by Li..(Q2) and is defined as

loc
L) = {f e M(Q) : for all compact K C Q, f € L'(K)}.

Theorem A.3 (L’-inner product). The space L?(2) is a Hilbert space when equipped
with the scalar product

(Fa)a = [ fgac. (A2)
The corresponding norm s denoted by
1/2
o0 = oz = ( [ 177a2) (A3

Definition A.4 (distribution). Let D(2) denote the vector space of infinitely often
differentiable functions whose support in €2 is compact. A linear mapping

v:D(Q) 39— (v,o)pp €R,

is said to be a distribution on 2 if and only if the following property holds: For all
compact K in 2, there is an integer p and a constant C' such that

(v, o)prp| < C sup [0%(x)], ¢ € D(), supp (¢) C K.

reK,|al<p
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A Appendix

Every function f € L] () can be identified with the distribution

loc
f:DO) 3¢~ (f,¢)pp= /Qfsodﬁ-

Definition A.5 (distributional derivative). Let v € D'(Q2) be a distribution. For a
multi-index «, the a-th distributional (or weak) derivative 0“v is defined such that
9°v:D(Q) 3 p = (0%, )pp = (—1)*N v, 0*0) pr .

Definition A.6 (Sobolev spaces). Let s and p be two integers with s > 0 and 1 <
p < co. The Sobolev space W*P(Q) is defined as

WP(Q) = {v € D'(Q) : 0% € LP(Q), |a| < s}, (A4)
a Banach space equipped with the norm

ollspe =D 11070l oo
|| <s

Theorem A.7 (Hilbert Sobolev spaces). Let s > 0. The space H*(Q2) = W*2(Q) is
a Hilbert space when equipped with the scalar product

(v, w)s0 =Y (0"v,0"w)q. (A.5)

la|<s
The associated norm is denoted by || - ||s.q-

Definition A.8 (Lipschitz continuous). Let D be a subset of Q and C°(D) denote
the space of functions that are continuous on D. Then C%!(D) is the space of functions
that are Lipschitz continuous on D, namely,

C*Y(D) = {f € C%(D) : sup —|f(9c) — /W)l < oo} ) (A.6)
z,yeD |ZL‘ - y|

Definition A.9 (Lipschitz domain). We say that (2 is a Lipschitz domain, if in a

neighborhood U, of any point x € 9, the boundary 02 may be represented as a hyper-

surface yq = 0(y1, ..., y4_1), where 6 is a Lipschitz function in C%'(U,), and (yi,. .., ya)

are rectangular coordinates in R? that may be different from the canonical basis.

Theorem A.10 (density). Let Q be a Lipschitz domain. The restriction of functions
in D(RY) to Q span a dense subspace of W1P(Q).

Definition A.11 (fractional Sobolev spaces). For 0 < s < 1 and 1 < p < oo, the
Sobolev space with fractional exponent is defined as

WeP(Q) = {v € LP(Q) : v(z) —v(y)

When s > 1 is not integer, letting 0 = s —[s] with [s] being the integer part of s, W*P(Q)
is defined as
WeP(Q) = {v e WEP(Q) : 0% € WoP(Q), |a| = s}.

For p = 2, we denote H*(Q2) = W*%(Q).
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A.1 Functional Analysis

Definition A.12 (W;?(Q2) and its dual). For 1 < p < oo and s > 0, set
We*(2) = D(9),

where the closure is taken with respect to || - ||s .0, and let W=7 (Q) = (W;7(Q))’ be
the dual of W;”(€Q)) with the norm

<f> U>W*57P’ xWyP

[l -sp0=sup (A.8)

vEWSP(Q) [vlls.p.0
For p = 2, we denote H3(Q) = WS*(Q) and H—*(Q) = W—52(Q).

Theorem A.13 (trace theorem). Let v, : C°(Q) — C°(99) map functions in C°(Q) to
their trace on 0. If Q is a Lipschitz domain, vy can be continuously extended to H'(S),
1 < p < oo. Moreover, it holds that

(i) The extension vy : H(Q) — HY2(0Q) is surjective.
(ii) The kernel of v is H} ().
We often write v|sq instead of yov.

Lemma A.14. Let Q be a Lipschitz bounded open set, and uw € (L*(Q))* such that
curlu € (L2(Q))%. Then, u x n € (H~/2(02))3, and

(curlu, v)g = (u, curlv)g — (U X 1, V) 172 g1/2- (A.9)

Lemma A.15 (Green’s formula). Let Q) be a Lipschitz bounded open set, o € (L>°(§2))4*¢,
and v € HY(Q) such that div(o gradu) € L*(Q). Then, n-ogradu € H~Y2(09), and

—(div(e grad u), v)q = (gradv, o gradu)g — (n - o grad u, v) g-1/2, g1/2- (A.10)

Lemma A.16 (Poincaré). Let Q) be a bounded open set. Then, there exists Cq such
that
[v]loe < Collgradvllon, v € Hy().

Lemma A.17. Let Q be a Lipschitz domain. Let f be a linear form on H'(Q) whose
restriction on constant functions is not zero. Then, there exists Cq such that

lvllie < Ca (llgradvllon + [ f()]), ve H(Q).

Lemma A.18. Let (2 be a Lipschitz domain. Let D be a subset of 2 of non-zero measure,
and T be a subset of O of non-zero (d—1)-measure. By Lemma AT, we have that

|vl1a < Cq <|| grad vl + |D|_1/ de) , vE Hl(Q), (A.11)
D

lvlla < Cq (H grad v||oq + |F\_1/vdF) , VE Hl(Q). (A.12)
r
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Lemma A.19 (Korn’s second inequality). Let Q) be a Lipschitz domain. Then, there
erists Cq such that

lvlle < Ca(le@)lloq + llvlloe), v € (H'(Q)"

Corollary A.20. Let € be a Lipschitz domain and let T'p C 02 be of non-zero measure.
Then, there exists C' such that

lvllie < Clle@)llon, v € {w e (H'(Q)": wlr, = 0}.

Lemma A.21 (Lax—Milgram). Let V be a Hilbert space, let a € L(V x V; R), and let
f e V'. Assume that the bilinear form is V-elliptic, i.e., there exists a constant o > 0
such that

a(v,v) > a|jv|3, velV

Then, the problem of seeking uw € V' such that a(u,v) = f(v) for all v € V is well-posed
with the a priori-estimate

1
[ullvy < ~[[f]lv
«

Definition A.22 (LP(0,7; X)). For p € [1,00), the space LF(0,T; X) consists of func-
tions t — wv(t) which are Lebesgue-mesuarable on (0,7") with respect to the measure dt,

such that
T 1/p
Il = ( / Hv(t)ug;dt) -
0

A.2 Saddle Point Problems

Let X and M be two reflexive Banach spaces, f € X', g € M’, and consider two bilinear
forms a € L(X x X;R) and b € L(X x M;R), where L(F; F') denotes the vector space
of bounded linear operators from E to F. The saddle point problem to be investigated
is given by: Find (u, A\) € X x M such that

a(u,v) + b(v,\) = f(v), veX, (A.13a)

b(u, 1) =g(p), peM. (A.13b)
We usually refer to M as Lagrange multiplier space. Introduce the operators A and
B such that A : X — X’ with (Aw,v)x x = a(w,v), and B : X — M’ (and B" :
M = M" — X') with (Bv, u)yr . = b(v, ). Problem (AI3) is equivalent to: Find
(u,\) € X x M such that

Au+ BT = f, (A.14a)
Bu =g. (A.14b)

Let Ker B={v € X : b(v,pn) =0, u € M} be the null space of B.
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Theorem A.23 (SPP). Under the above framework, problem ([AI3) is well-posed if

and only if

Ja > 0 such that inf  sup M
wEKerB ycKer B ”U)HXHUHX

Vv € KerB, (a(w,v) =0, w € KerB) = (v=0),

>,

(A.15)

and
b
38 > 0 such that inf sup M > f. (A.16)

neM ywex o]l x ||l ar

Furthermore, the following a prior: estimates hold:

(A.17)

lullx < cllfllx + callgllar,
AMlx < esllfllxr + callgllar,

with c1 = 1/a, ¢ = c3 = (1 + ||all/a) /B, and cs = |lal|(1 + [lall /a) /5.

Let X}, and M), be finite-dimensional conformal approximations of X and M, respec-
tively. Consider the approximate problem: Find (up, Ap) € X} x M, such that

a(uh,vh) + b(?}h, )\h) = f(Uh), Vp € Xh, (A18a)
b(un, i) =g(pn),  pn € Mp. (A.18b)

Let By, : X;, — M, be the operator induced by b such that (Byvp, Mh>M,;,Mh = b(vp, fip)-
Let Ker B, = {v, € X}, : b(vp, un) = 0, pn € My} be the null space of By,.

Theorem A.24 (discrete SPP). Problem (AIR)) is well-posed if and only if

a(wy, vp)

Jay, > 0 such that  inf sup > ap, (A.19)
wn€Ker By e Ker By, || Wn || x||vnl x
b
36n > 0 such that inf sup _blons ) > . (A.20)

HhEMp, v €Xp ||Uh||X||Mh||M

Under assumptions (AI9) and ([(A20), the solution (un, A\n) to (AIR) satisfies

lu—unllx < e inf flu—wpllx +con inf [IA = gl

vp€Xp pn€Mp (A 21)
_ < . _ . _ *
IA=Anllar < esn inf flu—wnllx +can inf YA = pnllar,

with ¢y, = (1 + ||a||/an)(1 + [|bl|/5Br), can = ||bll/an if Ker By, ¢ KerB and co, = 0
otherwise, csp, = c1p||b||/an, and ¢y = 14 ||b]|/Br + canllall/ B

A.3 Preliminaries for Finite Element Spaces
We recall some often needed properties of finite element spaces, as presented for example

in [127]. Given a quasi-uniform triangulation 7; of the domain 2, we indicate by X}, the
corresponding space of piecewise linear finite elements on 75, and set X, o = X5, N HJ ().
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Definition A.25 (harmonic). A function v € H'() is called harmonic, if
(grad v, grad w)g = 0, w e Hi(9Q).
Given v € H'/?(02), the harmonic extension Hv € H'(() is defined by

(grad Hv, grad w)q = 0, w e Hi(Q),

(H0) o = v, (A.22)

Theorem A.26 (harmonic). For any harmonic function v € H'(Q), it holds that

|U‘1,Q ~ \U|1/2,asz,

Definition A.27 (discrete harmonic). A finite element function v, € X, is called
discrete harmonic, if

(grad vy, grad wy,)q = 0, wy, € Xpp.

Considering the full inner product (-,-); o given by (AX), a function v, € X, is called
generalized discrete harmonic, if

(vp, wp)1,0 =0, wy, € Xpo-
Given v, € X},|9q, the discrete harmonic extension Hjyvy, € X}, is defined by

(grad Hpvp, grad wy, ) = 0, wy, € X0,

A.23
(Hrvn)|og = v, ( )
while the generalized discrete harmonic extension H%vh € X, is given by
(Hvn, wn)10 =0, wy, € Xp0, (A.24a)
(Hhon)loo = va (A.24b)

Theorem A.28 (discrete harmonic). For any discrete harmonic function v, € Xy, it
holds that

U] 1,0 ~ |Uh|1/2,897

with equivalence constants independent of the meshwidth h. If vy, is generalized discrete
harmonic, then

vn e ~ th”1/2,69, (A.25)

Theorem A.29 (norm equivalence). Let V), indicate the finite element nodes of the
triangulation T,. It holds that

lnlldo ~ b4 (@), v € X (A.26)

PEVy
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A.3 Preliminaries for Finite Element Spaces

Theorem A.30 (local inverse inequality). Let {T\, @,i} be a finite element, [ > 0
be such that P C WH°(T), and {7} }1>0 be a shape-regular family of affine meshes in R?
with h < 1. For 0 < m <, there exists a constant C independent of h and T such that

lonllir < CREYopllmer,  vn € Pr = {po Fpl:pe P}, (A.27)
Theorem A.31 (global inverse inequality). It holds that
|vnlle < Ch_1||Uh||o,Q, vy € Xp. (A.28)

Assumption A.32 (Strang). Let V,W be Hilbert spaces, a(-,-) a continuous bilinear
form on W x V, and I(-) a continuous linear form on V. Assume that u € W is the
unique solution satisfying a(u,v) = l(v) for all v € V. Let W, V}, be finite-dimensional
spaces equipped with norms || - ||w,. || - ||lv,, respectively. Assume that W (h) = W + W},
can be equipped with a norm || - ||wx) such that

lwnllwy = lwnllw,, wn € Wi, and  flwllwe < Cllwllw,  weW.

Construct an approximation of u by solving the problem of finding u, € W) such that
ap(un, vn) = lp(vy) for all v, € Vi, with approximations ay(-,-) and l,(+) to a(-,-) and I(-),
respectively. Assume that dim (W) = dim (V},), and that there exists a constant oy, > 0
such that

inf sup an(wn, vn) > ay,.
wn€Wh ey, [|wnllw, [[vnllv,

Lemma A.33 (Strang 1). Let Assumption[A. 39 hold. Moreover, assume that W), C W
and V, C V', that the bilinear form ay(-,-) is bounded on Wy, x Vi, and that a(-,-) is

bounded on W x Vi, when W is equipped with the extended norm || - ||w ). Then, it holds
that

allw(n),v; ) 1 I (vy) — (v
o= walhwon < (14 PP g + o s P20
ayp, whEW}, ap vpeV, HUthh
1 —
S e sw lan(wn, vi) — alwy, vy)|
Op wh€Wh 4, €V, ||Uh||Vh

Lemma A.34 (Strang 2). Let Assumption [A.32 hold. Moreover, assume that the
bilinear form ap(-,-) can be extended to W(h) x V}, and that it is bounded on W (h) x V.
Then, it holds that

l —
inf [Ju — wh|lwn) + — [ln(vn) — an(u, vy)|
wp €W}, Qp, v, eV, thHVh

lu = unllwn) < (1 + 7Hah||w(h)’vh)
ap
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