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Symbol Description
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a Scalar quantity
f Scalar function
a Vector
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A Matrix
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a⊗ b Tensor product of a and b
V Arbitrary, small spatial domain
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grad f Spatial gradient of f

divF Divergence of F
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Subscripts and Superscripts

Subscript/Superscript Description
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VIII Notation

Quantities

If not explicitly stated otherwise, all quantities should be assumed to be arbitrary, smooth
functions which depend on the spatial position x and time t.

Symbol SI-Unit Description
t [s] Time
x [m] Spatial position
Ω [m] Complete spatial domain
V [m] Small, arbitrary spatial subdomain (averaging volume)
n [m] Outer unit normal of a spatial domain
v [m/s] Velocity
b [〈·〉] Arbitrary conservation quantity
q [〈·〉/m3 s] Source term of conservation quantity
M [−] Number of phases (fluids)
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T [K] Temperature
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Abstract

For many multi-phase flow and transport processes in porous media, miscibility of the
constituent components (i.e., the chemical compounds of the fluids) is a non-negligible part
of the governing physics. This thesis covers several theoretical and numerical aspects of
such flows. First, the continuum-scale equations are motivated starting from the molecular
scale. Then, techniques to discretize these equations are presented while keeping their
parallel implementation by computer programs in mind. After the theoretical, numerical,
and implementation-related aspects of such flows are covered, this thesis examines some
sample applications to illustrate various computational and physical properties of such flows.
Finally, this thesis is concluded and a list of related fields which it does not cover is given.

The main contribution of this thesis to the scientific state of the art is the proposal of non-linear
complementarity problem (NCP) based model assumptions to handle phase transitions in
compositional simulations of flow in porous media as well as an extensive evaluation of its
properties relative to established approaches – such as the primary variable switching (PVS)
and the black-oil models.





Kurzfassung

Mischbarkeitseffekte sind für eine Reihe von technisch, wissenschaftlich und wirtschaftlich
bedeutsamen Anwendungen von Fluidströmungen in porösen Medien von herausragender
Bedeutung. Eine Auswahl dieser Anwendungsgebiete ist in Abbildung 1 wiedergegeben:
Sie umfasst Techniken zur Erdöl- und Erdgasförderung, die Speicherung von klimaaktiven
Gasen wie CO2 in geologischen Formationen, Aufgabenstellungen zur Bodendekontamina-
tion, sowie Anwendungen aus der chemischen Verfahrenstechnik, welche an dieser Stelle
beispielhaft durch Polymer-Elektrolyt-Membran-Brennstoffzellen repräsentiert werden.

Bei derartigen Anwendungen ist die Erstellung geeigneter physischer Modelle zur Auslegung
und Optimierung des Systems oft sehr teuer oder im Extremfall unmöglich. Um dieser
Tatsache zum Trotz ein Verständnis der relevanten physikalischen Prozesse zu gewinnen, ist
die numerische Simulation häufig das Mittel der Wahl. Eine der Hauptschwierigkeiten dieser
Simulationen ist die numerische Behandlung von Stoffgemischen und hierbei insbesondere
die Präsenz der Fluidphasen innerhalb des betrachteten Raumgebiets.

In der vorliegenden Arbeit werden wir uns in den Kapiteln 2 und 3 näher mit der theore-
tischen Behandlung von Strömungen in porösen Medien beschäftigen. In diesem Kontext
werden wir einen besonderen Schwerpunkt auf die Einbeziehung von Mischbarkeitseffekten
legen. Im anschließenden Kapitel 4 werden wir kurz die numerische Behandlung der sich
daraus ergebenden Gleichung besprechen, während wir in Kapitel 5 die im Kontext dieser
Arbeit verwendete numerische Software näher betrachten und in Kapitel 6 Ergebnisse für
ausgewählte numerische Experimente vorstellen und auswerten werden. Abschließend folgt
eine Zusammenfassung sowie ein Ausblick auf wichtige weiterführende Themenfelder, die
den Umfang dieser Arbeit übersteigen würden.

Erhaltungsgleichungen für Fluidströmungen in porösen Medien

Im ersten Teil von Kapitel 2 beschäftigen wir uns mit Kontinuumsmechanik im Allgemeinen.
Hierzu werden wir zunächst die kontinuumsmechanische Betrachtungsweise basierend auf
molekularen Größen motivieren. In diesem Kontext werden wir feststellen, dass dies mit
dem mathematischen Konzept der Faltung von molekularen Größen erreicht werden kann,
wie Abbildung 2 illustriert: Zunächst definieren wir eine Dichtefunktion

ζb :=
∑
i

ψibi ,

die die mit den individuellen molekularen oder atomaren Partikeln assoziierte Größe bi
räumlich verteilt. Hierbei ist ψi : R3 → R eine glatte und an der Position des i-ten Moleküls
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(a) (b)

(c) (d)

Abbildung 1: Anwendungsgebiete von Mehrphasenströmungen in porösen Medien bei
denen Mischbarkeitseffekte berücksichtigt werden sollten: (a) Erdölproduktion.
(b) Geologische Speicherung von CO2. (Bildquelle: [90]) (c) Bodendekontami-
nation. (Bildquelle: [39]) (d) Polymer-Elektrolyt-Membran-Brennstoffzellen.

zentrierte Funktion, deren Integral über den Definitionsbereich 1 ergibt.

Nachdem wir eine passende Dichtefunktion definiert haben, können wir diese nach Anwe-
nung der Faltungsoperation

b(x) = (ζb ∗ χ)(x) :=

∫
R3
ζb(x− y) · χ(y) dy

mit einem Glättungskern χ : R3 → R auf Kontinuumsebene behandeln. Der Glättungskern χ
können wir dabei als eine um den Koordinatenursprung zentrierte, radial monoton fallende
Funktion mit der Eigenschaft annehmen, dass ihr Integral über den Defintionsbereich 1 ergibt.
Um Oszillationen in b vernachlässigen zu können, muss der Träger der Glättungsfunktion
einerseits groß genug sein, dass die Eigenschaften einzelner Moleküle keinen wesentlichen
Einfluss auf das Ergebnis der Faltungsoperation haben. Andererseits muss der Träger jedoch
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(a) Partikel (b) Dichtefunktion ζb (c) Kontinuumsgröße b

Abbildung 2: Illustration des Übergangs von der Molekular- zur Kontinuumsskala.

klein genug sein, um makroskopische Änderungen der Eigenschaften der Größe b nicht zu
sehr zu mitteln. Zur Verdeutlichung dieses Konzepts bietet sich als einfaches Beispiel die
Massendichte ρ an: Hierzu verwenden wir die Dichtefunktion

ζρ =
∑
i

ψimi ,

wobei mi der Masse des i-ten Partikels entspricht. Nach der anschließenden Anwendung der
Faltungsoperation erhalten wir als Kontinuumsgröße die Massendichte ρ.

Nach dieser kurzen Motivation der kontinuumsmechanischen Betrachtungsweise, werden
wir im selben Kapitel partielle Differenzialgleichungen herleiten, welche die Erhaltung belie-
biger Größen auf Kontinuumsebene beschreiben. Diese Gleichungen wenden wir sodann
auf verschiedene Erhaltungsgrößen der klassischen Physik an und betrachten hierbei insbe-
sondere den Spezialfall der NEWTONSCHEN Fluide, bei denen die viskosen Kräfte linear zur
Schergeschwindigkeit des Fluids angenommen werden. Wir beschränken unseren Diskurs
hierbei auf die Erhaltungsgrößen Masse, Impuls und Energie; andere physikalischen Erhal-
tungsgrößen – etwa elektrische Ladung – werden wir also nicht berücksichtigen. Als Ergebnis
unserer Bemühungen erhalten wir für NEWTONSCHE Fluide die Massenerhaltungsgleichung

∂xκρmol

∂t
+ div(xκρmol v −Dκgrad xκ) = qκ ,

die Energieerhaltungsgleichung

∂ ρ
(
u+ 1/2‖v‖2 + z · g

)
∂t

+ div(hρv − λgrad T ) = qenergy − ρv · g

und die NAVIER-STOKES-Gleichungen zur Impulserhaltung

ρ
∂v

∂t
+ ρv · grad v = −grad p+ µdiv grad v + ρg + qmom .
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Die Energieerhaltungsgleichung können wir weiter zu

∂ uρ

∂t
+ div(hρv − λgrad T ) = qenergy

vereinfachen, falls wir annehmen, dass die kinetischen und potentiellen Anteile vernachläs-
sigbar sind gegenüber der spezifischen inneren Energie u.

Bei schleichenden inkompressiblen Strömungen können wir weiterhin die Trägheitsterme
der NAVIER-STOKES-Gleichungen als vernachlässigbar gegenüber den viskosen Termen
annehmen. Dies führt uns zu den STOKES-Gleichungen

−grad p+ µ div grad v + ρ g + qmom = 0 .

Nach dieser Herleitung der für uns relevanten Erhaltungsgleichungen, erörtern wir in Ab-
schnitt 2.4 die Verhältnisse in porösen Medien. Hierbei ist zu beachten, dass für die meisten
technischen und wissenschaftlichen Anwendungen die genaue Geometrie der Poren un-
bekannt ist. Dieser Umstand ist analog zur initialen Partikelkonfiguration beim Übergang
von der molekularskaligen zur kontinuumsskaligen Betrachtungsweise, da auch diese nor-
malerweise unbekannt ist. Üblicherweise wird bei dieser Herleitung, wie bei der Motivati-
on der kontinuumsmechanischen Betrachtungsweise, ein Mittelungsansatz verwendet; es
Medien werden jedoch die Erhaltungsgleichungen der Kontinuumsskala gemittelt. Diese
Mittelungsansätze können wir auch als Spezialfälle von Faltungsoperationen auffassen. In
der vorliegenden Arbeit verwenden wir die von WHITAKER [89] vorgestellte Vorgehens-
weise, welche ausgehend von der Massenerhaltungs-, den vereinfachten Energieerhaltungs-
und den STOKES-Gleichungen die bestimmenden Gleichungen für die makroskopische Ber-
schreibung von Strömungen von NEWTONSCHEN Fluiden in porösen Medien ergibt. Als
Massenerhaltungsgleichung einer Komponente1 κ in einem porösen Medium erhalten wir

∑
α

∂φSα〈xκα〉
α〈ρmol,α〉α

∂t
+
∑
α

div(〈xκα〉
α〈ρmol,α〉α〈vα〉 − 〈Dκ

α〉grad 〈xκα〉) = qκmol ,

wobei wir die Quellterme der Komponente zu

qκmol :=
∑
α

〈
qκmol,α

〉
zuammenfassen und

〈b(x)〉 =
1

‖V(x)‖

∫
Vα(x)

b(y) dy

die Mittelungsoperation der Größe b(x) über das Raumgebiet V(x) repräsentiert. Ferner

1Eine Komponente bezeichnet hier eine chemische Verbindung die in Phasen enthalten sein kann, während
eine Phase als Materialgemisch definiert ist, das eine Grenzfläche zu allen anderen Phasen ausbildet. Als
Beispiel soll hier das Zweiphasen-, Zweikomponentensystem Wasser-Stickstoff dienen, bei dem die flüssige
und gasförmige Phase jeweils Gemische der Verbindungen Wasser (H2O) und Stickstoff (N2) sind.
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definieren wir das auf die Fluidphase α bezogene Mittel an Position x als

〈b(x)〉α =
1

Sαφ
〈b(x)〉 .

Analog zur Massenerhaltungsgleichung erhalten wir die Impulserhaltungsgleichungen

〈vα〉 = −kr,αK

〈µα〉α
(grad 〈pα〉α − 〈ρα〉αg)

und die Energieerhaltungsgleichung

∂

∂t

(
(1− φ)〈us〉s 〈ρs〉s +

∑
α

φSα〈uα〉α 〈ρα〉α
)

− div

(
〈λs〉s grad 〈Ts〉+

∑
α

(〈hα〉α〈ρα〉α〈vα〉 − 〈λα〉α grad 〈Tα〉)

)
= 〈qenergy〉 .

Hierbei bezeichnet 〈·〉s eine für die Feststoffphase definierte Größe. Diese Gleichung können
wir unter Annahme des lokalen thermischen Gleichgewichts zu

∂

∂t

(
(1− φ)〈us〉s 〈ρs〉s +

∑
α

φSα〈uα〉α 〈ρα〉α
)

− div

(∑
α

〈hα〉α〈ρα〉α〈vα〉+ λpm grad 〈T 〉

)
= 〈qenergy〉

vereinfachen.

Für die folgenden Betrachtungen werden wir die Mittelungsoperatoren nicht mehr explizit
schreiben, so dass wir die Erhaltungsgleichungen wie folgt ausdrücken werden:

∑
α

∂φSαx
κ
αρmol,α

∂t
+
∑
α

div
(
xκαρmol,αvα −Dκ

pm,αgrad x
κ
α

)
= qκmol

vα = −kr,α

µα
K (grad pα − ραg)

∂

∂t

(
(1− φ)usρs +

∑
α

φSαuα ρα

)
− div

(∑
α

hαραvα − λpm grad T

)
= qenergy

Schlussbedingungen und ergänzende Gleichungen

Nach dieser Herleitung der Erhaltungsgleichungen beschäftigen wir uns anschließend in
Kapitel 3 damit, ein mathematisch geschlossenes Gleichungsystem für die Erhaltungsglei-
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chungen zu erhalten. Das Erreichen dieses Ziels beinhaltet insbesondere die Notwendigkeit,
den per se unbekannten Größen eine gleiche Anzahl an Gleichungen gegenüberzustellen.
Wenn wir die Anzahl der Fluidphasen alsM und die Anzahl der Komponenten alsN bezeich-
nen, treten in den Masse- und Impulserhaltungsgleichungen folgende 2N ·M +N + 10M + 3

Größen auf:

• Die gravitative Beschleunigung g,

• die Porosität φ,

• die intrinsische PermeabilitätK,

• 3M Unbekannte zur Definition der Phasengeschwindigkeiten vα,

• M Sättigungen Sα,

• M Drücke pα,

• M relative Permeabilitäten kr,α,

• M dynamische Viskositäten µα,

• M Massedichten der Fluidphasen ρα,

• M molare Phasendichten ρmol,α,

• M Phasentemperaturen Tα,

• N Quellterme qκmol,

• M ·N Molenbrüche xκα und

• M ·N Diffusionskoeffizienten Dκ
pm,α.

Dem stehen bislang nur die N Erhaltungsgleichungen der einzelnen Komponenten, sowie
die 3M Erhaltungsgleichungen des Impulses gegenüber. Allerdings können wir die gravi-
tative Beschleunigung g, die Porosität φ und die intrinsische PermeabilitätK als gegebene
Funktionen in Abhängigkeit der räumlichen Position annehmen. Ferner können wir die
dynamischen Viskositäten µα, die Quellterme qκmol, die Massedichten der Fluidphasen ρα und
die Diffusionskoeffizienten Dκ

pm,α als gegebene geschlossene Funktionen in Abhängigkeit
des Drucks, der Temperatur und der Zusammensetzung der Fluidphase α annehmen [68, 22].
Des Weiteren besteht der Zusammenhang

ρα = ρmol,α

∑
κ

xκαM
κ

zwischen der Massendichte einer Fluidphase ρα und der molaren Dichte ρmol,α dieser Phase.

Weiterhin muss das gesamte zur Verfügung stehende Porenvolumen von den Fluiden ein-
genommen werden, so dass die Summe aller Fluidsättigungen 1 ergibt. Die relativen Per-
meabilitäten sind weiterhin gegeben durch geschlossene empirisch ermittelte Funktionen in
Abhängigkeit der Phasensättigungen.
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Wenn wir nun annehmen, dass zu jedem Zeitpunkt lokal thermodynamisches Gleichge-
wicht herrscht, erhalten wir weitere (M − 1) Relationen, die das mechanische, (M − 1)

Relationen, die das thermische und N · (M − 1) Relationen, die das chemische Gleichge-
wicht beschreiben. Im Kontext von Fluidströmungen in porösen Medien müssen wir bei
der Definition des mechanischen Gleichgewichts das Konzept des Kapillardrucks einführen,
welches die Differenz der absoluten Drücke der Fluidphasen im stationären Zustands im
porösen Medium ausdrückt. Die Kapillardrücke werden für gewöhnlich gemeinsam mit den
relativen Permeabilitäten als geschlossene empirisch ermittelte Funktionen in Abhängigkeit
der Phasensättigungen behandelt.

Bisher wurden erst die folgenden 2N ·M +N + 9M + 3 Relationen identifiziert:

• 3M Impulserhaltungsgleichungen,

• N Massenerhaltungsgleichungen,

• drei gegebene räumliche Funktionen für g,K und φ,

• eine Schlussbedingung für die Phasensättigungen,

• M Gleichungen für die Verknüpfung zwischen der molaren Dichte und der Massen-
dichte der Fluidphasen,

• M geschlossene Funktionen, die für die dynamischen Viskositäten µα wiedergeben,

• M empirisch gegebene Funktionen für die relativen Permeabilitäten kr,α,

• N Quellterme qκ,

• M ·N geschlossene Funktionen Dκ
pm,α zur Berechnung der molekularen Diffusionsko-

effizienten,

• M Zustandsgleichungen,

• M − 1 Gleichungen für die aus dem lokale thermischen Gleichgewicht stammen,

• M − 1 Gleichungen, die das lokale mechanische Gleichgewicht beschreiben sowie

• (M − 1) ·N Gleichungen für das chemische Gleichgewicht und

• ein extern vorgegebenes, räumlich abhängiges Temperaturfeld T falls wir die Energie-
erhaltungsgleichung ignorieren, ansonsten die Energieerhaltungsgleichung.

Um ein geschlossenes Gleichungssystem zu erhalten, fehlen also nochM Relationen. DieseM
Gleichungen bilden Modellannahmen ab, wobei wir die Annahmen folgender Modelle näher
betrachten:

Unmischbarkeit [39]: Bei diesem Modell wird die Anzahl der Fluidphasen mit der Anzahl
der Komponenten gleichgesetzt, also M = N angenommen. Ferner wird angenommen,
dass jede Fluidphase aus genau einer Komponente besteht. Diesen Umstand können
wir mittels

xκα =

{
1 wenn α die Fluidphase der Komponente κ ist,
0 sonst

ausdrücken.
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Primärvariablentausch [33, 23]: Falls wir für alle Fluidphasen Mischbarkeit annehmen,
können wir für den Fall, dass eine Fluidphase an einem Raumpunkt präsent ist, anneh-
men, dass die Summe der Komponentenmolenbrüche für diese Fluidphase 1 ergibt,
also dass ∑

κ

xκα = 1

gilt. Andererseits muss die Sättigung einer Fluidphase die nicht präsent ist Null sein;
also muss in diesem Fall

Sα = 0

gelten. Diese beiden Gleichungen können zusammengefasst werden zu

0 =

{
1−

∑
κ x

κ
α falls die Fluidphase α präsent ist,

Sα sonst.

Zur Bestimmung der Menge der zu einem gegebenen Zeitpunkt vorhandenen Fluid-
phasen wird diese initial vorgegeben und bei physikalisch unmöglichen Zuständen –
etwa bei negativen Sättigungen – während der Simulation angepasst.

Komplementaritätsprobleme [48, 41]: Die Bedingungen des Primärvariablentauschmo-
dells können wir auch direkt in das Gleichungssystem einbeziehen: Zu diesem Zweck
werden wir uns zuerst der Tatsache bewusst, dass die Summe der „Molenbrüche“ für
diese Phase nur kleiner 1 werden kann, wenn die Sättigung einer Fluidphase Null ist,
wenn also

Sα = 0 =⇒
∑
κ

xκα ≤ 1

gilt. Umgekehrt kann die Sättigung einer Fluidphase nur dann größer als 0 werden,
wenn diese Phase präsent sein kann, also die Summe der Molenbrüche 1 ist. Es gilt also∑

κ

xκα = 1 =⇒ Sα ≥ 0 .

Da jede Fluidphase immer entweder präsent oder abwesend ist, muss eine der bei-
den Gleichungen auf der linken Seite erfüllt sein und wir erhalten das nichtlineare
Komplementaritätsproblem

Sα

(
1−

∑
κ

xκα

)
= 0 ∧ 1−

∑
κ

xκα ≥ 0 ∧ Sα ≥ 0 .

Dieses können wir mittels einer nichtlinearen Komplementaritätsfunktion Ψ : R2 → R,
welche die Eigenschaft

Ψ(a, b) = 0 ⇐⇒ a ≥ 0 ∧ b ≥ 0 ∧ a · b = 0

erfüllt, direkt in das zu lösende Gleichungssystem einbeziehen. In diesem Zusammen-
hang ist es hilfreich zu erwähnen, dass die oben aufgeführte Eigenschaft die Funktion Ψ

nicht eindeutig definiert, also mehrere Funktionsklassen existieren, die diese Eigen-
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schaft aufweisen. Im Kontext dieser Arbeit verwenden wir aufgrund ihrer stückweisen
Linearität als nichtlineare Komplementaritätsfunktion jedoch stets die Minimumfunkti-
on

Ψ(a, b) := min(a, b) .

Black-Oil [19]: Die letzten Modellannahmen die im Kontext dieser Dissertation besprochen
werden, sind die des Black-Oil Modells. Diese Annahmen werden häufig im Bereich der
Förderung von Erdöl angewandt und beschreiben die Eigenschafen der Fluidphasen
Öl, Gas und Wasser mittels der drei gleichnamigen Pseudokomponenten Öl, Gas und
Wasser. Sowohl die Wasser- als auch die Gasphase werden hierbei als unmischbar vor-
ausgesetzt, während die Ölphase als Gemisch der Öl- und der Gaspseudokomponente
angenommen wird. Die Black-Oil-Parameter definieren nun die Massendichten aller
Phasen sowie den maximal möglichen Gasanteil der Ölphase in Abhängigkeit des
Drucks. Aus diesen Parametern können wir die benötigten Modellannahmen herleiten.

Diskretisierung

Nachdem wir nun die zu lösenden Gleichungssysteme bestimmt haben, widmen wir Kapitel 4
Methoden zum Finden von Näherungslösungen für jene Gleichungen. Unsere abstrakte
Vorgehensweise ist dabei folgende:

• Die partiellen Differenzialgleichungen werden zunächst räumlich diskretisiert. Zu
diesem Zweck wird das zu untersuchende räumliche Gebiet in ein konformes Gitter
partitioniert und die zu lösende Differenzialgleichung für jedes Element dieses Git-
ters einzeln betrachtet und anschließend addiert. Als Ergebnis erhalten wir ein – im
Allgemeinen sehr großes – nichtlineares, gekoppeltes System gewöhnlicher Differenzi-
algleichungen.

• Auf dieses System gekoppelter gewöhnlicher Differenzialgleichungen wenden wir
nun eine Zeitdiskretisierung an. Zur Herleitung dieser verwenden wir den Satz von
TAYLOR und erhalten für jeden Zeitschritt ein großes gekoppeltes System nichtlinearer
algebraischer Gleichungen. Das Finden einer Näherungslösung des ursprünglichen
Gleichungssystems reduziert sich also auf das wiederholte Lösen solcher nichtlinearer
algebraischer Gleichungsysteme.

• Jedes der sich ergebenden nichtlinearen algebraischen Gleichungssysteme lösen wir
anschließend iterativ mit Hilfe des NEWTON-RAPHSON-Ansatzes. Hierzu müssen wir
das zu lösende nichtlineare Gleichungssystem wiederholt linearisieren.

• Die sich aus der NEWTON-RAPHSON-Methode ergebenden linearen Gleichungssysteme
werden im finalen Schritt mittels einer direkten oder einer iterativen Methode exakt
oder näherungsweise gelöst.

In Kapitel 4 werden wir uns mit jedem dieser Schritte näher beschäftigen.
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(a) (b)
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(c)

Abbildung 3: Ergebnisse der Modellrechnungen für das Experiment zur Untersuchung der
geologischen CO2-Speicherung in Ketzin/Havel [55]. (a) Gassättigung nach
dreijähriger CO2-Injektion bei Annahme von Unmischbarkeit von CO2 und
Salzwasser. (b) Gassättigung nach dreijähriger CO2-Injektion unter Berücksich-
tigung der Mischbarkeit von CO2 und Salzwasser. (c) Anteil des injizierten CO2
das in der Salzwasserphase gelöst ist.

Numerische Anwendungen

Nachdem wir die theoretischen und numerischen Grundlagen zur numerischen Simulation
von Fluidströmungen in porösen Medien abgehandelt haben, werden wir uns in Kapitel 5
kurz mit eWoms beschäftigen, des C++ Softwarepakets in dessen Rahmen die hier vorgestell-
ten Konzepte implementiert wurden. Ein besonderes Augenmerk dieses Kapitels wird der
benötigte Aufwand zur Implementierung der oben genannten Modellkonzepte bilden.

Nach diesem kurzen Abstecher zur Softwareimplementierung, werden wir uns in Kapitel 6
den physikalischen und numerischen Eigenschaften der obigen Modelle anhand ausgewähl-
ter Beispiele zuwenden und sie untereinander vergleichen. Die numerischen Anwendungen
werden hierbei grob in der Reihenfolge ihrer Komplexität abgehandelt:

• Zunächst beschäftigen wir uns mit dem Heatpipeproblem von UDELL [84]. Dieses be-
schreibt einen eindimensionalen nicht-isothermen Versuchsaufbau, für den die Lösung
im stationären Fall semi-analytisch berechnet werden kann. Wir vergleichen dabei das
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Konvergenzverhalten der Raumdiskretisierung unter Verwendung des Primärvaria-
blentauschmodells und des Modells, das die nichtlinearen Komplementaritätsprobleme
direkt in das zu lösende Gleichungssystem einbettet. Außerdem werden wir in diesem
Abschnitt den benötigten Rechenaufwand der beiden betrachteten Modelle miteinander
vergleichen.

• Nach dem Heatpipeproblem werden wir die vorgestellten Modelle mit Hilfe der von
DARCIS [25] vorgestellten synthetischen Problemstellung zur geologischen Speicherung
von CO2 untersuchen. Hierbei widmen wir uns zunächst dem Einfluss der Energieer-
haltungsgleichung sowie den Einfluss von Mischbarkeitseffekten. Des Weiteren werden
wir anhand dieses Beispiels das Konzept der radialen Gebietsextrusion vorstellen,
welches es erlaubt, radialsymmetrische dreidimensionale Raumgebiete mittels eines
zweidimensionalen Raumgebiets abzubilden. Ergebnisse, die mit Hilfe dieser Methode
erzeugt wurden, werden dann mit denjenigen einer dreidimensionalen Simulation des-
selben Problems verglichen. Ferner werden wir anhand dieses Beispiels das Verhalten
der vorgestellten Methoden für parallele Berechnungen analysieren.

• Anschließend werden wir eine leicht vereinfachte Version des neunten Benchmarkpro-
blems der Society of Petroleum Engineers (SPE-9) [45] näher untersuchen. In diesem
Kontext vergleichen wir die Ergebnisse der Modelle welche auf den Ansätzen des
Primärvariablentauschs (PVS) und den nicht-linearen Komplementaritätsproblemen
(NCP) beruhen mit den Ergebnissen die mit Hilfe des Black-Oil-Modells berechnet
wurden. Wir werden dabei feststellen, dass sich das PVS-Modell für dieses Problem sehr
instabil verhält und deshalb nicht anwendbar ist. Die Ergebnisse der beiden verblei-
benden Modelle, zeigen eine gute Übereinstimmung hinsichtlich der prognostizierten
Injektions- und Produktionsraten, der benötigte Rechenaufwand ist jedoch für das
Black-Oil-Modell bedeutend geringer.

• Nach dem neunten Benchmarkproblem der Society of Petroleum Engineers werden wir
uns näher mit dem fünften Benchmarkproblem (SPE-5) [46] beschäftigen. Die Besonder-
heit dieser Problemstellung liegt weniger in einer komplexen geologischen Abbildung
des Problems, als vielmehr in der außerordentlichen Komplexität der verwendeten
thermodynamischen Relationen: Die Problemspezifikation umfasst drei Fluidphasen
sowie sieben Komponenten, welche mittels einer nicht-linearen kubischen Zustandsglei-
chung definiert werden. Das Problem wurde mit Hilfe des NCP- und des PVS-Modells
simuliert. Die hierbei erhaltenen Ergebnisse sind sich sehr ähnlich. Der benötigte Be-
rechnungsaufwand war auch in diesem Fall für das PVS-Modell höher als für das
NCP-Modell. Im Gegensatz zu den anderen hier beschriebenen Vergleichsproblemen
benötigt das PVS-Modell zur Lösung des SPE-5 Problems jedoch nicht nur eine grö-
ßere Anzahl an Zeitschritten als das NCP-Modell, sondern weist auch einen höheren
Rechenaufwand pro NEWTON-RAPHSON-Iteration auf. Letzteres liegt wahrscheinlich
daran, dass die zu lösenden lokalen Gleichungssysteme für Dreiphasensysteme mit
vielen Komponenten relativ groß werden, während die Anzahl der Fluidphasen beim
NCP-Modell keine Rolle spielt.

• Zuletzt werden wir Ergebnisse für eine Anwendung besprechen, welche die Verhält-
nisse des realen CO2-Speicherungsexperiments nahe der brandenburgischen Stadt
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Ketzin/Havel [55] abbilden. Ketzin/Havel wurde als deutscher Pilotstandort zur Un-
tersuchung der Realisierbarkeit geologischer CO2-Speicherung ausgewählt. Hierbei
werden wir zeigen, dass die vorgestellten Methoden auch großskalig einsetzbar sind –
im Falle des vorgestellten Beispiels beträgt die planare Ausdehnung des Simulationsge-
biets 5 km mal 5 km bei einer mittleren Dicke des Speichergesteins von ca. 130 m; dieses
Gebiet wurde mittels gut vier Millionen Tetraedern diskretisiert. Anhand dieser Auf-
gabenstellung zeigen wir außerdem, dass Mischbarkeit von Stoffen bei geologischen
Anwendungen eine nicht vernachlässigbare Rolle spielen kann.

Die wichtigsten Ergebnisse dieser Modellrechnungen sind in Abbildung 3 zusammen-
gefasst. Bei der Interpretation dieser Ergebnisse sollten wir uns allerdings der Tatsache
bewusst sein, dass die Menge des im Salzwasser gelösten CO2 aufgrund der hier ver-
wendeten Finite-Volumen-Raumdiskretisierungen systematisch überschätzt wird. Im
Falle des Ketziner CO2-Speicherprojekts wird diese Einschätzung durch seismische
Daten gestützt [55].

Abschließend findet sich eine Zusammenfassung dieser Arbeit mit Empfehlungen zur An-
wendung der vorgestellten Modelle und ein Ausblick auf wichtige Themenfelder die im
Rahmen dieser Arbeit nicht besprochen werden konnten.



1 Introduction

For many multi-phase flow and transport processes in porous media, miscibility of the
constituent components is a non-negligible part of the governing physics. Some of these
applications are depicted in Figure 1.1, and include the fields of petroleum production [19], ge-
ological storage of CO2 [69], substantial parts of chemical engineering [42] (exemplified here
by polymer-electrolyte-membrane (PEM) fuel cells [7]) and advanced in-situ ground remedia-
tion procedures [64, 61, 22]. Most of these fields are of significant economic, environmental,
and scientific interest.

Petroleum Production

Our focus when using numerical simulation of multi-phase flows in porous media for
petroleum reservoir engineering applications is to make predictions of the expected oil and
gas production rates to maximize the amount of hydrocarbons which can be profitably
extracted from a given reservoir. Some of the particular issues which need to be overcome
in this field are the enormous physical extends of hydrocarbon reservoirs [91]—commonly,
their volume is in the range of cubic kilometers—, complex thermodynamics involving high
pressures and temperatures [19] as well as high heterogeneity in the material of the reservoir
with a large uncertainty in its parameters [54].

Geological Storage of CO2

The purpose of geological CO2 storage applications [69] is to curb the greenhouse effect by
preventing the injected CO2 from entering the atmosphere of the earth. In this context, our
main goal is thus to make long-term predictions about the risk of the injected CO2 escaping
from the reservoir formation [69] and to make predictions on the amount of CO2 which can
be safely injected into a given formation [69]. Like for oil production applications, one of the
major challenges of numerical simulations for CO2 injection problems is the enormous size of
the spatial domains involved [69, 55]. Moreover, the uncertainties in the parameters for the
material of the geological formation are typically even larger than for petroleum production
applications. The primary reasons for these issues is the lower economic incentive of the CO2
storage application compared to petroleum production.

Another similarity of CO2 injection and reservoir engineering applications is the complex
thermodynamics of the fluid systems involved: Due to the high pressures and relatively high
temperatures, both applications potentially require to deal with critical as well as subcritical
fluids. Having said that, the fact that these applications usually only involve two phases (gas
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(a) (b)

(c) (d)

Figure 1.1: Important applications for multi-phase flow in porous media for which misci-
bility is relevant: (a) Petroleum production, (b) Geological storage of CO2 (im-
age courtesy of [90]). (c) Ground decontamination (image courtesy of [39]), (d)
Polymer-electrolyte membrane fuel cells.

and brine) instead of the three fluids gas, brine, and oil which are typically considered by
reservoir engineering problems simplify matters considerably for CO2 injection scenarios.

Ground Decontamination

Another topic which exhibits some similarities to oil reservoir engineering are in-situ ground
remediation methods [64, 61, 22]. Like in petroleum production scenarios, the aim of these
applications is to remove hydrocarbons from the subsurface. In the case of ground decon-
tamination methods, the depths at which the contaminants are to be removed are typically
much lower compared to the hydrocarbon production applications, which implies much
lower pressures and temperatures. Thus, we can often use much simpler thermodynamic
relations [61, 22] in the context of such problems. Another difference to reservoir engineering
is that the commercial value of the extracted hydrocarbons is usually significantly lower than
the monetary costs of the methods to extract them. In fact, the extracted hydrocarbons are
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typically treated as waste, and thus impose additional costs for their disposal.

Although, in principle, we could apply the methods described in this thesis to ground
remediation tasks, such applications are not the focus of this work. Instead, interested readers
are referred to the works of OCHS [61] and of CLASS et al. [22].

Chemical Engineering

Shifting our attention away from geological applications of compositional multi-phase fluid
flows in porous media, a multitude of technical applications for such flows can be found in
the field of chemical engineering [42]. One example of such an application that has recently
been a focus of research is polymer-electrolyte membrane (PEM) fuel cells [7].

Compared to geological applications, the extend of the spatial domain is usually quite small
for chemical engineering applications. In some cases, this property causes issues with the
assumption of continuum mechanics which we will use throughout this thesis, and it also
implies that, for such applications, molecular diffusion is a much more relevant effect than for
geological ones. Other differences include the facts that chemical reactions can obviously not
be ignored, and that such applications often involve fast turbulent flows coupled to creeping
fluid flows in porous media. This means that besides an adequate description of turbulent
flows and flows in porous media, the interaction of these two regimes needs to be described
sufficiently well.

Like soil decontamination problems, we will not cover chemical engineering problems in
this work, since the focus of this thesis is the description of fluid flows in porous media.
Readers interested in chemical engineering applications are referred to JAKOBSEN [42] for the
chemical engineering aspects, and to MOSTHAF et al. [57] for a coupling approach between
the involved flow regimes.

Previous Work

To overcome the problems associates with handling phase transitions in such numerical sim-
ulations, several approaches have been proposed to date: The one which we will eventually
focus on in this thesis is based on embedding non-linear complementarity functions [48, 41]
into the system of equations. We will compare this procedure with two more widely known
approaches for handling miscibility effects: One based on locally adapting the set of primary
variables depending on which fluids are present at a given location [33, 23], and the black-oil
model [19], a model which is tailored for oil reservoir engineering applications. Further, we
will also investigate the impact of miscibility effects by ignoring them altogether using the
model which is described for example by HELMIG [39].

We note that several other approaches to tackle the issues that occur in compositional multi-
phase flows in porous media have been proposed. For example, ABADPOUR et al. [2] proposed
using negative saturation, NOLEN et al. [60] described an approach based on flash calculations,
and NEUMANN et al. [58] use the pressure of each phase to determine the composition of
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the fluids at phase equilibrium. Like the models which we will investigate here, all of these
models exhibit specific challenges, and some of them are restricted in their versatility. For
example, a common restriction of many models is to assume only two fluid phases and a
fixed number of components.

Structure of this Thesis

Before we can describe compositional multi-phase fluid flows in porous media, we first need
to introduce the concept of continuum mechanics. Based on this, we derive the fundamental
partial differential equations that govern the physical conservation laws for mass, energy, and
momentum in the continuum mechanical context in Chapter 2. In the final part of this chapter,
we will proceed to adapt these equations for macroscopic porous media flow problems by
means of volume averaging.

In Chapter 3, we will look at how the equations derived for macroscopic flow in porous media
in Chapter 2 can be made mathematically well-defined in the sense that there exists a unique
solution. Besides using thermodynamic constraints, we also have to use semi-empirical
closure relations and auxiliary assumptions, so-called model constraints.

Proceeding to Chapter 4 we will discuss discretization schemes, i.e., how to transform the
resulting system of non-linear partial differential equations into a set of non-linear algebraic
equations. Generally, we divide this process into two conceptually independent parts: First
we apply a spatial discretization – which we will cover in Section 4.1 – which transforms the
partial differential equations into a set of coupled ordinary differential equations. Then a time
discretization – discussed in Section 4.2 – transforms this set of ordinary differential equations
into a system of coupled non-linear algebraic equations. The solution for these non-linear
systems of equations is then calculated using the NEWTON-RAPHSON method. We will see
that this method repeatedly linearizes the non-linear systems of equations and solving these
linearized systems of equations. Finally, Chapter 4 concludes with a brief overview of linear
solvers.

After the discourse on numerics, we will briefly discuss the computer software implementa-
tion of these concepts which was used in the context of this thesis in Chapter 5. Chapter 6,
then follows with an investigation of the results obtained using this software. The results
presented in this chapter are mainly intended to compare the numerical performance and the
physical quality of the discretized mathematical models. The discourse on the individual ap-
plications is roughly ordered by their complexity: We will first investigate a one-dimensional
problem for which a semi-analytical steady-state solution is known; then we will proceed
to a synthetic, radially symmetric CO2 injection problem. Following that, we will compare
the NCP fully-compositional model with the black-oil model using the ninth benchmark
problem of the society of petroleum engineers (SPE-9) followed by a comparison of the NCP
and PVS models using the fifth SPE benchmark problem (SPE-5). Finally, we will conclude
the chapter with a discussion of some results of simulations of the Ketzin project, a geological
scale, real-world CO2 storage application.

After this, we will conclude this thesis with a brief summary and some suggestions for
possible future work in Chapter 7.



2 Continuum-Scale Fluid Flows

In this chapter, we will discuss the mathematical basis of this work. We first motivate the
relevant equations on the continuum scale by introducing the concept of representative
elementary volumes (REVs) in Section 2.1, then we will briefly derive the general form of
conservation equations in Section 2.2, and finally we will look at the actual conservation
equations for mass, momentum, and energy in Section 2.3.

2.1 Representative Elementary Volumes

On a very small scale, all conventional matter composed of atomic particles like molecules,
atoms or ions. Thus, one approach we could take to describe the physical world is to
directly simulate the interactions between those individual particles. This approach is called
molecular dynamics [18], and requires to solve an enormously large system of coupled ordinary
differential equations—typically one equation per particle.

Using this approach, we are able to approximate the physical world quite well [8], but even
when using the largest available supercomputers we need to restrict ourselves to tiny systems
because of the enormous number of particles involved. For example, to describe a single
droplet of water using this approach, we need to account for approximately 1021 molecules
(assuming a droplet exhibiting a weight of 0.03 grams). For engineering and geological
applications, we thus need to use an alternative approach. Typically, this approach is based
on continuum mechanics: Instead of defining the physical laws on a molecular scale, we
describe the system in terms of average or bulk properties of the constituent molecules.

To illustrate this concept, let us look at Figure 2.1: In order to calculate, for example, the
mass density, i.e., the average mass contained in a given amount of space, one can sum up the
weight of the individual molecules and divide it by the size of the considered spatial domain.
If we subsequently apply this method to domains of increasing size, we will obtain a graph
similar to the one outlined on the right of Figure 2.1. There, the value of the mass density
varies considerably for small averaging domains, whilst it becomes nearly constant for large
ones. The cause for this is that, for an averaging domain that contains a large number of
particles, the addition of an individual molecule does not have a significant effect on the
total amount of the mass inside the considered domain. On the large end of the scale, the
mass density would start to fluctuate again; this is due to macroscopic effects like variations
in pressure. We call spatial averaging domains which domains which are large enough not
to change the value of the averaged quantity significantly by the addition or removal of a
single particle but small enough to capture macroscopic fluctuations representative elementary
volumes (REVs).
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Figure 2.1: Averaging a quantity for successively larger spatial volumes Vi first yields strongly
oscillating values. These oscillations become smaller as the size of the averaging
volume gets larger. For very large averaging volumes, oscillations originating
from macroscopic variations of the quantity appear (not depicted).

To get a mathematical rigorous definition of the above, we may use the procedure illustrated
in Figure 2.2: First we distribute bi, i.e., the amount of a quantity associated with each particle i
in space. This can be achieved using a radial function ψi : R3 ×R→ R which is centered at
the position of particle i and which has the property that the integral overR3 is one. We get
the following spatial distribution function for the particle i:

b̄i := ψibi .

Now, we calculate the sum of these distribution functions, and get

ζb :=
∑
i

b̄i =
∑
i

ψibi ,

which represents a density function for the quantity b. If we now apply a convolution using
the kernel χ, we get

b(x) :=

∫
R3
ζb(x− y) · χ(y) dy = (χ ∗ ζb)(x) , (2.1)

which is a continuum-scale representation of the quantity b as depicted in Figure 2.2c. Note
that in order to obtain a smooth result, we need to use a convolution kernel with a sufficiently
large spatial support.

Using this abstract framework, we can replicate the procedure depicted in Figure 2.1, by
choosing the convolution kernel

χ(x) =

{
1/‖V‖ if x ∈ V

0 else,

where V is a sphere with an arbitrary but fixed radius r centered around the origin of the
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(a) Particles (b) Density Function ζb (c) Continuum-Scale Quantity b

Figure 2.2: Illustration of the conversion from molecular- to continuum-scale: First, the
amount of a quantity associated with each particle is distributed around the
location of a particle, and we get a density function ζb. Then this density function
gets averaged at each spatial point by a convolution kernel χ, and we get the
continuum-scale quantity b.

coordinate system, i.e.,
V :=

{
y ∈ R3 | ‖y‖ < r

}
.

Using Equation 2.1, we can define the following continuum-scale quantities:

Mass Density: We define the mass density ρ as the mass per volume unit:

ζρ :=
∑
i

ψimi

where mi is the mass of particle i.

Bulk velocity: The bulk velocity v is defined as the net velocity of the particles, so we use

ζv :=
∑
i

ψivi

as the velocity density function.

Pressure: The pressure of an averaging domain V is given by the linear momentum of the
particles inside V . One complication is that pressure is a quantity which is defined
via its effect on a surface, but the distribution function which we need is a volumetric
quantity. Neglecting external force-fields, we can use the distribution function

ζp :=
∑
i

ψi
‖vi‖2

mi

for pressure according to MARTYNAL, et al. [56].

Internal energy: The specific internal energy u is defined as the energy per unit of mass of
the particles inside V . On a molecular scale, each particle exhibits kinetic, rotational,
and oscillatory energy. For the specific internal energy, this means that we get the
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density function

ζu :=
1

ρ

∑
i

ψi

(
1

2
mi‖vi‖2 + Er,i + Eo,i

)
where Er,i and Eo,i are the energies of particle i due to its rotation and its oscillation.

The hypothesis which we now need to make for continuum mechanics is that the properties
of interest of the physical system can be described in terms of quantities that result from a
convolution of the form given by Equation 2.1. In this context, we should remember that, if
the filter kernel χ exhibits a too small or a too large spatial support, this assertion may not be
valid.

Scales

For gases, we can define the minimum size of the support of the convolution kernel χ using
the KNUDSEN number Kn [20], which is defined as

Kn :=
λ

L
,

where λ is the mean free path between molecules, and L is the characteristic length of the
spatial support of the convolution kernel. For air at standard conditions, the mean free
path is approximately λ ≈ 60 · 10−9 m. Assuming that the spatial support of a spherical
convolution kernel is sufficiently large if it averages about 5000 molecules, we need to use
an averaging volume with a diameter of L ≈ 1.3 · 10−6 m which corresponds to a KNUDSEN

number of Kn ≈ 0.05. The Knudsen number for the same averaging domain is typically
considerably smaller for liquids, as the average distance of the molecules of the substance is
much smaller in this case.

The largest valid size of the characteristic length depends on the properties of the considered
setup more strongly than the smallest: If the system exhibits largely uniform conditions,
the maximum diameter of the support can be in the magnitude of lightyears (for example
in galaxy-scale problems), or it might be at the submillimeter scale (for example in many
technical applications).

2.2 Continuum-Scale Conservation Equations

Within the context of this work, we will consider the conservation of the three physical
quantities mass, momentum, and energy. Since the conservation equations for these are very
similar, we will first derive a common form of them in this section. For this derivation, we will
assume that the continuum hypothesis of the previous section holds, i.e., that conservation of
these quantities can be described on the continuum-scale.

We start our endeavor by assuming an infinitely large spatial domain. Next, we let ω ⊂ R3

be an arbitrary, simply connected, bounded, and open subset of the spatial domain. Further,
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(a) EULERIAN

(b) LAGRANGIAN

Figure 2.3: The EULERIAN and the LAGRANGIAN points of view: While in the EULERIAN

point of view, the observed volume stays constant in time, it is transported along
with the conserved material in the LAGRANGIAN point of view.

let us now assume that ω “tracks” the quantity b which is to be conserved. In this case, at any
given time t, the total amount of the quantity B contained within the volume is given by

B(t) =

∫
ω(t)

b(x, t) dx .

Since b is conserved, its amount within the tracked volume ω(t) is constant. This leads us to

d

dt
B(t) =

d

dt

∫
ω(t)

b(x, t) dx = 0 .

In a slightly more general setting, we add or remove the conserved quantity at a given rate,
which we can describe by a source term q̄:

d

dt

∫
ω(t)

b(x, t) dx =

∫
ω(t)

q̄(x, t) dx. (2.2)

We may interpret Equation 2.2—which was introduced by JOSEPH-LOUIS DE LAGRANGE—as
the continuum-scale conservation equation for an observer that moves with the conserved
quantity b. A different point of view is the one taken by LEONHARD EULER: In contrast
to LAGRANGE, EULER always observed the same part of space over time as illustrated
in Figure 2.3. We can derive the EULERIAN form of any conservation equation from the
LAGRANGIAN form (2.2) by taking advantage of the REYNOLDS transport theorem [72]

d

dt

∫
ω(t)

bdx =

∫
ω(t0)

(
d

dt
b+ bdiv v

)
dx

which enables us to transpose the ordering of the time derivative and the spatial integration.
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Here, t0 represents an arbitrary but fixed reference time, and v = ∂x/∂t is the velocity1 of the
transported quantity at a given location x at time t. Using this relation, we can transform
Equation 2.2 into ∫

ω(t0)

(
d

dt
b+ bdiv v

)
dx =

∫
ω(t0)

(
d

dt
q̄ + q̄ div v

)
dx .

In this equation, instead of specifying a source term q̄ which tracks the volume occupied by
the conserved quantity, we can also use a source term q which is fixed in space, so that we get∫

ω(t0)

(
d

dt
b+ bdiv v

)
dx =

∫
ω(t0)

q dx . (2.3)

In order to keep the observed volume constant over time, we also have to transform the
total time derivative of b in Equation 2.3. For this, we can take advantage of the convective
derivative

db

dt
=
∂b

∂t
+ v · grad b

and transform Equation 2.3 to∫
ω(t0)

(
∂

∂t
b+ v · grad b+ bdiv v

)
dx =

∫
ω(t0)

q dx . (2.4)

Finally, taking advantage of the vectorial product rule

div(bv) = v · grad b+ bdiv v ,

we get ∫
ω(t0)

(
∂

∂t
b+ div(bv)

)
dx =

∫
ω(t0)

q dx , (2.5)

the integral EULERIAN form of the conservation equation of any quantity b which is to be
conserved. To express this in differential form, we remember that ω(t0) is an arbitrary simply
connected, bounded, and open subset of the domain. This means that Equation 2.5 is valid
pointwise, provided that b is a C1-continuous function. In other words, we can drop the
integrals on both sides of Equation 2.5, and get

∂b

∂t
+ div(bv) = q . (2.6)

If not explicitly stated otherwise, we will use this form for conservation equations during the
rest of this thesis.

1In the molecular sense, v is the bulk velocity.
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2.3 Conserved Quantities

In this section, we will adapt the generic EULERIAN conservation equation (2.6) to specifically
express conservation of the three quantities mass, momentum, and energy. In this context, we
will not consider any other physical conservation quantity like, for example, electric charge.
We will also strictly stay within the bounds of classical mechanics, so advanced concepts like
the equivalence of mass and energy will not be considered here.

2.3.1 Conservation of Mass

To obtain an equation for the conservation of mass, we need to insert the mass density ρ into
Equation 2.5. This yields

∂ρ

∂t
+ div(ρv) = qmass . (2.7)

Alternatively, we may formulate Equation 2.7 in terms of conservation of molecules instead
of mass, which leads to

∂ρmol

∂t
+ div(ρmolv) = qmol , (2.8)

for the conservation the total mass and to

∂xκρmol

∂t
+ div(xκρmolv) = qκmol (2.9)

for the conservation of the mass of an individual component κ.

Molecular Diffusion

Since we derived Equation 2.9 using bulk velocities, it does not account for the mixing of
molecular particles due to their random BROWNIAN motion. On the continuum-scale, we
can express this mixing by an additional flux term of the form

FκD := −Dκgrad xκ

where Dκ describes the molecular diffusion coefficient of component κ [68]. This means that we
get the mass conservation equation

∂xκρmol

∂t
+ div(xκρmolv −Dκgrad xκ ) = qκmol (2.10)

for each individual component κ.

2.3.2 Conservation of Momentum

Analogous to the mass balance, using the volumetric momentum ρv in Equation 2.6 leads us
to the conservation equations for momentum. Since the velocity v is a vectorial quantity, the
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result is a bit more complicated than Equation 2.7:

∂ρv

∂t
+ div(ρv ⊗ v) = e+ qmom . (2.11)

For this equation, we also used a term e capturing forces and a term qmom for the remaining
sources and sinks of momentum in the system.

We can reformulate Equation 2.11 by taking advantage of the product rule for the time
derivative

∂ρv

∂t
= v

∂ρ

∂t
+ ρ

∂v

∂t

and for the divergence term

div(ρv ⊗ v) = ρv · grad v + v div(ρv) ,

and get

v
∂ρ

∂t
+ ρ

∂v

∂t
+ ρv · grad v + v div(ρv) = e+ qmom .

Reordering the left-hand side yields

ρ
∂v

∂t
+ ρv · grad v + v

(
∂ρ

∂t
+ div(ρv)

)
= e+ qmom . (2.12)

In Equation 2.12, we now notice that the third additive term corresponds to the left-hand side
of the mass conservation Equation 2.7, but multiplied with the velocity. Assuming that the
source term for mass qmass is zero leads us to

ρ
∂v

∂t
+ ρv · grad v = e+ qmom . (2.13)

Otherwise – i.e., if we do not assume the source term of the mass balance equation to be zero
– the third term of Equation 2.12 can be brought to the right-hand side and integrated into
the momentum source term qmom. This means that the general form of the equation for the
conservation of momentum is given by Equation 2.13.

Let us now have a closer look at the force term e of the right-hand side of Equation 2.13. It
should be clear that we can split e into a term f capturing the forces which are exercised
upon the surface of a considered domain, and a term h, representing forces which attack in
the interior:

e = f + h

The former are called surface forces and are exerted on the material by its environment, the
latter are called body forces and are caused by force fields like gravity or electromagnetism.

It can be shown [72] that the surface forces f can be expressed as

f = div τ (2.14)
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Figure 2.4: The COUETTE thought experiment comprises two infinitely large parallel planar
plates with the space between them occupied by a fluid; in the experiment, the
upper plate moves with a velocity of vx relative to the lower one. At each plate, the
observed force per area Fx is proportional to the relative velocity of the plates vx
and anti-proportional to the distance y between the plates. The proportionality
coefficient µ is determined by the fluid between the two plates, and is called the
dynamic viscosity.

where τ ∈ R3×3 is called stress tensor. Taking advantage of Equation 2.14 and neglecting all
body forces except gravity, we get

ρ
∂v

∂t
+ ρv · grad v = div τ + ρ g + qmom (2.15)

as the momentum balance equation where g is the gravitational acceleration.

2.3.3 NEWTONIAN Fluids

For NEWTONIAN fluids, we can substantiate the momentum conservation Equation 2.15 as
follows: First, we assume that the stress tensor τ can be split into

τ = −pI + T (2.16)

where the term pI represents pressure, and the term T represents the shear stresses [9]. The
reason why the term pI is negative is that the tensor τ represents the stresses which act upon
the material within the observed domain, and not the stresses which this material exercises
upon its environment.

Inserting Equation 2.16 into the momentum balance equation (2.15), we get

ρ
∂v

∂t
+ ρv · grad v = −grad p+ divT + ρg + qmom . (2.17)

We now consider the fact that the shear stress tensor T of NEWTONIAN fluids does not
depend on the absolute deformation of the material relative to its initial position, but only
on the rate at which the fluid gets displaced relative to its environment as illustrated in
Figure 2.4. Since T needs to be symmetric [9], we get a shear stress tensor T of the form

T ij = µ

(
∂vj
∂xi

+
∂vi
∂xj

)
+ δijλ div v , (2.18)

using the proportionality coefficients µ ∈ R+ and λ ∈ R, with δij being the KRONECKER
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delta. The factor λ captures the stress due to expansion or contraction of the volume of the
fluid. Since there are many difficulties for determining λ, it is usually either assumed [9] to
be zero as in the following, or −3µ/2.

If we take advantage of Equation 2.18 in the momentum balance equation (2.17), we get

ρ
∂v

∂t
+ ρv · grad v = −grad p+ div

(
µ
(
grad v + (grad v)T

))
(2.19)

+ ρ g + qmom ,

the NAVIER-STOKES equations for compressible NEWTONIAN fluids.

For incompressible fluids with constant dynamic viscosity we can simplify Equation 2.19
further: First, we use the relation

div (grad v)T = grad div v

and then consider the fact that div v is identical to zero if the density ρ is constant. We thus
get

ρ
∂v

∂t
+ ρv · grad v = −grad p+ µdiv grad v + ρ g + qmom (2.20)

as the conservation equation for momentum.

2.3.4 Creeping Flows

For creeping incompressible flows, we can also neglect the inertia term of the NAVIER-STOKES

Equation 2.20, and get the STOKES equation

− grad p+ µ div grad v + ρ g + qmom = 0 . (2.21)

In order for this assumption to be applicable, we need to be able to define what “creeping”
means. Usually, this property is defined using the REYNOLDS number

Re :=
vc Lc

νc

where vc is the characteristic velocity of the considered physical system (for example, the
absolute value of the maximum velocity of the fluid), Lc represents the characteristic length
of the system (for example, the diameter of the pipe for pipe-flow problems), and νc = µc/ρc
is the characteristic kinematic viscosity of the fluid. We now define a flow as “creeping” if it
exhibits a REYNOLDS number smaller than 1.

Since the characteristic length and the characteristic velocity can be chosen arbitrarily, we
cannot assign too much meaning to the absolute value of the REYNOLDS number. Having
said that, for many important classes of flow problems there are standard conventions of how
to determine Lc and vc. This means that we can compare the absolute value of the REYNOLDS

number only within a given class of flow problems. Such classes include, for example, pipe-flows
or flows around airfoils.
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2.3.5 Conservation of Energy

The last conservation quantity which we will consider in this work is energy. We may think of
energy as a scalar quantity that has kinetic, potential, and thermal contributions. Assuming
that the gravitational acceleration is constant and that gravity is the only body force, we can
express conservation of energy [9] as

∂

∂t
ρ

(
u+

1

2
‖v‖2 + z · g

)
+ div(hρv + τv − λgrad T ) = qenergy − ρv · g (2.22)

where u is the specific internal energy of the substance as described in Section 2.1, z = x−xref

is the distance of a spatial position relative to an arbitrary but fixed reference point in space, λ
is the heat conduction coefficient, h = u+p/ρ is the specific enthalpy of the substance, and qenergy

is the source or sink term for energy.

If we neglect the kinetic energy and friction, we get

∂

∂t
ρ (u+ z · g) + div(hρv − λgrad T ) = qenergy − ρv · g

as the equation for the conservation of energy. Amongst others, these assumptions are valid
for creeping fluid flows. If we also assume that the considered system only exhibits small
variations of its height z, we get

∂ ρu

∂t
+ div(hρv − λgrad T ) = qenergy . (2.23)

The fact that we need to consider the specific internal energy u in the accumulation term but
the specific enthalpy h in the flux term is due to the fact that transported material needs to
displace other material before it can occupy a given volume. As illustrated in Figure 2.5, the
energy required to displace the other material is equivalent to the volume occupied by the
transported material times the force with which the displaced material pushes back. In fluids
this “push-back force” is the pressure that the displaced material exercises upon the surface
of the transported material.

Dissipation

The third law of thermodynamics states that, in a closed system, all spontaneously occuring
processes increase the entropy of the system as a whole2. In the context of the conservation
of energy, this means that some energy is always converted into heat, i.e., internal energy. In
Equation 2.23, we account for this effect by transporting enthalpy, while accumulating only
the internal energy. To illustrate the point, let us consider Figure 2.5: There, some material
gets transported from the left to the right of a cylinder. The energy which is on the right
side at the end is the internal energy which the material originally possessed when it was on

2There might be parts of the system where entropy is reduced, but this is always compensated by additional
entropy elsewhere.
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Figure 2.5: To move the substance with the specific internal energy u from the left to the
right, one has to displace the material on the right of the cylinder. This can be
imagined as a four-step process: First, the right piston creates a vacuum, then the
vessel with the substance moves to the right. The work required by the piston
to create the vacuum is called the volume changing work Wv =

∫ s0+∆s
s0

F ds.
Assuming a constant cross-section A of the cylinder and constant pressure pright of
the environment of the right side, this is equivalent to Wv,right = ∆sA pright. After
the substance has been transferred to the right, the left piston can occupy the void
space and “recovers” the volume changing work Wv,left = ∆sA pleft.

the left side. But in addition, a piston had to displace the material originally occupying the
space on the right side, which requires a physical work of ∆sApright to be done. Assuming
the pressure to be constant at a fixed spatial location, i.e., the moved substance reduces its
pressure from pleft to pright, requires work of (pleft − pright)A∆s. Since energy is conserved,
this work gets converted into internal energy if the transport of material does not happen in
a closed vessel that cannot expand.
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Figure 2.6: An example of a porous medium where two fluid phases are co-located with a
solid.

2.4 Porous Media

In this section, we will adapt the conservation equations for fluids, i.e., Equations 2.7, 2.20
and 2.23 to multi-phase flows in porous media. The situation which we face is depicted in
Figure 2.6: A solid shares the available space with multiple fluids. In the following, we aim at
making macroscopic statements on the behavior of the fluids, assuming that the solid phase
is rigid.

To allow such quantitative statements, we will first look at volume averaging. Volume aver-
aging is an upscaling technique which allows us to consider the flow and transport processes
without having to know the geometry of the solid-fluid interface. Thus, the resulting equa-
tions require much less information, and solving them is much less elaborate than solving the
micro-scale equations. After introducing the volume averaging technique, we will sketch how
to derive the volume averaged conservation equations for the three considered conservation
quantities mass, momentum, and energy. After this, we will give a brief historical overview
and discuss how the resulting relation which governs the conservation of momentum was
discovered experimentally.

2.4.1 Volume Averaging

To directly solve Equations 2.7, 2.21, and 2.23 we need to provide the geometry of the solid
phase of the porous medium. Generally, this is infeasible, but it turns out that in order
to get meaningful macroscopic statements about the fluid behavior in such a medium, we
usually can avoid having to obtain this information. Equations which do not require the
topology of the solid are generally called to be on the laboratory-scale, the macro-scale, or on
the DARCY-scale.

Before we can derive these macro-scale equations, we first need to introduce a few concepts
based on the definitions of WHITAKER [89]:

• The characteristic set Ωα ⊆ Ω of a phase α is the set of points of the spatial domain Ω ⊆ R3
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for which phase α is present, i.e.,

Ωα := {x ∈ Ω | Position x is occupied by the phase α} .

• We define the characteristic function χα of a phase α as the function that is one for the
part of the domain where the fluid phase α is present, and zero elsewhere, i.e.,

χα(x) :=

{
1 if x ∈ Ωα

0 else.

• The averaging volume V for any point x ∈ Ω is the sphere of points which are closer to x
than an arbitrary but fixed radius r, i.e.,

V(x) := {y ∈ Ω | ‖x− y‖ < r} .

• The intrinsic averaging volume Vα of a phase α for any point x ∈ Ω is the set of points
which are in V(x) and in the characteristic set of α, i.e.,

Vα(x) := V(x) ∩ Ωα .

• The interior boundary ∂Vsα of the averaging volume Vα of a fluid phase α is the set of
points that is on the boundary of Vα but not on the boundary of V , i.e.,

∂Vsα := ∂Vα \ ∂V ,

where the lower index 〈·〉s indicates the solid phase.

• The porosity φ of the porous medium is defined as

φ := 1− ‖Vs‖
‖V‖

,

and represents volume fraction of the pores, i.e., the fraction of space which can be
occupied by fluids.

• The saturation Sα of a fluid phase α is the fraction of the pore space occupied by the
fluid phase, i.e.,

Sα :=
‖Vα‖
φ ‖V‖

.

• The phase average 〈bα〉 of a quantity bα which is associated with the phase α is defined as

〈bα〉(x) :=
1

‖V(x)‖

∫
Vα(x)

bα(y) dy . (2.24)



Porous Media 19

Note, that we can consider Equation 2.24 as a convolution of b · χα with the kernel

m(y) =

{
1
‖V‖ if ‖y‖ < r

0 else.

This means that we can think of the procedures discussed in this section as analogous
to the upscaling procedure from molecular to continuum-scale which we sketched in
Section 2.1.

• The intrinsic phase average 〈bα〉α of the quantity bα is the average of bα considering only
the points where the phase α is present, i.e.,

〈bα〉α(x) :=
1

‖Vα(x)‖

∫
Vα(x)

bα(y) dy . (2.25)

The phase average and the intrinsic phase average are thus connected by the relation

〈bα〉α =
‖V‖
‖Vα‖

〈bα〉 =
〈bα〉
φSα

.

The Spatial Averaging Theorem

Using these tools, we can now average the micro-scale conservation Equations 2.7, 2.21,
and 2.23. One problem which occurs during this procedure is that we will get averages of
gradients in the results but that we would rather like to express the equations in terms of
gradients of averages.

We can overcome this issue using the Spatial Averaging Theorem [89, 67]

〈grad bα〉 = grad 〈bα〉+
1

‖V‖

∫
∂Vsα

bα n dy , (2.26)

where n is the outer unit normal vector of Vα at position y.

We will also get an average of the divergence instead of the divergence of averaged quantities.
In this case, we can substitute the gradients in Equation 2.26 by divergences [89, 67], and get

〈div bα〉 = div 〈bα〉+
1

‖V‖

∫
∂Vsα

bα · n dy . (2.27)
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Conservation of Mass

Now, let us have a closer look at the mass conservation Equation 2.7. Applying Equations 2.26
and 2.24 to it, we get 〈

∂ρα
∂t

+ div(ραvα)

〉
=
∂〈ρα〉
∂t

+ div(〈ραvα〉)

+
1

‖V‖

∫
∂Vsα

n · ραvαdy

= 〈qmass,α〉 .

If we now assume a no-slip condition for the internal boundaries of the averaging volume,
i.e., vα = 0 on ∂Vsα, we get

∂〈ρα〉
∂t

+ div(〈ραvα〉) = 〈qmass,α〉

as the macro-scale equation for the conservation of mass.

Still, the term inside the divergence is the average of density times velocity, but we would
like to formulate the mass conservation equation in terms of the product of the two averages.
To achieve this, we use the GRAY decomposition [35] which expresses any quantity bα as the
sum of its intrinsic phase average 〈bα〉α, and of its deviation b̃α:

bα = 〈bα〉α + b̃α .

We now observe that the average of the deviation term b̃α is zero, and we can thus write the
mass conservation equation as

∂φSα〈ρα〉α

∂t
+ div(〈ρα〉α〈vα〉) = 〈qmass,α〉 .

If we repeat this procedure for Equation 2.10, the compositional form of mass conservation,
we get

∂φSα〈xκα〉
α〈ρmol,α〉α

∂t
+ div

(
〈xκα〉

α〈ρmol,α〉α〈vα〉 −Dκ
pm,αgrad 〈xκα〉

α) = 〈qκα〉

for the conservation of each component in fluid phase α. In this case, we need to adapt the
molecular diffusion coefficients Dκ

α to account for the presence of the solid phase.

If there is more than a single component, we have to preserve each in the whole porous
medium. This implies that we need to sum up the component conservation equations over
all phases in order to get an equation that describes the conservation of the component for
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the whole multi-phase system. This leads to

∑
α

∂φSα〈xκα〉
α〈ρmol,α〉α

∂t
+
∑
α

div
(
〈xκα〉

α〈ρmol,α〉α〈vα〉 −Dκ
pm,αgrad 〈xκα〉

α) =
∑
α

〈qκα〉 .

(2.28)

Conservation of Momentum

The procedure for conservation of momentum is much more elaborate than the one for the
conservation of mass. Thus, we will only sketch it here and refer the interested reader to
WHITAKER [89] for further details.

First, we neglect compressibility and the inertia terms of the NAVIER-STOKES equations, and
start with the STOKES Equations 2.21. Averaging those leads us to

0 = −〈grad pα〉+ 〈µα div grad vα〉+ 〈ραg〉+
〈
qmom,α

〉
.

We now use the GRAY decomposition for the viscosity µα and the mass density ρα, and
assume a sufficiently small averaging volume, so that we may neglect the deviation terms.
Further assuming that the gravitational acceleration g is constant within the averaging
volume, and that the momentum source term qmom,α is zero, we get

0 = −〈grad pα〉+ 〈µα〉α〈div grad vα〉+ 〈ρα〉αg . (2.29)

Taking advantage of the Spatial Averaging Theorem 2.26, we may write the pressure term as

〈grad pα〉 = grad 〈pα〉+
1

‖V‖

∫
∂Vsα

pαndy .

Now, we apply the GRAY decomposition on pα, and rewrite pα as the sum of its intrinsic
phase average and the deviation, and get

〈grad pα〉 = 〈pα〉α grad(φSα) + φSα grad 〈pα〉α

+
1

‖V‖

∫
∂Vsα

n 〈pα〉α dy +
1

‖V‖

∫
∂Vsα

n p̃α dy (2.30)

after applying the product rule to the first term. Since 〈pα〉α is constant within an averaging
volume,

1

‖V‖

∫
∂Vsα

n 〈pα〉α dy =
〈pα〉α

‖V‖

∫
∂Vsα

ndy

holds. Now we use the spatial averaging theorem with bα ≡ 1 to obtain

1

‖V‖

∫
∂Vsα

ndy = −grad(φSα) . (2.31)
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Taking advantage of Equations 2.31 and 2.30 in Equation 2.29, and using the same procedure
to the phase velocities, we get

0 = −φSαgrad 〈pα〉α −
1

‖V‖

∫
∂Vsα

n p̃α dy +
〈µα〉α

‖V‖

∫
∂Vsα

n · grad ṽα dy + 〈ρα〉αg . (2.32)

The problem we now face is that we need to define p̃α and ṽα. WHITAKER [89] argues that

ṽα = Bα〈vα〉α and (2.33)

p̃α = bα · 〈µα〉α〈vα〉α (2.34)

hold, whereBα and bα are the solutions of the following boundary value problem:

−grad bα + div grad Bα =
1

‖Vα‖

∫
Vα
−grad bα + div grad Bα dV

Bα = −I on Vα

Bα = Gα on ∂Vα \ ∂Vs

〈Bα〉α = 〈bα〉α = 0 .

Inserting Equations 2.33 and 2.34 into Equation 2.32, we get

0 = −grad 〈pα〉α +

{
〈µα〉α

‖V‖

∫
∂Vsα

n · grad Bα − n⊗ bα dy

}
〈vα〉α + 〈ρα〉αg . (2.35)

Using the abbreviation

Cα = − 1

‖V‖

∫
∂Vsα

n · grad B − n⊗ bα dy

we get a relation for the intrinsic phase velocity of fluid phase α:

〈vα〉α = − C
−1
α

〈µα〉α
(grad 〈pα〉α − 〈ρα〉αg) . (2.36)

We can convert Equation 2.36 from the intrinsic phase velocity to the more common phase
velocity by introducing

Kα = φSαC
−1
α

which yields

〈vα〉 = − Kα

〈µα〉α
(grad 〈pα〉α − 〈ρα〉αg) . (2.37)

Conservation of Energy

To obtain an equation for the conservation of energy in a fluid phase, we neglect potential
and kinetic energy, and start with Equation 2.23. After applying the phase average (2.24) and
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GRAY’s decomposition, we get

∂ φSα〈uα〉α 〈ρα〉α

∂t
+ div(〈hα〉α〈ρα〉α 〈vα〉 − 〈λα〉α grad 〈Tα〉) = 〈qenergy〉 .

Unlike mass and momentum, energy can be transported by the solid. Since we assumed a
rigid solid phase, the advective part of the divergence term is zero for the solid, and we get

∂ (1− φ)〈us〉s 〈ρs〉s

∂t
− div(〈λs〉s grad 〈Ts〉) = 〈qenergy〉 .

In this context we usually assume the internal energy us of the solid to be proportional to
temperature, i.e.,

us = cp,sTs

holds with a constant heat capacity cp,s.

2.4.2 Applicability

To derive the macro-scale conservation equations, and especially the momentum conservation
equation (2.37), we had to make several assumptions:

• These equations are only valid for creeping flows, and we required an incompressible
fluid with constant dynamic viscosity when simplifying the NAVIER-STOKES equa-
tions (2.20) to the STOKES equations (2.21). At this point, we note that we do not need
to consider these simplifications in practice, since in order to derive Equation 2.37, we
only used the STOKES equations within the averaging volumes where compressibility
and variations in viscosity can usually be neglected.

• The averaging volume must be large enough for the continuum assumption to be appli-
cable for the macro-scale system. This means that slightly increasing or decreasing the
size of the averaging volume only leads to small changes of the averaged quantities [89].

• The averaging volume must be small enough so that we may neglect the deviation of all
physical quantities from their average within an averaging volume. This assumption
is potentially problematic for systems featuring low absolute pressures in conjunction
with highly compressible fluids.

Of these assumptions, we usually have to pay most attention to the constraint of the flow
velocity. To get a feeling about this, we first need to specify a REYNOLDS number, i.e., we
define a characteristic length Lc and a characteristic kinematic viscosity νc = µc/ρc. In this case,
we choose the diameter of a typical pore of the porous medium as the characteristic length;
for the characteristic kinematic viscosity νc we choose the value of the fluid at a representative
temperature and pressure. Allowing REYNOLDS numbers smaller than 1, Equation 2.37 is
valid up to relatively high velocities3: For example, if the typical pore diameter of a porous
medium is the one of a typical sand with 100 · 10−6 m, and the characteristic kinematic

3At least “high” velocities in the context of fluid flows in porous media.
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viscosity is 20 · 10−5 m2/s (roughly the value of air at 20 ◦C), the velocity constraints implied
by Equation 2.37 are met for intrinsic phase velocities smaller than about 2 m/s.

Simplification of Notation

In order to simplify notation, we will not write the averaging operator henceforth, so we will
use the conservation equations

∂ραφSα
∂t

+ div(ραvα) = qmass,α for mass, (2.38)

vα = −Kα

µα
(grad pα − ραg) for momentum, (2.39)

∂uαραφSα
∂t

+ div(hαραvα − λα grad Tα) = qenergy,α for energy within a fluid, and (2.40)

∂(1− φ)ρs cp,sTs
∂t

− div(λs grad Ts) = qenergy,s for energy within the solid. (2.41)

Also, since the momentum conservation equation (2.39) determines the phase velocities
explicitly, we can also insert it into the mass and energy conservation equations. In this case
momentum is conserved implicitly, and we get

∂ραφSα
∂t

− div

(
ρα
Kα

µα
(grad pα − ραg)

)
= qmass,α (2.42)

for mass conservation as well as

∂ραuαφSα
∂t

− div

(
hαρα

Kα

µα
(grad pα − ραg) + λα grad Tα

)
= qenergy,α (2.43)

for energy conservation within a fluid.

2.4.3 Multi-Phase Flows

When considering flow of more than a single fluid in a porous medium, it is convenient to
decompose the permeability matrix of the fluidsKα into a part which only depends on the
properties of the porous medium, a part which only depends on the fluid characteristics, and
a part which describes the interactions between the fluids. We call the first of these factors
the intrinsic permeability tensor K. It describes the permeability tensor of a medium if the
pore space were completely filled with a fluid that exhibits a dynamic viscosity of 1 Pa s.
The fluid-dependent part is 1/µα, the inverse of the dynamic viscosity of the fluid; and the
interactions between the fluids are usually expressed by relative permeabilities 0 ≤ kr,α ≤ 1.
This leads to [14]

Kα =
kr,α

µα
K . (2.44)
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We note that Equation 2.44 assumes that blocking flow paths is the only mutual interaction of
fluid phases, and that this happens isotropically, i.e., only the magnitude of the fluid velocity
gets reduced by blocked pores but its direction remains unaltered.

If we consider the energy equation for multiple fluid phases, we must conserve the total
energy within the system, so we get the energy conservation equation

∂

∂t

(∑
α

φuα ρα Sα + (1− φ)cp,s Ts ρs

)
(2.45)

+
∑
α

div(hα ρα vα − λpm,α grad Tα)

− div(λpm,s grad Ts) = qenergy .

Since the temperature usually equilibrates quickly within an averaging volume, we may
assume local thermal equilibrium. This implies that at any point the temperature is equal for
all fluid phases as well as for the solid phase, and allows us to merge the heat conduction
terms, so we get

∂

∂t

(∑
α

φuα ρα Sα + (1− φ)cp,s T ρs

)
+ div

(∑
α

hαραvα − λpm grad T

)
= qenergy .

2.4.4 Multi-Phase, Multi-Component Flows

For multi-phase problems which involve more than a single component, we need to start our
considerations at the compositional mass conservation equation (2.8) which conserves each
component individually. Since a component can potentially be present in all fluid phases, we
get ∑

α

∂

∂t
(φSαρmol,α x

κ
α) +

∑
α

div(ρmol,α x
κ
αvα −Dκ

αgrad x
κ
α) =

∑
α

qκα (2.46)

to conserve the mass of component κ in the fluids.

After taking advantage of the equation for the conservation of momentum (2.39) and merging
the right-hand side into a single source term qκ, we get

∑
α

∂

∂t
(φSαρmol,α x

κ
α)−

∑
α

div

(
ρmol,α x

κ
α

kr,α

µα
K (grad pα − ραg) +Dκ

αgrad x
κ
α

)
= qκ ,

(2.47)
which we will use as the mass conservation equation of compositional fluid flows in porous
media for the remainder of this work.

2.4.5 Experimental Derivation of the Momentum Conservation Equation

Instead of the theoretical derivation outlined in the previous section, we can also obtain
Equation 2.39 experimentally. In fact, this is how it was historically discovered by the French
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Figure 2.7: Experimental derivation of Equation 2.39, the momentum conservation equation
for flows in porous media: A fluid is forced through a sand filter by applying a
pressure gradient ∆p. The sand filter has a cross-sectional area of A and a length
of L. After waiting for a certain time ∆t, we measure ∆V as the volume of the
fluid in the outlet bucket.

hydraulic engineer HENRY DARCY [11]. While designing the water supply system of the city
of Dijon in 1856, DARCY measured how fast water seeps through a filter of sand, such as
the one illustrated in Figure 2.7. This filter has a cross-sectional area of A and a length of L.
DARCY observed, that the volume ∆V of water which trickles out of the sand filter during a
given period of time ∆t is proportional to ∆p, the difference in pressure at the inlet of the
filter and its outlet, and the cross-sectional area A of the filter. Further, he observed that it
is inversely proportional to the length L of the filter and to the viscosity of the fluid which
seeps through the sand. We can combine these observations, and get

∆V

∆t
∝ −∆p

A

µL
.

After introducing a proportionality constant K we get

∆V

∆t
= −K

µ
∆p

A

L
, (2.48)

the equation discovered by DARCY.

If we now take the limit of A,∆t and L to zero, and divide both sides with the cross-sectional
area, we get

v = −K
µ

∂p

∂x
. (2.49)

Additionally including gravity by subtracting its contribution to hydrostatic pressure, we
end up with the DARCY equation for one-dimensional single-phase flow

v = −K
µ

(
∂p

∂x
− ρg

)
. (2.50)
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(a) (b)

Figure 2.8: Flow through a porous medium with (a) no tortuosity, and (b) high tortuosity.

Generalizing Equation 2.50 to multiple dimensions, we get

v = −K
µ

(grad p− ρ g) . (2.51)

In the case of multiple fluid phases, the simplest approach we can take for the filter velocity
of fluid phase α is to assume that pores occupied by fluids other than α are blocked, and the
proportionality coefficientK gets reduced by a factor kr,α depending on the ratio of pores
being blocked by other fluids. In this case we can use

vα = −kr,α

µα
K (grad pα − ραg) (2.52)

to determine the filter velocity.

2.4.6 Filter Velocity and Seepage Velocity

We can consider DARCY’s Equation 2.52 as a relation between the average phase veloci-
ties 〈vα〉 and the potential gradient of its driving force, i.e., the pressure gradient corrected by
gravity. If the filter contained no solid, vα would be the velocity that the fluid exhibits as it
moves through the filter. Thus, we call vα the filter velocity. In contrast, the velocity which is
actually experienced by the fluids is higher, and we call it the seepage velocity vsp,α. We can
estimate the seepage velocity using the relation

vsp,α ≥
‖vα‖
φ

. (2.53)

In some cases, such as illustrated in Figure 2.8b, Relation 2.53 cannot be assumed to be an
equality. This is due to an effect called tortuosity. In the context of this work we will neglect
this effect.
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2.5 Chapter Synopsis

In this chapter we have sketched a procedure to transform a molecular-scale description
of a physical system to a continuum-scale description in Section 2.1. Mathematically, this
procedure can be considered to be a convolution with an adequate kernel. Then, starting at
the continuum-scale, we derived the equations for the conservation of mass, momentum,
and energy in Section 2.3 and adapted them to the special case of NEWTONIAN fluids in
Section 2.3.3. This lead us to the conservation equations

∂xκρmol

∂t
+ div(xκρmolv −Dκgrad xκ ) = qκmol ,

ρ
∂v

∂t
+ ρv · grad v = −grad p+ µdiv grad v + ρ g + qmom and

∂ u ρ

∂t
+ div(hρv − λgrad T ) = qenergy

for mass, momentum, and energy, respectively.

In Section 2.4 we then applied the volume averaging approach by WHITAKER [89] to these
equations, and obtained a macro-scale description of NEWTONIAN fluid flows in porous
media. To see the link to the upscaling procedure from the molecular to the continuum-scale,
we noted that the volume averaging approach can be comprehended as a special case of
a convolution. Using volume averaging, we then derived the macro-scale conservation
equations for fluid flows in porous media, and got

∂
∑

α φSαx
κ
αρmol,α

∂t
+
∑
α

div
(
xκκρmol,α vα −Dκ

pm.α grad x
κ
α

)
= qκ ,

vα = −kr,α

µα
K (grad pα − ραg) and

∂

∂t

(∑
α

φSα ρα uα + (1− φ)ρs cp,s T
)

+ div

(∑
α

hαρα vα − λpm grad T

)
= qenergy

for mass, momentum, and energy, respectively.

Analogous to the upscaling procedure from molecular to continuum-scale where we lost
the information about individual particles, we lost the information of the microscopic fluid
configuration within the porous medium when going to the macro-scale. This has the practical
advantage that we only need to specify macroscopic properties—which are relatively easy
to determine using physical experiments—and that we do not need to specify the exact
geometry of the solid phase of the porous medium.
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To solve any system of equations, we have to make sure that it is mathematically well-defined.
This means that the equations are independent, i.e., that no equation can be expressed in
terms of the others, that a unique solution exists and that the number of unknowns equals
the number of equations. We assert that the first two properties hold for the compositional
mass conservation equation (2.47). When counting the unknowns in these equations, we
get 2N ·M +N + 6M + 3 where M is the number of fluid phases, and N is the number of
components:

• One gravitational acceleration function g,

• One porosity distribution function φ,

• One absolute permeability distributionK,

• M saturations Sα,

• M pressures pα,

• M relative permeabilities kr,α,

• M dynamic viscosities µα,

• M mass densities ρα,

• M molar densities ρmol,α,

• N source terms qκ,

• M ·N mole fractions xκα, and

• M ·N diffusion coefficients Dκ
pm,α.

On the side of the equations, we currently have only N mass conservation equations of
the components (2.47). In the following sections, we will examine the remaining relations
required to get a well-defined system of equations.

3.1 Saturation Closure Condition

One additional equation is implied by the simple fact that all pore space must be occupied by
fluids1. We express this by the relation ∑

α

Sα = 1 . (3.1)

1In this context, we consider vacuum as gas.
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3.2 Given Parameters and Empiric Relations

Further, we assume the following quantities to be known a priori:

• Gravitational acceleration g,

• intrinsic permeability of the porous mediumK,

• porosity of the medium φ, and

• the source terms qκ of all components.

Also, we can assume that the dynamic viscosities of the fluids µα and the molecular diffusion
coefficients Dκ

pm,α are given closed functions depending on the fluid composition, tempera-
ture, and on pressure. Moreover, we know that the mass and molar densities are connected
by

ρα = ρmol,α

∑
κ

xκαM
κ .

In general, we need to consider the relative permeabilities kr,α as spatially parameterized
functions which depend on all phase compositions {xκβ}, all temperatures {Tβ}, all pres-
sures {pβ}, and all saturations {Sβ}. Having said that, we note that most of the commonly
used empiric relations for relative permeability, like the ones discussed in Section 3.4, only
depend on the phase saturations {Sα}.

3.3 Thermodynamic Relations

At this point, we count M · N + 2N + 3M + 4 equations, which means that we still need
(M − 1) ·N + 3M − 1 additional relations to get a mathematically closed system. Most of
these can be obtained by considering the thermodynamics which governs the system.

3.3.1 Equations of State

First, we getM additional equations by defining the equations of state for all fluid phases. An
equation of state of a phase is the link between temperature Tα, pressure pα, composition {xκα},
and density ρα or—more commonly—the molar volume Vmol,α := 1/ρmol,α of a phase, i.e.,

pα = pα(Vmol,α, Tα, {xκα}) . (3.2)

The most simple equation of state,

pg =
RTg
Vmol,g

,

with R = 8.314462 J/K mol describes ideal gases. This equation is a good approximation for
real gases at low temperature and low pressure, i.e., for situations where the values of the
temperature and pressure are much lower than the critical values of the substance. On the
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Name uα wα bκα aκα

VAN DER WAALS 0 0
1

8

RTκcrit
pκcrit

27

64

(RTκcrit)
2

pκcrit

REDLICH-KWONG 1 0
0.08664RTκcrit

pκcrit

0.42748(RTκcrit)
2

pκcrit
√
Tr

with Tr = Tα/Tκcrit

SOAVE 1 0
0.08664RTκcrit

pκcrit

0.42748(RTκcrit)
2

pκcrit

(
1 + (1−

√
Tr) fωκ

)2
with fωκ = 0.48 + ωκ(1.574− 0.176ωκ)

PENG-ROBINSON 2 -1
0.07780RTκcrit

pκcrit

0.45724(RTκcrit)
2

pκcrit

(
1 + (1−

√
Tr) fωκ

)2
where fωκ = 0.37464 + ωκ(1.54226− 0.26992ωκ)

Table 3.1: Parameters for common cubic equations of state as outlined by REIDet al. [68].
T κcrit and pκcrit correspond to the critical temperature and critical pressure of a pure
component κ, and ωκ is the acentric factor of the component. All these quantities
can either be taken from the literature or they can be estimated [68].

molecular scale, this relation implies that the interactions between particles of the gas are
well approximated by elastic collisions.

Since for real gases, molecular particles also interact by means of their electric force fields,
a more complex EOS is needed. Such a class of equations of state are cubic equations of state.
These equations can be expressed in the form [68]

pα =
RTα

Vmol,α − bα
− aα
V 2

mol,α + uα bα Vmol,α + wα b2α
. (3.3)

Here we call the quantity bα the covolume of the fluid phase α since it resembles the volume
occupied by the particles of the substance directly, and we call aα the attractive factor of fluid
phase α since it describes how strongly the particles attract each other. Finally, uα and wα are
constants given by the chosen equation of state.

Table 3.1 outlines some common parameterizations for pure substances. Of those relations,
the VAN DER WAALS and REDLICH-KWONG parameterizations are primarily of historical
interest [68]. For the SOAVE and PENG-ROBINSON approaches, we cannot specify the most
accurate one a priori as the error of a parameterization strongly depends on the molecular
properties of the considered substance [68].

For mixtures of multiple substances, we may also use Equation 3.3 as the equation of state,
but we need to calculate the parameters aα and bα for the mixture from the parameters of
the pure constituting components using a mixing rule. The most common mixing rule [68] is
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Vmol,α

pα

bα

p1

Vmol,l Vmol,g

p2

(a) Under-Critical Fluid

Vmol,α

pα

bα

p1

Vmol,l = Vmol,g

(b) Critical Fluid

Figure 3.1: Possible shapes of cubic equations of state. For these, the pressure of a fluid phase
pα is defined in terms of the molar volume Vmol,α = 1/ρmol,α of the fluid.

given by

aα =
∑
κ

∑
λ

xκαx
λ
α

√
aκαa

λ
α(1− k̄κλα ) and (3.4)

bα =
∑
κ

xκαb
κ
α ,

where k̄κλα is the interaction coefficient of the components κ and λ in the fluid phase α.

Multiple Phases

We can use the same cubic equations of state for multiple phases: In the most simple case,
outlined in Figure 3.1a, an isotherm of the equation of state has three intersections with the
isobar p1 that are larger than the covolume bα. In this case, we can choose the molar volume
for the liquid Vmol,l as the value of the smallest intersection, and the molar volume of the
gas Vmol,g as the value of the largest intersection.

Another case is also illustrated in Figure 3.1a: If we increase the pressure to p2, the isotherm
of the equation of state has only one intersection with the isobar. Given the fact that we
have to choose the molar volume of each phase in a way that is continuous with regard to
pressure, the molar volume of the physically impossible phase becomes undefined. This
issue can be mended if the equation of state features two extrema at physically meaningful
molar volumes. In this case, we can use the molar volume of the largest extremum for gas
and the molar volume of the smallest extremum for the liquid. Also, we can decide which
phase is unphysical by considering the intersection of the isotherm with the isobar p2: If
the molar volume of the intersection is higher than the value of both extrema, the value of
the intersection is the molar volume of the gas phase, else it corresponds to the value of the
liquid phase.

If we increase the temperature—or alternatively change the composition of the fluid—the
fluid becomes critical, and the isotherms of the equation of state resemble the curve depicted
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in Figure 3.1b. Given the fact that such curves only exhibit a single intersection with any
pressure, and they also do not feature physically meaningful extrema, we need a differ-
ent approach to achieve continuity of the molar volume regarding temperature, pressure,
and composition. In this case, we can calculate the critical point for a substance with the
parameters aα and bα, and use its molar volume as the molar volume for the unphysical
phase.

3.3.2 Local Thermodynamic Equilibrium

Besides the M equations of state which essentially yield the mass density of all phases at a
given temperature, pressure, and composition, we obtain further thermodynamic relations
by assuming local thermodynamic equilibrium.

The term “local thermodynamic equilibrium” means that we can always consider the fluids
at each point of the spatial domain to be at steady-state if we would isolate this location
from the rest of the system. This statement is equivalent to saying that, after isolating
any infinitesimally small subdomain V from the rest of the system at any time, the fluids
contained in the extracted domain V would be thermodynamic equilibrium. Thermodynamic
equilibrium itself is defined as the superposition of the following three subequilibria:

Thermal equilibrium, which is defined as the temperature of all phases in any infinitesimally
small and isolated sub-domain V being constant in time,

Mechanical equilibrium, meaning that the pressure of all phases is constant in time within
such an isolated sub-domain V , and

Chemical equilibrium, which represents the fact that the composition of any fluid phase
does not change with time within an isolated sub-domain V .

In the following, we will discuss these three equilibria independently.

Thermal Equilibrium

Thermal equilibrium is defined as the temperature of all phases of a thermodynamic system
being constant in time, i.e.,

∂Tα
∂t

= 0 (3.5)

holds. By the “zeroth” law of thermodynamics, this implies that the temperature equal within
the system, i.e.,

Tα = Tβ =: T (3.6)

holds for arbitrary phases α and β.

If we consider conservation of energy, the energy balance equation (2.46) determines the
additional unknown T . In this case, we can assume the specific enthalpies hα to be closed
functions which depend on the fluid composition, pressure, and temperature [68]. Further,
we can consider the thermal conductivity coefficient λpm to be a given function depending
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on the saturations, temperature, fluid compositions, and pressures. We also know that the
relation between specific internal energy uα and enthalpy hα of phase α is given by

uα = hα −
pα
ρα

.

In contrast, if we do not conserve energy, we must impress the temperature T externally on
the system, i.e., we need to consider temperature as a spatially and time dependent parameter
like, for example, the intrinsic permeabilityK.

Mechanical Equilibrium

Mechanical equilibrium is defined as the pressure of all fluids being stationary, i.e.,

∂pα
∂t

= 0 (3.7)

holds for all phases α.

In the context of fluid flows in porous media, this does not imply that the pressures of all
fluid phases are equal. Instead, it implies that the differences between the pressures of all
fluid phases are static. We can express this fact using

pα = pβ + pc,αβ , (3.8)

where we call the quantity pc,αβ capillary pressure2 between fluid phases α and β. In the most
general case, the quantity pc,αβ potentially depends on all fluid pressures, all phase satura-
tions, all temperatures and the composition of all fluid phases like the relative permeability
functions kr,α. Having said that, the most common approaches— which we will discuss in
Section 3.4—only depend on the phase saturations.

Chemical Equilibrium

For chemical equilibrium, the fluid compositions must be time-invariate, i.e.,

∂xκα
∂t

= 0 (3.9)

is true for all phases α and all components κ. This means that the chemical potentials ζκα of
each component are identical for all phases, i.e.,

ζκα = ζκβ =: ζκ (3.10)

2Note that the term capillary pressure is a bit of a misnomer because the capillary effect is not the only microscopic
effect which determines macroscopic pressure differences [38].
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holds for any two fluid phases α, β, and any component κ. The chemical potential of a
component in a fluid is defined as

ζκα =
∂gα
∂nκα

where gα = hα − Tαsα is the GIBBS free energy of phase α, and nκα = NA x
κ
αρmol,α is the total

number of molecular particles of component κ per unit of volume. Here, the specific entropy
of the fluid is represented by sα, and NA = 6.022·1023/mol is AVOGADRO’s constant.

Since chemical potentials become infinite for non-present components, it is advisable to use
fugacities instead. The fugacity fκα of a component in a phase is connected to the chemical
potential of the component by the equation

fκα = fκ,◦α exp

(
ζκα − ζ

κ,◦
α

RTα

)
, (3.11)

where fκ,◦α is the fugacity of component κ in phase α at an arbitrary but fixed reference state
of the pure component, and ζκ,◦α is the chemical potential at the same reference state. We note
that the fugacity is a smooth, monotonous function mappingR toR+.

If we assume thermal equilibrium, the condition for equality of all chemical potentials in all
fluids (3.10) can thus be reformulated as equivalence of component fugacities, i.e.,

fκα = fκβ (3.12)

holds for any component κ and arbitrary phases α and β.

To calculate the fugacity fκα of a component in a phase, we usually use the relation

fκα := pαx
κ
αΦκ

α . (3.13)

Further, we can determine the fugacity coefficient Φκ
α of component κ using the equation of

state. According to REID et al. [68], the relation for this is

RTα ln fκα = −
∫ Vmol,α

∞

∂pα
∂nκα

− RTα

V̂mol,α

dV̂mol,α +RTα lnZα , (3.14)

where Zα = pαVmol,α/RTα is the compressibility factor of the phase, and nκα = NA x
κ
α/V̂mol,α is the

total number of molecules of component κ per volume.
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Cubic Equations of State

For cubic equations of state, Equation 3.14 can be evaluated analytically if we use Equation 3.4
as mixing rule. We get [68]

ln Φκ
α =

bκα
bα

(Zα − 1)− ln(Zα −B?
α)

+
A?α

B?
√
u2
α − 4wα

(
bκα
bα
− δκα

)
ln

2Zα +B?
α(uα +

√
u2
α − 4wα)

2Zα +B?
α(uα −

√
u2
α − 4wα)

, (3.15)

with the abbreviations

A?α =
aαpα

(RTα)2
,

B?
α =

bαpα
RTα

, and

δκα =

√
aκα

2 aα

∑
λ

xλα(1− k̄κλα )
√
aλα .

Ideal Mixtures

Often, we assume a fluid phase to be an ideal mixture of its constituent components. In this
case, all fugacity coefficients are independent of the composition of the phases, and we get
the relation

fκ = pαx
κ
α Φκ

α(Tα, pα) .

For ideal gases, Φκ
α is equal to 1; for liquid phases, the fugacity coefficient and the fluid

pressure are usually combined into a single coefficient

P κα (Tα, pα) := pα Φκ
α(Tα, p

κ
α) .

For components that exhibit a low miscibility with the liquid, this coefficient is called HENRY

coefficient; otherwise, the component is the dominant constituent of the liquid, and P κα is
either called RAOULT coefficient, vapor pressure or saturation pressure.

3.4 Capillary Pressure and Relative Permeability

After our detailed discussion of thermodynamic equilibrium in the previous section, we will
now cover the most widely used heuristic capillary pressure curves in greater detail.

In the case of two fluid phases with the capillary pressure only depending on the phase
saturations, we can apply one of the two most commonly used capillary pressure and relative
permeability functions —the one proposed by to BROOKS and COREY or the function of VAN
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Figure 3.2: Principle shapes of the BROOKS-COREY and VAN GENUCHTEN functions for
two-phase flow in porous media. The parameters of the functions have been
converted using the approach proposed by LENHARD, PARKER, and MISHRA [50].
(a) Capillary pressure. (b) Relative Permeability.

GENUCHTEN. These functions will also be the subject of the following subsections and are
illustrated in Figure 3.2.

3.4.1 Generic Two-Phase Relations for Relative Permeability

Before we deal with the saturation-dependent two-phase capillary pressure curves, we need
to discuss the connection between the capillary pressure and the relative permeability for
them. As it turns out that, although in general we can regard the relative permeabilities kr,α

and the capillary pressures pc,α as independent quantities, they have been shown to be related
in the most common cases [39]. If only two fluid phases are involved, and the capillary
pressure between those only depends on the fluid saturations, the relative permeabilities are
given by the equations [39]

kr,w = Sw
A


∫ Sw

0

(
pc,nw(Ŝw)

)−B
dŜw∫ 1

0

(
pc,nw(Ŝw)

)−B
dŜw


C

and (3.16)

kr,n = (1− Sw)A


∫ 1
Sw

(
pc,nw(Ŝw)

)−B
dŜw∫ 1

0

(
pc,nw(Ŝw)

)−B
dŜw


C

(3.17)

with some constants A, B, and C. We note that it is not possible to directly apply these
equations to capillary pressure functions without choosing concrete values for A, B, and C.
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3.4.2 Relation of BROOKS and COREY

The most widely applied approach for capillary pressure in two-phase flows is the one
proposed by BROOKS and COREY [13, 39]. This approach considers two fluid phases, the
wetting and the non-wetting phases. There, the fluid for which the contact angle of the fluid-
fluid interface with the surface of the solid is smaller than 90◦ is defined as the wetting fluid,
the other fluid is called non-wetting. The capillary pressure relation proposed by BROOKS and
COREY now assumes that the only quantity on which the difference in pressure between the
wetting and the non-wetting phase depends, is the saturation of the wetting phase. Under
these preconditions, BROOKS and COREY proposed [13] the relation

pc,nw = pn − pw = peS
− 1
λbc

w , (3.18)

where pe is the entry pressure and λbc is a shape parameter. Both of these parameters are highly
specific to the properties of the porous medium as well as to the properties of the considered
fluids [39]. For this reason, these two parameters are usually obtained experimentally [39].

In conjunction with the BROOKS-COREY capillary pressure curve, the BURDINE parameteriza-
tion A = B = 2, and C = 1 is normally used [39] for relations of the relative permeabilities
which are implied by Equations 3.16 and 3.17. This yields

kr,w = Sw
2+3λbc
λbc and (3.19)

kr,n = (1− Sw)2

(
1− S

2+λbc
λbc

w

)
. (3.20)

3.4.3 Curve of VAN GENUCHTEN

As an alternative to the curves proposed by BROOKS and COREY, we can also use the
relation proposed by VAN GENUCHTEN [87, 39]. Like the BROOKS-COREY curves, the VAN

GENUCHTEN approach presumes that the value of capillary pressure depends solely on the
saturation of the wetting phase, but in contrast to the BROOKS-COREY relation, it does not
use the concept of entry pressure. Instead, the VAN GENUCHTEN approach assumes that the
capillary pressure is zero in a medium which is fully saturated by the wetting phase. Also
clearly visible in Figure 3.2 is the fact that for VAN GENUCHTEN curves, the slope is infinite if
the porous medium is fully saturated by the wetting phase. This property is thus similar to
the entry pressure concept in the BROOKS-COREY approach.

The concrete function proposed by VAN GENUCHTEN [87] is given by

pc,nw = pn − pw =
1

αvg

(
S
− 1
mvg

w − 1

) 1
nvg

,

where αvg, mvg, and nvg are shape parameters. Like for the BROOKS-COREY relation, at least
two of those parameters must be obtained by fitting experimental data. For the third, it is
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often possible to use the relation
mvg = 1− 1/nvg

as proposed by VAN GENUCHTEN [87]. We note that instead of using this equation, we also
may take advantage of others which better fit experimentally obtained capillary pressure
curves [47].

Like for the BROOKS-COREY capillary pressure curves, we can evaluate Equations 3.16
and 3.17 to gain closed relative permeability functions. In contrast to the BROOKS-COREY

approach, the parameterization proposed by MUALEM is usually used [39], i.e., A = 0.5,
B = 1, and C = 2. With these values, we get

kr,w = Sw
εvg

(
1−

(
1− Sw

1
mvg

)mvg
)2

and (3.21)

kr,n = (1− Sw)γvg
(

1−
(

1− Sw
1

mvg

)mvg
)2mvg

(3.22)

where εvg and γvg are parameters that depend on the microscopic properties of the porous
medium. Often [39] we can assume their values to be εvg = 1/2 and γvg = 1/3.

3.4.4 Three-Phase Systems

The final capillary pressure relations which we will cover in detail were proposed by
STONE [79, 39], and are concerned with three-phase flow in porous media.

For such systems, we assume three potentially present phases called “wetting liquid”, “non-
wetting liquid”, and “gas”, indicated by 〈·〉w, 〈·〉n, and 〈·〉g in the following. For such systems,
it has been observed [52], that in many situations the relative permeability of the wetting
liquid phase kr,w and the relative permeability of the gas phase kr,g primarily depend on
the saturations of the wetting liquid and the gas, respectively. Also, the capillary pressures
between the wetting liquid and the non-wetting liquid pc,nw has been shown to depend
mainly on the saturation of the wetting liquid and we can assume that the only non-negligible
dependency of the capillary pressure between the gas and the non-wetting liquid phases pc,gn

is the saturation of the gas phase [39].

The main idea of the two approaches proposed by STONE [79, 80] is to take advantage of the
capillary pressure relations for the two-phase cases with the wetting and the non-wetting
liquids—which we will indicate by 〈·〉wn in the following—as well as the capillary pressure
curves for the two-phase system featuring the non-wetting liquid and the gas—indicated
by 〈·〉ng. Under these assumptions, we can use the appropriate two-phase relations to define
the three-phase capillary pressure relations, i.e.,

pc,nw(Sw, Sn, Sg) = pcwn,nw(Sw) and (3.23)

pc,gn(Sw, Sn, Sg) = pcnw,gn(1− Sg) . (3.24)
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Similarly, we define the wetting liquid and the gas relative permeabilities of the corresponding
two-phase systems, i.e.,

kr,w(Sw, Sn, Sg) = krwn,w(Sw) and (3.25)

kr,g(Sw, Sn, Sg) = krng,g(1− Sg) . (3.26)

For the relative permeability of the non-wetting liquid kr,n, STONE proposed two approaches:
The first [79] uses the relation

kr,n(Sw, Sn, Sg) = Sn
krwn,n(Sw)

1− Sw
krng,n(1− Sg)

1− Sg
, (3.27)

whilst the second [80] defines kr,n as

kr,n(Sw, Sn, Sg) =(krng,n(1− Sg) + krng,g(1− Sg)) · (krwn,n(Sw) + krwn,w(Sw))

− (krwn,w(Sw) + krng,g(1− Sg)) .

3.4.5 Advanced Concepts

We note that, the approaches which we covered so far do not take residual saturations [39]
into account in order to simplify the discussion. We can imagine the residual saturation of a
phase as the saturation of the fluid that cannot be transported by advection – an effect that is
caused by various mechanisms that trap fluids within a porous medium [39]. Having said
that, this material can be dissolved by the other fluids and be transported this way.

Also, there are quite a few advanced concepts when it comes to capillary pressure: Amongst
these are temperature [73] and fluid composition [27] dependence, approaches which dis-
card the assumption of mechanical equilibrium [38], and methods to take hysteresis into
account [65, 59, 10].

3.5 Model Constraints

At this point, if we count the number of independent equations which we have defined for
our M -phase, N -component system, we get 2N ·M +N + 6M + 3:

• The three externally impressed functions gravitational acceleration g, intrinsic perme-
abilityK, and porosity φ,

• a closure condition for saturations (3.1),

• M relations connecting the molar density ρmol,α with the mass density ρα,

• M functions for the dynamic viscosities µα,

• M relations capturing the relative permeabilities kr,α,
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• N source terms qκ,

• M · N closed functions for the molecular diffusion coefficients in the porous
medium Dκ

pm,α,

• M equations of state (3.2),

• M − 1 constraints from the thermal equilibrium (3.5),

• M − 1 equations for the mechanical equilibrium (3.7),

• N mass balance equations (2.47),

• an impressed temperature function if we neglect conservation of energy, or an energy
conservation equation in the other case, and

• (M − 1) ·N conditions stemming from the chemical equilibrium (3.9).

On the side of the unknowns, we additionally need M phase temperatures Tα, so we now
have 2N ·M +N + 7M + 3 unknowns. This means that, at this point, we are still missing M
equations to make the system of equations well-defined. In the context of this thesis, we will
call these M relations model constraints, and in the next few sections we will discuss several
approaches which define these model constraints.

3.5.1 Immiscibility

The first set of model constraints we will cover here is the one which ignores miscibility
altogether. It is a reasonable approximation of a real system if all fluid phases exhibit a highly
preferred component. Immiscibility [39] thus means that each phase α is composed of only a
single component κα, i.e.,

xκα =

{
1 for κ = κα and
0 else.

(3.28)

Using the thermodynamical framework outlined before, we can achieve this by letting the
fugacity coefficient of the “non-preferred” components be infinite whilst keeping it finite for
the constituent component, for example

Φκ
α =

{
1 for κ = κα and
∞ else.

(3.29)

In this context, we should be aware of the fact that Equation 3.29 cannot be used directly in
numerical software because of the occurrence of infinite values in the fugacity coefficients.
Instead, we need to implicitly set the mole fractions of all “non-preferred” components of a
phase to zero and the mole fraction of the “preferred” component to one.

The M model constraints are then given by the requirement that all phases are always
potentially present, i.e., ∑

κ

xκα = xκαα = 1 (3.30)

holds for any phase α.
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3.5.2 Primary Variable Switching

We can obtain a second set of model constraints if the set of fluids which are present at a
given location in space at a given time are known: In the case that phase α is present, the sum
of the mole fractions which fulfill the condition of chemical equilibrium (3.12) sum up to one,
i.e., ∑

κ

xκα = 1

holds. In the other case, phase α is not present at the location, so that its saturation must be
zero, i.e.,

Sα = 0

This leads to the following set of model constraints [23]

0 =

{
1−

∑
κ x

κ
α if phase α is present, and

Sα if it is not present.
(3.31)

In flow simulations, a phase can appear or disappear, and thus we need to adapt the set of
phases which are present at a given location during the process of finding a solution. This
can be accomplished by continuing the solution procedure with a given set of present phases,
and changing this set if an intermediate state is physically impossible. In such an event, we
need to update the set of present phases, and choose physically meaningful quantities as
primary variables.

In the following, we use the following switching conditions:

• A present phase vanishes if the saturation of the phase becomes negative, i.e., if

Sα < 0

holds. In this case we remove the saturation Sα of the vanished phase from the set of
primary variables, and replace it by a mole fraction of a component for a fluid that is
present.

• A non-present phase α appears if the quantities xκα that meet the condition for chemical
equilibrium (3.12) are interpretable as mole fractions. This is the case if the sum of xκα
in the phase is equal to 1. In numerical simulations we also have to be prepared that
sum of xκα can become larger than 1, i.e., we use the condition∑

κ

xκα ≥ 1

as switching condition.

If we detect such a state, we remove the mole fraction of a component from the set of
primary variables, and replace it by the saturation Sα of the newly appeared phase.

In Section 5.2.2 we will discuss in greater detail how these primary variable switching (PVS)
model assumptions can be implemented in numerical software.
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3.5.3 Non-Linear Complementarity Functions

An alternative to the procedure above is to directly include the conditions outlined in the
previous section into the set of equations to be solved [48]: For this we observe that, as long
as phase α is not present, the sum of the mole fractions which meet the chemical equilibrium
condition (3.12) are allowed to be smaller than 1, i.e.,

Sα = 0 =⇒
∑
κ

xκα ≤ 1 .

Next, we observe that a necessary precondition for phase α to be present is that its constituent
mole fractions sum up to one, i.e.,∑

κ

xκα = 1 =⇒ Sα ≥ 0

holds.

Since each phase is either present or non-present, at least one of the above cases must apply,
we get the following non-linear complementarity problem (NCP) for each fluid phase α:

Sα

(
1−

∑
κ

xκα

)
= 0 ∧ 1−

∑
κ

xκα ≥ 0 ∧ Sα ≥ 0 . (3.32)

Such a problem can be directly included into the system of equations to be solved using a
non-linear complementarity function Ψ : R2 → R which is exhibits the property

Ψ(a, b) = 0 ⇐⇒ a ≥ 0 ∧ b ≥ 0 ∧ a · b = 0 .

There are multiple possible choices for Ψ; for example, the FISCHER-BURMEISTER non-linear
complementarity function [32] ΨFB is defined as

ΨFB(a, b) = a+ b−
√
a2 + b2 .

For the remainder of this work, we will use the minimum function Ψ(a, b) = min(a, b) because
of its piecewise linearity. This means that we will use the model constraints

Ψα (Sα, 1−
∑
κ

xκα) = min (Sα, 1−
∑
κ

xκα) = 0 (3.33)

when discussing the NCP model.

3.5.4 Black-Oil

The black-oil model is a set of model assumptions widely used in the oil industry [83, 19,
46, 45]. It presumes three potentially present fluids oil, gas, and water—in the following
indicated by 〈·〉o, 〈·〉g, and 〈·〉w—as well as three pseudo-components to which we also refer
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Figure 3.3: Definition of the gas solubility factorRS in the black-oil model: A given volume of
saturated oil Vreservoir,o is brought from reservoir pressure preservoir to the relatively
low atmospheric pressure patm. Then, the gas solubility factor is defined as the
ratio between volume of gas which emerges at the surface and the original volume
of the reservoir oil. Typically, the reservoir pressure exceeds 200 bar while patm is
roughly 1 bar.

to as oil, gas, and water, and which will be indicated by 〈·〉O, 〈·〉G, and 〈·〉W . In the terms of
the thermodynamic framework of this chapter, the black-oil model presumes M = N = 3.

The first assumption of the black-oil model is that the water, and gas phases are immiscible,
and that they are solely constituted by the components with the same names. In contrast,
the oil phase is assumed to be a mixture of the pseudo-components gas and oil with the
composition given by the gas solubility factor RS.

This factor is defined as the volume of the gas phase that emerges from a given amount
of gas-saturated oil phase if the of oil is brought from the reservoir to the surface, i.e., that
the pressure of the material is reduced from reservoir pressure to atmospheric pressure, as
illustrated in Figure 3.3. We thus define RS as

RS :=
Vatm,g

Vreservoir,o
=
Satm,gVtotal,atm

Vreservoir,o
.

Given the gas solubility factor at a certain pressure, the composition of gas saturated oil at
reservoir pressure can thus be determined in terms of mass fractions using

XG
sat,o =

ρg(patm)RS(po)

ρsat,o(po)
and XO

sat,o = 1−XG
sat,o

if we assume that the amount of the gas in oil is negligible at atmospheric pressure.

We also need to specify the mass densities of all phases at a given pressure. While we assume
the water phase to be incompressible, the density of the gas saturated oil phase ρo and the
one of the gas phase ρg is determined by the oil and the gas formation volume factors Bo and Bg.
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These two factors express the ratio between the mass density at reservoir pressure and the
density at atmospheric pressure, i.e.,

Bα(pα) =
ρsat,α(pα)

ρsat,α(patm)
, α ∈ {o, g} ,

where the atmospheric densities ρsat,α(patm) are given constants.

Fugacity Coefficients

In order to fit the set of black-oil parameters into our thermodynamic framework, we need to
define fugacity coefficients Φκ

α for all components κ and all fluid phases α as well as the mass
densities of all fluid phases. In the following, we will outline how we can achieve this goal.

The black-oil parameters assume the gas and the water phases to be immiscible, i.e., the only
constituent of the gas phase is the gas component, and that of the water phase is the water
component. For this reason, we can use the same approach to the fugacity coefficients as for
the immiscible model constraints, i.e.,

Φκ
α =

{
1 if κ = κα,
∞ else

for α ∈ {w, g}, κ ∈ {O,W,G}, and with κw = W , κg = G.

Since the oil phase is a mixture of the gas and the oil components, we first need to ensure
that the oil phase does not contain any water by setting the fugacity coefficient for the water
component in the oil phase to infinity. For the fugacity coefficient of the oil component in the
oil phase, we can use any finite positive value; usually we use

ΦO
o =

pOvap

po

where pOvap denotes a typical vapor or saturation pressure of the oil component.

The most elaborate fugacity coefficient is the one for the gas component in the oil phase.
This is due to the facts that the gas component is the only component which is assumed to
be potentially present in two fluid phases, i.e., the gas and the oil phase, and that we must
choose the fugacity coefficient such that it is consistent with the black-oil parameters. We can
achieve this by first calculating the mass fractions XO

sat,o and XG
sat,o for gas saturated oil as

outlined in the previous section. Next, we need to convert these mass fractions into mole
fractions by solving the system of equations

XG
sat,o =

MG

Mo

xGsat,o,

Mo = xOsat,oM
O + xGsat,oM

G , and

xGsat,o + xOsat,o = 1
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in regard to xGsat,o. This yields

xGsat,o =
MOXG

sat,o

MG +XG
sat,o(M

O −MG)
and xOsat,o = 1− xGsat,o .

For gas saturated oil, we can now define the fugacity coefficient of the gas component in
the oil phase using the definition of the fugacity coefficients (3.13), and inserting it into the
condition for chemical equilibrium (3.12). Assuming that the capillary pressure is negligible,
we get

ΦG
o =

ΦG
g

xGsat,o

.

Mass Density of the Oil Phase

The presented black-oil parameters directly provide densities ρsat,α for all three saturated
phases, but—somewhat surprisingly—we must take quite complex measures to define ρo,
the mass density of potentially undersaturated oil. The reason for this is that—in contrast to
the water and gas phases—the oil phase may dissolve less gas than the maximum physically
possible amount but the black-oil parameters only specify oil phase densities for gas saturated
oil. To define ρo, we take a closer look at the total derivative of the mass density of the
saturated oil phase with respect to pressure. Applying the chain rule, we get

dρsat,o

dpo
=

d

dpo
ρo(po, X

O
sat,o(po), X

G
sat,o(po)) =

∂ρo
∂XG

o

∂XG
sat,o

∂po
+

∂ρo
∂XO

o

∂XO
sat,o

∂po
+
∂ρo
∂po

,

where XG
sat,o(po) and XO

sat,o(po) are the mass fractions of the gas and oil components of gas
saturated oil at pressure po as specified by the black-oil parameters. Taking advantage of the
fact that the mass fractions of all components sum up to one for oil, we get

dρsat,o

dpo
=
∂XG

sat,o

∂po

(
∂ρo
∂XG

o

− ∂ρo
∂XO

o

)
+
∂ρo
∂po

. (3.34)

Further, we now suppose that the compressibility of the oil phase is a given constant, i.e.,

∂ρo
∂po

:= const

holds, and we already assumed the mass fraction of gas in saturated oil at atmospheric
pressure to be negligible. Under these preconditions, we may use the density of the oil at the
surface together with the compressibility to define the partial derivative of the mass density
of the oil phase regarding the mass fraction of the oil component, i.e.,

∂ρo
∂XO

o

:= ρsat,o(patm)

(
1 +

∂ρo
∂po

(po − patm)

)
.
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We now observe that Equation 3.34 determines the partial derivative of the gas mass fraction
in saturated oil using the black-oil parameters. Resolving, we get

∂ρo
∂XG

o

=

(
∂XG

sat,o

∂po

)−1(
dρsat,o

dpo
− ∂ρo
∂po

)
+

∂ρo
∂XO

o

.

Assuming that these derivatives stay constant for undersaturated oil, we can finally define
the generic mass density of oil as:

ρo = ρsat,o(po) +
(
XG
o −XG

sat,o

) ∂ρo
∂XG

o

+
(
XO
o −XO

sat,o

) ∂ρo
∂XO

o

.

Black-Oil Model Constraints

Now that we defined all relevant quantities using only the black-oil parameters as input, we
need to specify the appropriate model constraints in order to use the abstract thermodynamic
framework presented in this chapter. First, we observe that we can use the immiscibility
model constraints for the water and for the gas phases, i.e.,∑

κ

xκα = xκαα = 1

for α ∈ {w, g}. For the oil phase, we assume that it is always potentially present, which leads
to the constraint ∑

κ

xκo = xOo + xGo = 1 .

Like for the immiscibility model assumptions, we cannot use some of the presented defi-
nitions directly in software implementations since some of the fugacity coefficients exhibit
infinite values. Thus, we may either approximate the black-oil model by using very large
fugacity coefficients, or we can implement it by directly incorporating them into the software.

3.6 Chapter Synopsis

In this chapter, we made the mathematical description of multi-phase, multi-component
flows in a porous medium well-defined. In particular, this implied the need to specify the
same number of independent equations as quantities. We obtained some of these relations by
assuming a few quantities to be closed functions, a few others were obtained by assuming
them to be given parameters depending on the time and the spatial location within the
domain. Examples of the former are the dynamic viscosities µα and mass densities ρα of the
fluids, while examples of the latter are the gravitational acceleration vector g and the intrinsic
permeabilityK.
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We then accounted for the additional relations implied by thermodynamics. At this occasion,
we discussed some widely used equations of state, and outlined the conditions implied by
assuming local thermodynamic equilibrium.

Finally, we noted that one equation per fluid phase was still missing. We identified these
missing relations as model specific constraints, and we discussed three established sets of
constraints, i.e., the immiscibility, primary variable switching (PVS), and black-oil models.
We also presented a new set of model constraints which are based on solving non-linear
complementarity problems (NCP).



4 Numerics

In this chapter we will look at methods to approximately solve the equations outlined in
Chapters 2 and 3. First, we will discuss ways of transforming a system of partial differential
equations into a system of ordinary differential equations in Section 4.1. In Section 4.2 we then
transform these ordinary differential equations into a series of systems of non-linear algebraic
equations. Next, we will discuss the NEWTON-RAPHSON scheme, a method to solve such
systems of non-linear algebraic equations in Section 4.3. This method repeatedly linearizes
the non-linear system of equations, and uses the solution of each of those to calculate the
starting point for the next iteration. Then, we will discuss methods for efficiently solving
these linear systems of equations in Section 4.4. The final section presented in this chapter,
Section 4.5, covers approaches to adapt the resulting numerical methods to loosely coupled
parallel computers.

4.1 Spatial Discretization

Conceptually, we first need to transform partial differential equations for mass conserva-
tion (2.47) and energy conservation (2.46) into a series of systems of algebraic equations.
To achieve this, we utilize a two-stage approach: We first transform them into a system of
ordinary differential equations using a spatial discretization, then we apply a time discretiza-
tion scheme to transform it into a system of coupled algebraic equations. This section is
devoted to the conversion of the conservation equations into systems of ordinary differential
equations, while the next section covers time discretization methods.

Figure 4.1: A discretization of the spatial domain Ω into a set of conforming convex poly-
gons {ω1, . . . , ωn}.
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Quite a few spatial discretization schemes have been proposed to date. The ones which are
most widely used are based on the ideas of the finite volume [31], finite element [29, 81], and
discontinuous GALERKIN approaches [5]. All of these methods share the property that the
spatial domain Ω is partitioned into n smaller subdomains {ω1, ω2, . . . , ωn}. The individual
subdomains are called elements or cells, whilst the partition itself is called grid or mesh. In the
context of this work, we assume that all elements of a grid are convex polygons, and that the
grid is conforming, i.e., that no vertex is located at any non-corner position of any element.
Such a grid is depicted in Figure 4.1.

The fundamental idea for partitioning the domain Ω is the fact, that the solution for Ω may
be described as the superposition of the solutions of an arbitrary but fixed number subsets
of Ω, provided that these subsets do not overlap, and that Ω is fully covered by their union.
We thus take advantage of the observation that the partial differential equations are valid for
all elements individually. Taking this argument further, if we find approximate solutions for
all individual subsets, we have found an approximate solution for the whole domain if we
combine them. Moreover, if we can make the difference between the approximate and the
exact solution arbitrarily small, the approximate solution can be made to be equivalent to
the exact one and the discretization scheme is said to be convergent. Usually, reducing the
accuracy of the approximation requires to increase the number of elements of the partitioning
of Ω [29].

To derive the spatial discretization scheme which we will use in the remainder of this work,
we use the GAUSS theorem on the integral form of Equation 2.6 for all elements. This yields∫

ωi

∂

∂t
bdx+

∫
ωi

div(bv) dx−
∫
ωi

q dx =∫
ωi

∂

∂t
bdx+

∫
∂ωi

ni · bv dy −
∫
ωi

q dx = 0

for each element ωi.

Since the EULERIAN approach uses an observation volume which is fixed in time, the time
derivative and the spatial integral commute. Thus we get

∂

∂t

∫
ωi

bdx+

∫
∂ωi

ni · bv dy −
∫
ωi

q dx = 0 .

Taking advantage of the assumption that all elements are polyhedra which exhibit planar
surfaces, we may split the integral of the flux term into a sum of fluxes, one for each of the
faces {∂ωi,1, ∂ωi,2, . . . , ∂ωi,mi} of the element:

∂

∂t

∫
ωi

bdx+

mi∑
j=1

(
‖∂ωi,j‖ni,j ·

∫
∂ωi,j

bv dy

)
−
∫
ωi

q dx = 0 .

From this, we get the standard finite volume scheme by assuming that all quantities are
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Figure 4.2: Illustration of the finite volume discretization of a function b defined on a one-
dimensional spatial domain: After discretizing the continuous spatial domain Ω
into multiple line segments {ω1, ω2, . . . , ωn}, the quantity b is assumed to be con-
stant within each subvolume ωi, and thus we get discontinuities at the boundaries
of the subdomains. For two and three-dimensional domains, the method works
in an analogous way.

constant within an element, i.e.,

‖ωi‖
∂bi
∂t

+

mi∑
j=1

‖∂ωi,j‖ bi,jni,j · vi,j − ‖ωi‖qi = 0

holds, as illustrated in Figure 4.2 for the one dimensional case.

A problem specific to this scheme is the calculation of the quantities which are required on
the boundaries of the finite volumes since the quantities are discontinuous there. We deal
with these discontinuities using two approaches:

Averaging: Parameters that do not depend on the solution— like ones impressed externally—
can be averaged. In the context of flows in porous media, this is the case for intrinsic
permeabilityK which needs to be averaged using the harmonic mean [40].

Upstreaming: Quantities fully determined by the solution must be upstreamed [40]. Up-
streaming is the numerical equivalent of the fact that the flux of conservation quantities
only depends on the location where these quantities originate. An example are air
flows: Whether a smell reaches an observer only depends on whether the air passes the
cause of the smell before or after it reaches the observer—i.e., whether the observer is in
downstream or in upstream direction. This correlation is illustrated in Figure 4.3.

In the context of flows in porous media, quantities that need to be upstreamed are the
relative permeabilities kr,α, molar densities ρmol,α and mole fractions xκα.
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(a)

(b)

Figure 4.3: Illustration of the upstreaming concept: (a) The hunter is in the upstream wind
direction relative to his prey, i.e., the air passes the hunter before it reaches the
deer, and the deer can thus percept the smell of the hunting party. (b) The
deer is unsuspecting because the hunting party is in the direction of the wind,
and the deer thus cannot smell it. (Images are based on works from http:
//openclipart.org.)

Flux Approximation

The final problem which needs to be solved if we use a finite volume method as spatial
discretization is that we need a way to calculate spatial gradients at the boundaries of finite
volumes to obtain the filter velocities of the fluid phases. Again, this is only a problem
because the discretized solutions are discontinuous at the boundaries of the finite volumes.
This means that, strictly speaking, spatial gradients within finite volumes are zero, whilst
they are undefined at their boundaries.

The most simple method to define these gradients is to apply the two-point gradient approx-

http://openclipart.org
http://openclipart.org
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Figure 4.4: Illustration of the two point gradient approximation: The centers of the two finite
volumes i and j are ∆x := ‖xj − xi‖ apart, while the difference of the quantity b
for which we seek the gradient at the interface is bj − bi.

Figure 4.5: The vertex-centered finite volume spatial discretization used for the numerical
examples of this thesis: The black lines correspond to the primary grid as described
in Section 4.1, areas of identical color are associated with a finite volume on which
the conservation equations are considered. The finite volumes are constructed by
associating each point of the domain to the closest vertex of the primary grid.

imation scheme as illustrated in Figure 4.4. For this method we assume that the values for
all quantities are given at the centers of the two finite volumes adjacent to the boundary for
which the gradient needs to be calculated. If we further assume a linear gradient of these
quantities, we can approximate the gradient of b by

grad bi,j ≈
bj − bi
‖xj − xi‖

,

where bi and bj are the values for the quantities of the finite volumes i and j, and xi and xj
are the positions of their centers.

Another method is to construct a dual grid. As illustrated in Figure 4.5, we define an element
of the dual grid to be the set of points for which a given vertex of the primary grid is the
nearest one. The conservation equations are then solved for the volumes centered at the
vertices of the original grid, and the gradients on the faces of the dual grid elements of the
quantities we are interested in may be calculated using the gradients of the set of the linear
finite element shape functions defined on the primary grid. Since the finite volumes for
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which the conservation equations are solved can be uniquely identified by the vertex of the
primary grid, we call these discretizations vertex-centered finite volume methods [39].

In this context, we note that more elaborate gradient approximation schemes have been
proposed [1]. These have not been implemented for this work, though.

4.2 Time Discretization

Using the methods presented in the previous section, we can transform partial differential
equations of the form

∂b

∂t
+ div(bv) = q

into a large coupled system of ordinary differential equations of the form

∂B

∂t
= Q . (4.1)

We now need to transform it into a system of algebraic equations. This can be achieved
by taking advantage of TAYLOR’s theorem: Any smooth function f which depends on the
variable t can be expressed by

f(t) =
∞∑
i=0

1

i!

∂if(te)

∂ti
(t− te)i ,

where te is called the expansion point. This theorem also applies to vectorial functions like
Equation 4.1:

B(t) =
∞∑
i=0

1

i!

∂iB(te)

∂ti
(t− te)i . (4.2)

Truncating the right-hand side of Equation 4.2 after the second term we get

B(t) = B(te) +
∂B(te)

∂t
(t− te) +O((t− te)2) .

Reordering and neglecting the O((t− te)2) error term—which is acceptable for small values
of t− te—we get

∂B(te)

∂t
≈ B(t)−B(te)

t− te
.

For time discretization we now have two options: To advance one step from t[k] to t[k+1] :=

t[k] + ∆t[k], we can either discretize explicitly, i.e., exclusively using quantities for the already
calculated time t[k]; or we can discretize implicitly, i.e., also using quantities defined for
time t[k+1]. For the explicit approach we set the expansion point to te = t[k], and evaluate
at t = t[k+1]; for the implicit approach, we use te = t[k+1] as expansion point and evaluate
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at t = t[k]. This yields

B(t[k+1]) = B(t[k]) +
∂B(t[k])

∂t
∆t[k] (4.1)

= B(t[k]) + ∆t[k]Q(t[k])

as the rule of evolution for the explicit scheme, while we get

B(t[k+1]) = B(t[k]) +
∂B(t[k+1])

∂t
∆t[k] (4.1)

= B(t[k]) + ∆t[k]Q(t[k+1]) (4.3)

as the evolution law in the implicit case. Both methods are due to LEONHARD EULER, and
both have advantages and disadvantages when compared to each other [16]; since the implicit
time discretizations exhibit better stability, and, given the fact that in both cases we to have
solve the algebraic systems iteratively because of their highly non-linear character, we will
use the implicit EULER method (4.3) as time discretization throughout the remainder of this
thesis.

It needs to be noted that there are more advanced time discretization methods which exhibit
better convergence behavior like the backward differential formula approach [6] and RUNGE-
KUTTA methods [16]. In this context, “better” convergence behavior means that the error
term of the method is in O((t − te)

3). Most of these methods are based on the TAYLOR

expansion (4.2) but truncate the series differently than the EULER methods.

4.3 Method of NEWTON and RAPHSON

Instead of solving a system of coupled non-linear partial differential equations, we now have
to solve a sequence of much larger systems of non-linear algebraic equations. In this work
we use the NEWTON-RAPHSON method to accomplish this.

Let us first look at the simplest case: Solving the equation

f(x) = 0

featuring a smooth non-linear function f : R→ R. The idea is to start at an arbitrary initial
value x[0]. Then we linearize the non-linear curve at this position. This means that we need
to find the tangent for f(x[0]), and calculate the root of this tangent. We then use the value of
this root as start value x[1] of the next iteration. The motivation for this is that x[1] is usually
closer to the root of the non-linear function f than x[0]. As illustrated in Figure 4.6a, we often
can get as close to the root of f as desired by repeating the described procedure.

Now, let us find the root of g[i], the tangent of f at x[i], defined as

g[i](x) = m[i] x+ c[i], with x,m[i], c[i] ∈ R . (4.4)

The slope of the tangent is determined by the derivative of f at the location of the NEWTON-
RAPHSON iteration, i.e.,

m[i] =
∂ f(x[i])

∂x
.
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(b)

Figure 4.6: Repeated linearization, the idea of the NEWTON-RAPHSON method: (a) An
example where the approach converges. (b) An example where the method
oscillates between two values.

Also, f(x[i]) = g(x[i]) holds so that after resolving to c[i] we get

c[i] = f(x[i])−m[i] x[i] .

Inserting m[i] and c[i] back into Equation 4.4, requiring that g[i](x[i+1]) = 0, and resolving for
the next iterative value x[i+1] yields

x[i+1] = x[i] − f(x[i])

(
∂f(x[i])

∂x

)−1

. (4.5)

We should be aware that the NEWTON-RAPHSON method only exhibits local convergence
behavior: This means that the initial value x[0] must be sufficiently close to the root of f . It has
been shown though, that in this case, the local convergence rate of the method is quadratic
if f is sufficiently smooth [63].

By using the inverse JACOBIAN matrix instead of the reciprocal derivative, we can generalize
the idea of Equation 4.5 to vectorial functions F(x) : Rn → Rn that are sufficiently smooth
in all variables [63]. The iteration rule of the NEWTON-RAPHSON method which we will use
is thus

x[i+1] = x[i] −
(
grad F(x[i])

)−1
F(x[i]) , (4.6)

where x[i] is the vector of all variables of the algebraic system of equations which we need to
solve after the i-th iteration of the NEWTON-RAPHSON method.

4.3.1 Calculation of the JACOBIAN Matrix

To apply the vectorial form of the NEWTON-RAPHSON method (4.6), the JACOBIAN matrix of
the function F(x) for which the root is to be found is required. We can either try to calculate
this analytically—as done by, for example GRIEWANK [36] and ZHOU et al. [92]—, or we
can compute it approximately by using the TAYLOR theorem (4.2): An approximation of the



Method of NEWTON and RAPHSON 57

partial derivative ∂F(x)/∂xj can be determined by truncating Equation 4.2 after the second
term, and resolving for the derivative. Using this approach, we get

F(x[xj←xje ]) = F(x) +
∂F(x)

∂xj
(xje − xj) +O((xj − xje)2) .

Depending on whether we set the evaluation point xje for the j-th row of F to xj + ε or xj − ε
(for some arbitrary but fixed small ε ∈ R+), we get the forward difference scheme

∂F(x)

∂xj
=

F(x[xj←xj+ε])− F(x)

ε
+O(ε2)

or the backward difference scheme

∂F(x)

∂xj
=

F(x)− F(x[xj←xj−ε])

ε
+O(ε2) .

A slightly more accurate method is to truncate the TAYLOR series only after the second term,
expand it once at xj + ε and once at xj − ε, and subtract the equations from each other. This
results in the central difference scheme

∂F(x)

∂xj
=

F(x[xj←xj+ε])− F(x[xj←xj−ε])

ε
+O(ε3) ,

which exhibits an error term in O(ε3) because the second order terms of the TAYLOR series
cancel each other. Thus, the central difference scheme has a higher accuracy compared to
forward or backward differences. Having noted this, the central difference scheme requires
a significantly higher computational effort compared to the one-sided variants, since for
this scheme F must be evaluated twice per derivative instead once for per derivative plus
one time for the whole JACOBIAN. For the numerical examples shown in Chapter 6, we
will thus always use forward differences. Another reason for this is using for one-sided
finite difference schemes, we can choose the value of ε small enough to achieve a sufficient
accuracy.

4.3.2 Discretized Partial Differential Equations

For systems of equations that stem from partial differential equations that where spatially
discretized using a grid based method, we can assemble the JACOBIAN matrix efficiently:
For this, we take advantage of the observation that each row of F only interacts with a small
number of other rows. This is due to the fact that, for such grid based spatial discretizations,
the direct influence of the value of a quantity at a position is limited to the element which
contains this position and the neighbors of that element. This leads to a sparse JACOBIAN

matrix of F where most entries are zero, i.e., the number of non-zero entries of grad F is
in O(n) with n being the number of rows in F. We can exploit this property by calculating
the residual and its gradient for each element locally followed by summing them up to get a
sparse JACOBIAN matrix for F.



58 Numerics

4.4 Linear Solvers

At this point, we need to solve the sequence of systems of linear equations produced by
the NEWTON-RAPHSON method. To simplify the notation of this section, we discuss linear
systems of equations in the form

Ax = b , (4.7)

whereA ∈ Rn×n, b,x ∈ Rn and n ∈N . To adapt the iteration rule of the NEWTON-RAPHSON

scheme (4.6) to the notation used by the current section, we need to set x to x[i] − x[i+1], b to
F(x[i]) andA to grad F(x[i]).

Many ways to solve such systems of equations have been proposed [70], but we can classify
all of these into two categories: Direct and iterative linear solvers. In the following, we will
outline the basic ideas of both of these classes.

4.4.1 Direct Solution

The canonical method to solve Equation 4.7 is to use GAUSS elimination. It is the “canonical”
approach because it is guaranteed to work for all non-degenerate matricesA and all right-
hand sides b, i.e., we do not need to assume any properties other thanA being non-degenerate.
The basic approach of GAUSS elimination is to decomposeA into

A = LU (4.8)

where U is an upper diagonal matrix and L is a lower diagonal matrix.

This decomposition, which we call LU-decomposition, can be achieved using equivalence
transformations. The idea of these is that multiplying a line in L by a non-zero scalar value γ ∈
R can be reversed by multiplying the same column in U with 1/γ. Similarly substituting a
row by its sum with another row scaled by any factor does not change the solution of a linear
system of equations. This way, by starting with L0 = A and U0 = I we can eliminate all
entries on the upper right ofA as well as normalize its main diagonal.

Once we have calculated the LU-decomposition ofA, we get the inverse using

A−1 = (LU)−1 = U−1L−1 . (4.9)

Here, the factors L−1 and U−1 can be efficiently calculated using forward elimination for
triangular matrices.

Cost Analysis

Although direct methods to solve Equation 4.7 are versatile, in practice they are rarely used in
unaltered form because of their high computational cost: To solve a linear system of equations
with n rows, we require O(n3) scalar operations and O(n2) scalars need to be stored [70] if
we implement this method naively. Even worse, in the general case these estimates hold even
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for sparse matrices [70]. For such matrices we have two options to tackle this problem: We
may either try to re-order the linear system so that this problem gets reduced and the system
can be solved much faster [70, 53, 71], or we can use an iterative solver as described in the
next section.

4.4.2 Iterative Solvers

In contrast to directly solving Equation 4.7, iterative solvers require additional properties of
the linear system of equations to be solved [70]. This means that, using iterative linear solvers,
we cannot guarantee to solve any non-degenerate linear system of equations. However, in
practice this constraint is not very relevant since the iterative solvers usually converge for the
linear systems of equations stemming from discretized partial differential equations.

The fundamental property upon which all iterative solvers rely, is that the matrix-vector
product

y = Ax

can be computed using O(n) scalar operations, provided thatA is sparse. In the following
subsections we will illustrate how some widely used iterative linear solvers work.

4.4.2.1 Steepest Descent

The first solver which we investigate here, is the steepest descent solver. For it, we take
advantage of the fact that for symmetric and positive definite matricesA, the minimum of
the function

f(x) =
1

2
xTAx− xTb+ c (4.10)

corresponds to the solution of Equation 4.7. To see this, we set the JACOBIAN matrix of f to
zero, and get

0
!

= grad f (4.11)

=
1

2

(
xT grad(Ax) + grad

(
xT
)
Ax
)
− b

=
1

2

(
xTA+Ax

)
− b .

Since we assumed thatA is symmetric, i.e., that

xTA = ATx = Ax

holds, we find that Equation 4.7 is satisfied, if and only if, Equation 4.11 holds. Further, the
solution must be a minimum of Equation 4.10, because the gradient of Equation 4.11 is

grad(grad f) = grad(Ax− b) = A
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which is positive definite by assumption.

We can exploit these properties by starting at an arbitrary value x[0], and repeatedly calculate
the minimum along the line in the direction of the strongest decrease of f , i.e., the solver uses

x[k+1] = x[k] + α[k]grad f(x[k]) (4.12)

to find the next iterative value. To use this equation, now we need to minimize Equation 4.12
with respect to α[k]. This yields

0
!

=
df(x[k+1])

dα[k]

= grad
(

f(x[k+1])
) dx[k+1]

dα[k]

= −r[k+1] · r[k]

=
(
b−Ax[k+1]

)
· r[k]

= b · r[k] −A
(
x[k] + α[k]grad f(x[k])

)
· r[k]

= b · r[k] −A
(
x[k] + α[k]r[k]

)
· r[k] ,

where r[k] is called the linear residual, and is an abbreviation for grad f(x[k]) = Ax[k] − b.
Resolving for α[k], we get

α[k] =

(
Ax[k] − b

)
· r[k](

Ar[k]
)
· r[k]

=
r[k] · r[k]

r[k] ·
(
Ar[k]

) . (4.13)

Using Equation 4.12 in conjunction with Equation 4.13 as iteration rule, we are able to
approximate the solution of the linear system of Equations 4.7 arbitrarily closely, as illustrated
in Figure 4.7 for the case of two unknowns. Figure 4.7 also illustrates a major shortcoming
of the steepest descent method; namely that convergence tends to be slow. This is because,
although each two consecutive optimization directions grad f(x[k]) and grad f(x[k+1]) are
orthogonal, the method optimizes into “almost” the same direction at steps k and k + 2.

4.4.2.2 Conjugate Gradients

If we can make sure that x[k] stays minimal for directions that we optimized for in previous
steps, this issue does not occur. Also, if the optimization directions are not linearly dependent
on each other, we will reach the exact solution after at most n iterations. For symmetric,
positive definite matrices A, we can achieve these properties by making the optimization
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Figure 4.7: Illustration of the steepest descent algorithm: For any point x[k], the minimum
of the function f along the negative direction of the gradient −grad f(x[k]) is the
value of the next iterative solution x[k+1].

direction pairwiseA-orthogonal, i.e., requiring that

d[i]Ad[j] = 0

holds for any two distinct optimization directions d[i] and d[j]. It turns out [70] that we can
use

d[k+1] = r[k+1] +
r[k+1] · r[k+1]

r[k] · r[k]

to calculate the next optimization direction d[k+1] at the end of iteration k, with

d[0] = r[0]

as the initial optimization direction, and

x[k+1] = x[k] + α[k]d[k], with α[k] =
d[k] · r[k]

d[k] ·Ad[k]
(4.14)

as the iteration rule. Since A-orthogonal vectors are said to be conjugate, the linear solver
emerging from using Equation 4.14 as iteration rule is called the conjugate gradient method.

4.4.2.3 Bi-Conjugate Gradients

The conjugate gradient method covered in the previous section only works well for symmetric,
positive definite matrices. As an extension to unsymmetric matrices, the bi-conjugate gradient
method has been proposed by VAN DER VORST [86]. The basic idea of this method is to find
the solution for a dual system

ATx? − b = 0
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in addition to the linear system Ax = b for which we actually seek the solution. The bi-
conjugate gradient method works by executing the conjugate gradient algorithm on each
of those two systems separately, and ensuring that the search directions d[k] and d?[k] of
each iteration are A-orthogonal to each other. Note that this method is equivalent to the
conjugate gradient method for symmetric, positive definite matrices, albeit it requires twice
the computational cost in this case.

Since the bi-conjugate method cannot guarantee convergence for all matricesA, and is quite
unstable [70], several stabilized variants have been proposed [70]. The one which we will use
for the numerical examples presented in Chapter 6 is BiCGSTAB [70].

4.4.2.4 GMRES

The last iterative linear solver which we will cover in this work is the Gerneralized Minimal
Residual (GMRES) method. This solver uses the initial optimization direction r[0] and the
optimization direction d[k] of iteration k is found by explicitly orthogonalizing r[k] with
respect to all previous optimization directions. The advantage of the GMRES method is
that it can be proved that—like bi-conjugate gradient based methods—it converges to the
solution of the linear system of equations after at most n iterations [70]. This comes at the
disadvantage that the memory requirement is in O(n2), and the number of scalar operations
is in O(n3) which is not better than if we would use a direct solution method based on GAUSS

elimination.

To avoid this issue, the GMRES method is usually restarted after a fixed number of iterations j.
This has the effect that the memory consumption is in O(n · j), but has the disadvantage that
convergence cannot be guaranteed anymore. In most cases, restarted GMRES is still more
stable than a bi-conjugate gradient solver [70].

4.4.3 Preconditioners

Using preconditioners, we may get faster convergence of the iterative linear solvers. The idea
of preconditioners is to make the linear system of equations better suited for the linear solver
by applying a computationally cheap preprocessing step in every iteration. Conceptually, we
can use preconditioners with any iterative linear solver using the relation

x[k+1] = P (y[k])

where x[k+1] is the start vector of iteration k + 1 of the linear solver, y[k] is the result of itera-
tion k of the linear solver, and P is a computationally cheap function that is approximately
the inverse ofA in some sense, i.e.,

grad P ≈ A−1 .
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The JACOBI Preconditioner

A simple preconditioner, which outlines the basic idea of preconditioners quite well, is due
to CARL GUSTAV JACOB JACOBI. If we assume that all entries of the main-diagonal ofA are
non-zero, we may use the inverse of the main diagonal ofA, i.e., we get the preconditioner

P (y[k]) = (diag A)−1 y[k] .

Because of its simplicity, the JACOBI preconditioner does not require significant computational
costs. Having said that, it also does not improve convergence much [70].

Other Preconditioners

We note that preconditioners are typically much more elaborate and exhibit much higher
computational costs than the JACOBI preconditioner. For example, if we use the LU decom-
position presented in Section 4.4.1, but execute it only on the non-zero matrix entries, we
get the incomplete LU (ILU) preconditioner [70]. Another approach is to create a hierarchy
of matrices by successively merging rows and columns of the matrixA. This idea leads to
algebraic multi-grid preconditioners [82].

4.5 Parallelization

Now we are in a position to compute approximate solutions for a system of partial differential
equations. We will thus proceed briefly at how this process can be sped up by doing the
required computations in parallel. We will first discuss one of the fundamental techniques
to perform parallel computations, domain decomposition. Then, we will then present how
we can use this idea to parallelize the linearization process, and in Section 4.5.3 we will
finally look at how iterative linear solvers can be implemented on loosely coupled parallel
computers.

4.5.1 Domain Decomposition Methods

Computations involving very large grids are usually performed on parallel computers that
feature a large number of processors which are only connected by a network. The mathe-
matical basis which allows to use such machines are domain decomposition methods [75].
The general idea of these methods is to partition the grid for the whole spatial domain into a
number of smaller connected subgrids of approximately equal size followed by assigning
each subgrid to a processor. This processor then deals with discretizing and linearizing the
system of partial differential equations on the subgrid using the methods which we discussed
in Section 4.2. After each such step, we get a distributed linear system of equations which we
need to solve in a parallel manner.
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(a) Domain Decomposition

(b) Overlap of First Process

Figure 4.8: (a) Decomposition of the grid of a computational domain into four connected,
approximately equally large subgrids. Each of the four subgrids can be treated
almost independently which allows using loosely coupled parallel computations.
(b) A domain overlap of three elements of the first process.

One major difficulty of this approach is the partitioning of the grid: In order to obtain good—
i.e., compact and approximately equally large—subgrids, we generally have to use complex
graph processing algorithms that solve NP-complete problems [43, 66]. Since this partitioning
process is not a focus of this work, we refer the interested reader to KARYPIS and KUMAR [43],
PELLEGRINI and ROMAN [66], and to BURRI et al. [15]. An illustration of the idea of domain
decomposition is given in Figure 4.8a where a two-dimensional grid is partitioned into four
subgrids.

4.5.2 Distributed Linearization

To linearize the overall system of equations, we first linearize the individual subgrids inde-
pendently. If there are so-called ghost elements, i.e., elements at the subgrid boundary which
are visible a processor but which are located within a neighboring subgrid, nothing else
needs to be done. If no ghost elements are present, each processor must sum up the values of
the matrix rows and the rows of the residual vector which represent entities adjacent to the
boundary of the subgrid of the processor.
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In both cases, we get a distributed version of the linearized system of equations

Ax = b , where (4.15)

A =

 A1 0 0

0
. . . 0

0 0 Ak

 ,

x = (x1, . . . ,xk)
T and

b = (b1, . . . , bk)
T

are distributed on k processors, i.e., processor i can only accessAi and the vectors xi and bi
without communication.

4.5.3 Parallel Iterative Linear Solvers

Now we have to efficiently solve the distributed linear system of equations (4.15) in parallel.
For direct solvers this problem is much more complicated than for iterative ones [53, 71], so
we will concentrate on the latter. For these solvers, the only operations which we need to
provide for the global linear system of equations are matrix-vector products, scalar products,
norms, and preconditioners.

Matrix-Vector Products

Parallel matrix-vector products can be implemented by local matrix-vector products, pro-
vided that the domains overlap by at least one finite volume. After executing the local
operation, rows which correspond to finite volumes that are at the front of the overlap need
to be synchronized by retrieving their values from the process which is associated with the
subgrid of the finite volume.

Scalar Products

We can compute all common scalar products in parallel by local scalar products followed by
a summation of the results of all processors. For example, we can express the EUCLIDEAN

scalar product in CARTESIAN coordinates in terms of the local operation

pi · qi =

ni∑
j=1

pijq
i
j ,

followed by computing the sum of the results of all processes, i.e.,

p · q =

k∑
i=1

pi · qi .
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Only the last step requires communication between the processes.

Norms

The norms of distributed vectors which we need for iterative linear solvers can be computed
using the corresponding scalar products. For example, the two-norm of a distributed vector p
is given by

‖p‖ =
√
p · p .

Preconditioners

Preconditioners are the most challenging operations in the context of distributed iterative
solvers. This is due to the fact, that the result of the preconditioner may depend on the
ordering of the rows and columns ofA. For ordering independent preconditioners such as
the JACOBI method, it is sufficient to apply them locally for each subgrid. Unfortunately, we
cannot use these preconditioners in practice, as the convergence rates of the iterative linear
solvers is much slower compared to more advanced preconditioners [70]. For preconditioners
that dependent on the ordering of the rows, we can provide a parallel version by applying
the sequential preconditioner locally, followed by a synchronization of the result on the
overlapping rows—if the overlap regions are large enough. The synchronization is done by
retrieving the values of the overlapping rows from the processes that are assigned to the
subgrids of the finite volumes associated with the rows.

4.6 Chapter Synopsis

In this chapter, we discussed numerical methods for finding approximate solutions of systems
of partial differential equations. The conceptual approach which we use is to first transform
a relatively small system of partial differential equations

∂b(x, t)

∂t
+ div(b(x, t) · v) = q(x, t)

into a much larger system of coupled ordinary differential equations

∂B(t)

∂t
= Q(t)

using a space discretization method.

The space discretization methods which we discussed partitioned the spatial domain Ω into a
set of smaller subdomains {ω1, . . . , ωn}, and represented any quantity b as piecewise constant
functions on the subdomains. The value of an individual subdomain b(ωi) we interpreted as
the average of the quantity within ωi.



Chapter Synopsis 67

After the spatial discretization, we transformed the obtained system of ordinary differential
equations into a set of coupled non-linear algebraic equations. For this we truncated the
TAYLOR series and obtained

B(t[k+1]) = B(t[k]) + (tk+1 − t[k])Q(t[k+1])

as the time stepping rule. At this point, we had to repeatedly solve coupled non-linear
systems of algebraic equations. To achieve this, we applied the NEWTON-RAPHSON method
which exhibits the iteration rule

x[i+1] = x[i] −
(
grad F(x[i])

)−1
F(x[i]) ,

i.e., for each time step, we now needed to repeatedly linearize the non-linear algebraic system
of equations, and solve the corresponding linear systems of equations until the error was
smaller than the allowed tolerance.

The final piece of the numerical puzzle were ways to solve such linear systems of equations.
For this, we discussed several direct and iterative approaches as well as preconditioners for
the iterative linear solvers.

To conclude this chapter, we briefly discussed how the steps of discretizing the partial
differential equations, linearization of the resulting algebraic systems and solving the linear
systems of equations can be efficiently implemented on loosely coupled parallel computers.





5 Implementation Aspects

For this thesis, the methods which we discussed in the previous chapters have been imple-
mented using the numerical C++ framework eWoms [30]. In this chapter, we will look at
some of the technical aspects of this implementation.

5.1 DUNE

The eWoms framework is based on the Distributed and Unified Numerics Environment
(DUNE) [28]. As illustrated in Figure 5.1, DUNE provides a set of basic C++ classes which
simplify the development of numerical schemes, but DUNE itself does not implement any of
those. Instead, such methods have to be implemented by additional modules like eWoms.
Currently, DUNE comprises the following core modules:

dune-common implements very basic abstractions like, for example, dense vector and
matrix classes, helper routines for parsing configuration files, exception handling, and
low-level macros for compiler abstraction.

dune-geometry provides a set of reference elements and the associated transformations
to convert these into the actual geometries required by the grid. Currently, the dune-
geometry module supports line segments for one spatial dimension, triangles, and
rectangles for two spatial dimensions, and tetrahedra, cubes, prisms, and pyramids
for three dimensional grids. In addition, simplices and cubes are provided for higher
spatial dimensions.

dune-grid defines an abstract interface for partitioning the spatial domain into a grid as
described in Section 4.1. The DUNE grid interface also supports parallel computations
based on the domain decomposition concept which we discussed in Section 4.5. Besides
defining a parallel programming interface for grids, this module also provides a few
sample implementations for CARTESIAN grids, and wrappers for external unstructured
grid management libraries, such as ALUGrid [4], ALBERTA [3], and UG [85].

dune-localfunctions supplies finite-element shape functions based on the infrastructure
of the grid and the geometry modules. The only shape functions used by eWoms are
those of linear finite elements. The reason for this is that these functions are used to
calculate the gradients of quantities on the dual-grid of vertex-centered finite volume
methods which we discussed in Section 4.1.

dune-istl stands for Iterative Solvers Template Library, and implements a superset of the
iterative linear solvers and preconditioners which we described in Section 4.4.



70 Implementation Aspects

Figure 5.1: The software architecture of the DUNE C++ framework [28]. The core of eWoms
represents an external module which implements discretization schemes and the
numerical problems which will be presented in Chapter 6 fall into the applications
category.

All DUNE modules use the C++ template mechanism extensively. The reason for this is to
keep the run-time overhead of the abstractions low, but it comes at the price of increased
compilation time, and a relatively steep learning curve.

5.2 eWoms

Based on these DUNE modules, the eWoms framework implements discretization schemes
and physical models which we will cover in greater detail in the following. But before we
can discuss these models, a rough overview of the general software architecture of eWoms is
required.

5.2.1 General Structure

Conceptually, eWoms currently consists of the following parts:

The Time Loop deals with adapting time step sizes, simplifies implementing time-
dependent problems, and runs the simulation from the initial time to the specified end
time. To actually advance the time level from t[k] to t[k+1], it calls the non-linear solver.

The NEWTON-RAPHSON Solver implements the non-linear solver for algebraic systems of
equations as discussed in Section 4.3. This part of the code calls the discretization
scheme to linearize the system of equations, and subsequently calls a linear solver to
find the solution of the linearized system of equations.

Discretization Schemes: Implement the fully implicit vertex-centered finite volume space
discretization discussed in Section 4.1, and the implicit EULER time discretization of
Section 4.2. It is also the part of eWoms which uses the DUNE grid interface most
extensively.
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Flow Models: This part of eWoms is called by the discretization schemes, and specifies
the conservation equations, i.e., it determines the function F of Equation 4.6. The
flow model also specifies the interpretation of its primary variables, and it provides
some auxiliary methods like scaling parameters of the primary variables and of the
conservation equations.

Problems: In eWoms, the purpose of problems is to describe the setup of a physical system.
This includes the grid used by the simulation, boundary and initial conditions, as well
as spatially dependent parameters like the intrinsic permeability of the porous medium
or the value of the gravitational acceleration. The parameters of the problem are mostly
queried by the flow model.

Material Framework: The purpose of the eWoms material framework is to provide material
specific relations. Such relations include the thermodynamic relations of multi-phase
multi-component systems of fluids, capillary pressure and relative permeability rela-
tionships.

Parallelization: This part of eWoms implements distributed overlapping linear systems of
equations with the required operations and synchronization algorithms for precondi-
tioners of the iterative linear solvers. These linear systems of equations are then solved
using one of the iterative linear solvers of dune-istl.

Auxiliary Infrastructure: eWoms also provides auxiliary code. Amongst other things, this
code is used to specify simulation-wide parameters, comprises routines simplifying the
startup procedure, and classes providing checkpointing functionality as well as classes
for writing the solutions into file formats suitable for visualization.

5.2.2 Flow Models

Now that we have covered the general software design of eWoms, we will have a closer look
at the implementation aspects of the eWoms flow models in the following paragraphs. First,
we will discuss how the flow models work in general, then we will consider the specific
aspects of the individual flow models.

General Mode of Operation

The central part of all flow models is the code which defines of the local residual function,
i.e., a class to compute the residual for a single element of the grid. After linearizing these
local residuals for each element, the local linearized system of equations is transferred to
the linear system of equations for the full subgrid of the respective process. This process
involves mapping the element-local indices of each finite volume to its respective index in
the subgrid, and summing them into a large vector. In eWoms, the local linearization and the
transfer from the element-local to the global system of equations is implemented generically
by infrastructural code, so the only part which needs to be provided by a flow model is the
element-local residual.
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The flow models presented in this thesis use a multi-stage approach to define the local
residual of an element: First, the primary variables—which are defined as the quantities
which are contained in the solution vector x[i] of the NEWTON-RAPHSON method (4.6)—are
transformed into so-called volume variables. In eWoms, volume variables are quantities that
are independent of the state of the spatial neighborhood of a given point in the spatial domain
like, for example, temperature, pressures, and saturations.

The volume variables are then used to calculate flux variables. The flux variables represent all
quantities which depend on the spatial neighborhood of a finite volume. They are mainly
required to calculate the divergence term of Equation 2.6. Quantities represented by the flux
variables are, for example, the gradients of pressure and temperature.

Based on the flux and the volume variables, the local residual of a flow model then specifies
the volumetric rate of each conservation quantity that is incorrectly added to or removed from
the system for a given solution. For mass, eWoms uses either Equation 2.42 or Equation 2.47,
and if energy is conserved, the local residual of the flow model also includes Equation 2.46.

The Immiscible Model

As covered in Section 3.5.1, the immiscible model assumes that the components do not mix,
and that, as a consequence, each fluid phase comprises exactly one component. This model
uses Equation 2.42 as the equation for the conservation of mass in conjunction with the
multi-phase version of DARCY’s law (2.37), i.e., the residual function Fα for the conservation
of the mass of a component reads

∂φραSα
∂t

− div

(
ρα
kr,α

µα
K (grad pα − gρα)

)
− qα = Fα

!
= 0 ,

where α is the fluid phase corresponding to the component.

The primary variables for this model are the pressure of the fluid phase with the lowest index
and the M − 1 saturations of the fluid phases associated with the lowest indices.

The PVS Model

The PVS model for M -phase, N -component flow in porous media which uses the primary
variable switching conditions (3.31) as model assumptions is based on Equation 2.47, the mo-
lar formulation of the component-wise mass conservation equation. The residual function Fκ

for the conservation of the mass of component κ is thus given by

∑
α

∂φxκαρmol,αSα
∂t

−
∑
α

div

(
xκαρmol,α

kr,α

µα
K (grad pα−gρα) +Dκ

pm.α grad x
κ
α

)
−qκ=Fκ

!
=0 .

Compared to the immiscible model, the interpretation of the N primary variables is much
more complicated:
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• The first primary variable always represents the pressure of the phase with the lowest
index.

• The nextM−1 primary variables represent the saturations of the phases if the respective
phase is present, or else the mole fraction of the component with the same index as the
primary variable in the corresponding to with the phase lowest index that in the set of
present phases.

• The final N −M primary variables represent the mole fractions of the N −M last
components in the phase associated with the lowest index that is assumed to be present.

In this model, in addition to the N “real” primary variables, M boolean pseudo primary
variables {p̂1, . . . , p̂M} are required to specify the set of fluid phases which are present at a
given spatial location. They are determined at the end of each NEWTON-RAPHSON iteration
according to the following rules:

• If fluid phase α was assumed not to be present at the beginning of the current NEWTON-
RAPHSON iteration and if the sum of the mole fractions of the phase is larger than or
equal to 1 after updating the solution, for the next iteration we assume that phase α is
present.

• If fluid phase α was assumed to be present for the current NEWTON-RAPHSON iteration
and the saturation of phase α is smaller than 0, we assume that phase α is not present
in the next iteration.

After updating the pseudo primary variables, we need to adapt all “real” primary variables
to make the model consistent.

The NCP Model

Like the primary variable switching model, the model which directly embeds non-linear
complementarity functions, uses Equation 2.47 as mass conservation equation. This means
that it also uses the component-wise molar formulation of the conservation of mass in
conjunction with DARCY’s law. In other words, the residual function Fκ which describes the
conservation of component κ is also given by

∑
α

∂φxκαρmol,αSα
∂t

−
∑
α

div

(
xκαρmol,α

kr,α

µα
K (grad pα−gρα) +Dκ

pm.α grad x
κ
α

)
−qκ=Fκ

!
=0 .

In addition to the mass conservation equations, the model explicitly includes theM non-linear
complementarity functions of Equation 3.33.

Compared to the primary variable switching model, the set of primary variables for this
model is quite simple:

• The first primary variable is the pressure of the phase associated with the lowest index.

• The next M − 1 primary variables are the saturations of the M − 1 phases with the
lowest indices.
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Model SLOC Core SLOC
Immiscible 720 297
Black-Oil 1013 434
NCP 1046 551
PVS 1260 720

Table 5.1: Comparison of the number of source lines of C++ code (SLOC) implementing
the discussed model approaches in eWoms as determined by the SLOCCount
tool [74]. The first number represents the total number of source code lines of
the implementation of each model in eWoms, while the “Core SLOC” column
excludes auxiliary code like the one for writing the solutions to the hard disk,
making checkpoints et cetera.

• The final N primary variables represent the fugacities fκ of all components.

The Black-Oil Model

In addition to the generic models discussed in the previous model, the eWoms back-oil model
implements the specialized approach covered in Section 3.5.4. From the software engineering
point of view, it is very similar to the model which assumes immiscibility. This is due to the
fact that two of the three fluid phases are assumed to be immiscible. This allows the eWoms
implementation of the black-oil model to use the same primary variables as the immiscible
model, i.e., the pressure and the saturation of the gas phase, in addition to the saturation of
the water phase.

Compared to the immiscible model, the main differences of the black-oil model are that the
quantities required for the mass conservation equations are calculated by directly using the
black-oil parameters, and that undersaturated oil phase needs special attention if we use
the aforementioned primary variables: Such oil is described by negative saturations of the
gas phase, where the amount of “negative” gas is subtracted from the amount of the gas
component which is dissolved in the oil phase. In this respect, the eWoms implementation of
the black-oil model is similar to the negative saturations approach proposed by, for example,
ABADPOUR and PANFILOV [2], with the differences that the composition of the gas and water
phases are known a priori, and that the black-oil model considers three instead of two fluid
phases.

5.2.3 Implementational Complexity

When estimating the effort required to implement the discussed models in software, we
can use the number of lines of code required for each as a very rough indication. We have
to be aware though, that the complexity of the implementation is not linear to the number
of lines of code. This is due to the facts that tightly written source code packs much more
functionality into the same number of lines than loosely written source code and that highly
convoluted algorithms are much more difficult to implement than straightforward ones. In
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the case of the numerical models featured by eWoms, the density of the source code can be
assumed to be similar for all models, but the inherent complexity of the primary-variable
switching model is higher than that of the other models.

These numbers of lines of source code needed to implement the individual models in eWoms
are compared in Table 5.1. As this table indicates, the model which assumes immiscibility
is by far the simplest, followed by the black-oil model. Also clearly represented is the fact
that the effort required to implement the model based on primary variable switching is much
higher than for the model which directly incorporates non-linear complementarity functions.

From the point of view of the implementation, the main simplifying factor of the NCP
model compared to the PVS model is the fact that the semantics of all primary variables are
independent of the state of the solution, i.e., no pseudo primary variables are required.





6 Numerical Applications

After briefly sketching the software implementation in the previous chapter, we will now com-
pare the physical accuracy and the computational performance of the presented numerical
models for fluid flow in porous media.

We roughly proceed in order of complexity of the examples: First, we compare the phys-
ical and numerical performance of the primary-variable switching (PVS) approach with
the one based on non-linear complementarity problems (NCP) using a one-dimensional
non-isothermal setup for which a semi-analytical solution is known. Then we discuss the
results and the computational performance of the immiscible, PVS, and NCP models for an
isothermal, radially symmetric CO2 injection problem. In this section, we will also briefly
examine the scalability of the domain decomposition parallelization approaches, and we
analyze the viability of using two-dimensional simulations for radially symmetric problems.

We then proceed with the ninth [45] and the fifth [46] benchmark problems specified by the
society of petroleum engineers. The ninth benchmark problem is used to estimate merrits
and drawbacks of the black-oil model versus fully compositional models and demonstrates
the computational instability of the PVS model. In contrast, the primary intention of the fifth
SPE benchmark problem is to show the viability of the generic compositional multi-phase
models for the complex cubic equations of state which we discussed in Sections 3.3.1 and 3.3.2.
We conclude the chapter with a brief discussion of geological-scale simulations for the CO2
injection research project in Ketzin/Havel, Germany.

6.1 The Heat-Pipe Problem

In this section, we will discuss the heat-pipe setup as proposed by UDELL [84]. The problem
uses the spatial domain depicted in Figure 6.1: In the beginning, the domain is fully saturated
by liquid distilled water, and the domain is fully closed for mass flows except on the left
side, where it is open. Initially, and on the left boundary of the domain, the domain is
fully saturated by liquid exhibiting a pressure pl of one bar. For energy, the domain is fully
closed except on the left side, where it is assumed to be open, and on the right side, which is
heated at a constant rate. The initial temperature and the permanent temperature on the left
boundary is 70 ◦C.

In steady-state, this setup leads to a region that is only occupied by the liquid on the left where
the temperature is too low to evaporate the liquid water, and the heat is thus exclusively
transported by means of heat conduction. On the right side of the domain, the temperature is
high enough to create a zone where only steam is present so that in this region energy can
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qenergy

pl = 1 bar

T = 70 ◦C

s

Figure 6.1: The spatial domain of the heat-pipe problem: The experiment consists of a tube
of 2 m length filled by a fully water-saturated porous medium. On the left side,
the tube is open and exposed to atmospheric pressure; on the right, it is closed
but heated. Initially the temperature within the domain is T = 70 ◦C.

Figure 6.2: Uniform extrusion of a one-dimensional grid to three spatial dimensions.

also only be transported by means of heat conduction. The most interesting part of this setup
lies in between these two extremes: There, liquid water as well as steam is present. The liquid
is drawn from left to right by the capillary pressure where the liquid is evaporated. Then,
the material gets transported back to the left by a pressure gradient in the gas phase and it
condenses to liquid again.

6.1.1 Uniform Domain Extrusion

Since the mass and energy conservation equations (2.10, 2.23) are only valid for three spatial
dimensions, we first have to become aware of their interpretation in the case of one space-
dimension. The answer turns out to be quite simple: In order to apply Equations 2.10 and 2.46,
the spatial domain can be extruded uniformly to three dimensions as depicted in Figure 6.2
and the usual conservation equations thus apply.

6.1.2 Semi-Analytical Solution

Besides this small glitch in the interpretation of the results, the quasi one-dimensional nature
of this setup allows us to derive a semi-analytical solution. To obtain it, we first suppose the
system to be in steady-state. This means that there cannot be any net flux of mass along the
axis s of the tube, i.e.,

ρl
kr,l

µl
K
∂ pl
∂s

= −ρg
kr,g

µg
K
∂ pg
∂s

(6.1)
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holds.

Since the intrinsic permeability K is equal on both sides, it can be eliminated. If we also
include the definition of capillary pressure pg = pl + pc,gl, and if we use kinematic viscosi-
ties να = µα/ρα instead of dynamic ones, we can transform Equation 6.1 to

kr,l

νl

∂ pl
∂s

= −kr,g

νg

∂ (pl + pc,gl)

∂s
.

Reordering, we get

∂ pl
∂s

= −
kr,g
νg

∂ pc,gl
∂s

kr,l
νl

+
kr,g
νg

. (6.2)

We can now multiply the numerator as well as the denominator of Equation 6.2 with νg/kr,g,
and apply the chain rule. We get

∂pl
∂Sl

∂Sl
∂s

= −
∂ pc,gl
∂Sl

∂Sl
∂s

1 +
kr,g
kr,l

νl
νg

. (6.3)

Finally, multiplying both sides of Equation 6.3 with ∂s/∂Sl, we get

∂pl
∂Sl

= −
∂pc,gl
∂Sl

1 +
kr,g
kr,l

νl
νg

. (6.4)

For the next part of the semi-analytical solution we take advantage of the fact that the energy
flux is a given constant for the whole length of the tube. This means that

hlρlvl + hgρgvg + λpm
∂T

∂s
= qenergy (6.5)

holds, where λpm is the overall heat conductivity of the medium. In this context, we also
know that

ρlvl = −ρgvg

holds, since the net mass flux must be zero. This allows us to transform Equation 6.5 to

ρgvg (hg − hl) + λpm
∂T

∂s
= qenergy .

Further, using DARCY’s relation (2.39) for the velocity of the liquid phase, and using kinematic
instead of dynamic viscosities, we get

hvap
kr,g

νg
K
∂pg
∂s

+ λpm
∂T

∂s
= qenergy ,

where hvap = hg − hl is the specific enthalpy of vaporization of liquid water. Next, we use the
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chain rule and the definition of capillary pressure, so we get

hvap
kr,g

νg
K

(
pl
∂s

+
∂pc,gl

∂Sl

∂Sl
∂Sl

∂Sl
∂s

)
+ λpm

∂T

∂s
= qenergy .

Multiplying both sides with ∂s/∂Sl leads us to

hvap
kr,g

νg
K

(
∂pl
∂Sl

+
∂pc,gl

∂Sl

)
+ λpm

∂T

∂Sl
= qenergy

∂s

∂Sl
. (6.6)

In Equation 6.6 we now observe that, since we expressed pg in terms of pl and pc,gl, the
term ∂pl/∂Sl is identical to zero, so that we get

hvap
kr,g

νg
K
∂pc,gl

∂Sl
+ λpm

∂T

∂Sl
= qenergy

∂s

∂Sl
.

Now, we apply the chain rule to the temperature term. We get

hvap
kr,g

νg
K
∂pc,gl

∂Sl
+ λpm

∂T

∂pg

∂(pl + pc,gl)

∂Sl
= qenergy

∂s

∂Sl
.

After some reordering, we get

∂s

∂Sl
=
∂pc,gl

∂Sl

hvapK
kr,g
νg

+ λpm
∂T
∂pg

qenergy
.

Finally, we take advantage of
pg = pvap(T ) ,

i.e., the fact that the pressure of the gas phase is identical to the vapor pressure of water [88]
at a given temperature in the two-phase, one-component case. This leads us to the second
equation of the semi-analytical solution

∂s

∂Sl
=
∂pc,gl

∂Sl

hvapK
kr,g
νg

+ λpm

(
∂pvap
∂T

)−1

qenergy
. (6.7)

Together, Equations 6.4 and 6.7 form a coupled system of two ordinary differential equations
which can be solved using the methods presented in Section 4.2.

6.1.3 Results

For the results presented in this section, the capillary pressure relation proposed by LEV-
ERETT [51]

pc,gl = pc,gl,0 γ(1.263S3
g − 2.120S2

g + 1.417Sg),
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Figure 6.3: Comparison of the semi-analytical solution calculated using Equations 6.4 and 6.7
(dotted) with results obtained by the numerical models using primary variable
switching (PVS, dashed) and non-linear complementary functions (NCP, non-
dashed). The numerical models were run until t = 109 s with a uniform spatial
resolution along the tube axis of 50, 100 200, 400, 800, and 1600 elements.

was applied, where γ = 0.05878 N/m represents the surface tension, and pc,gl,0 =
√
φ/K is the

scaling pressure. Further, the porosity φ is 0.4, and the intrinsic permeability K is 10−12 m2.

The overall heat conductivity λpm is approximated by the SOMERTON [76] relation

λpm = λpm,dry +
√
Sl (λpm,wet − λpm,dry) ,

where λpm,dry is the heat conductivity of the porous medium fully saturated by steam
and λpm,wet is the heat conductivity of the porous medium when it is fully saturated by
liquid water. For these parameters, we assume

λpm,dry = 1.85 W/K m2 and

λpm,wet = 2.67 W/K m2 .

Finally, the energy influx at the right side of the domain is qenergy = 200 W/m2.

Figure 6.3 shows the obtained results for the steady-state saturation of liquid water and
the temperature for the semi-analytical solution calculated using Equations 6.4 and 6.7 in
comparison to the results of the finite-volume based numerical models. In this figure, the
origin of the spatial domain is set to the leftmost point where the saturation of the gas phase
deviates from zero.

Generally, it can be observed that both numerical solutions are identical up to rounding
errors, and that both converge to the semi-analytical solution when the grid gets refined.
From these results, we can conclude that both numerical models and their implementation
are correct in the sense that the discretization is convergent and that both models lead to
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NCP
(200 elements)

NCP
(1600 elements)

PVS
(200 elements)

PVS
(1600 elements)

n [−] 48 232 344 1629
tCPU [s] 1.056 79.99 12.212 469.603
nNEWTON [−] 234 2161 3858 17750
nNEWTON/tCPU [1/s] 221.59 27.01 315.91 37.79

Table 6.1: Comparison of the performance of the numerical models using primary variable
switching (PVS) and non-linear complementarity functions (NCP) for the heat-
pipe problem. Here, n corresponds to the number of time steps required to reach
steady state, tCPU is the CPU time required to reach steady state and nNEWTON is
the total number of iterations of the NEWTON-RAPHSON method required for the
whole simulation.

Figure 6.4: The spatial domain of the radially symmetric CO2 injection problem.

physically meaningful results.

Table 6.1 compares the number of time steps, NEWTON-RAPHSON iterations, and the CPU
time which both numerical models required to reach the simulation time of 109 s on a com-
puter equipped with an Intel R© CoreTM i7-3770K processor at 3.5 GHz. These results clearly
demonstrate that the model which directly incorporates the non-linear complementarity
functions exhibits much better stability, i.e., the number of time steps required is about an
order of magnitude lower compared to the model which uses primary variable switching.
This effect more than amortizes the slightly higher computational cost required for each
iteration of the NEWTON-RAPHSON scheme.

6.2 A Radially Symmetric CO2 Injection Problem

Having evaluated the physical quality and the numerical performance of the numerical
models using the heat-pipe problem, we now slightly increase the complexity of the investi-
gated problem by drawing our attention to a problem which is inspired by an artificial CO2
injection problem proposed by DARCIS [25]. The physical setup is illustrated in Figure 6.4:
The domain consists of a layer of high-permeability and high porosity rock sandwiched
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Layer Parameter Value
Cap rock K 10−17 Im2

Reservoir K 1.97 · 10−13 Im2

Bed rock K 10−17 Im2

Cap rock φ 4.6 %
Reservoir φ 20 %
Bed rock φ 4.6 %
All pe 5 kPa
All λbc 2
All Sr,l 25 %
All Sr,g 2.5 %

Table 6.2: Parameters used for the radially symmetric CO2 injection problem. The quantity pe
represents the entry pressure, and λbc stands for the shape parameter of the
BROOKS-COREY capillary pressure relation (3.18). Further, Sr,l and Sr,g specify the
residual saturations of the liquid and gas phases [39].

Figure 6.5: Radial extrusion of a two-dimensional grid to three spatial dimensions.

between two layers of rock with low permeability and porosity. In the center of the domain,
CO2 is injected into the reservoir layer for 20 years at a rate of 0.17 kg/s while on the outer
boundary we assume the reservoir to be fully saturated with brine and that all fluids can
flow freely. Finally, the material parameters used for this problem are given in Table 6.2.

6.2.1 Radial Domain Extrusion

One thing we notice immediately about this problem is that it is radially symmetric, so we are
able to discretize the conservation equations (2.42, 2.46) using only two dimensions, provided
that we extrude the domain radially along the horizontal axis. In this case, we define the
extrusion factor as

γ = 2πr ,

where r is the distance to the center of the bore hole of the well, i.e., the distance from the left
boundary of the spatial domain plus the radius of the bore hole of the injection well. This
concept is illustrated in Figure 6.5.
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(a) 3D Grid

(b) Zoom on the Tip of the 2D Grid with Intrinsic Permeability

(c) Gas Saturation
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(d) CO2 Plume Radius Versus Simulation Time

Figure 6.6: The radially symmetric CO2 injection problem. (a) Grid used for the full three-
dimensional simulations. The domain extends 800 m in radial, 60 m in vertical
and 45◦ in angular direction. The radial direction is discretized using 200 cells
exhibiting a prolongation factor of 1.01 while the vertical dimension is discretized
uniformly via 120 cells and the angular one by 60 cells. (b) Zoom to the injection
area on the left of the two-dimensional grid which was used in conjunction
with radial domain extrusion. The two-dimensional grid is a cut through the
three-dimensional one. (c) Gas saturation after 32 years obtained using the two-
dimensional grid and the immiscible model. (d) Comparison of the results for this
problem using various approaches.
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6.2.2 Results

Now we are in a position to discuss results for this problem. In Figure 6.6, we outline the
results obtained using both, the radial domain extrusion method as well as the direct three-
dimensional simulation approaches. As we can conclude from Figure 6.6d, the difference
of the radius of the CO2 plume for a full three dimensional simulation compared to that of
the two-dimensional simulation is quite small, and probably below the discretization error
if we consider the fact that the sizes of the time steps are generally slightly smaller for the
three-dimensional grid compared to the two-dimensional one.

Further, we observe that the results do not differ significantly if energy is conserved compared
to neglecting this equation. Quite likely, we can attribute this to the fact that the CO2 is injected
at reservoir temperature.

Finally, the results obtained using the NCP model agree very well with the ones obtained
using the PVS approach. This means that for this problem, the only significant differences
are between the results of models which incorporate miscibility and the results of the model
which assumes immiscibility.

Besides the quality of the results, the parallel performance of a simulator is of major interest
for large-scale problems. To investigate it, this problem was used in conjunction with the
three dimensional grid. The reason for this choice is that, on one hand, the problem is large
enough to keep the communication overhead of the processors reasonably low compared
to the local computational work of each processor in parallel simulations, but on the other
hand, it is still small enough to compute results on a single processor within a reasonable
time frame. Figure 6.7a shows the wall time required to linearize the non-linear system of
equations and the time to solve the resulting linear system of equations depending on the
number of processors used. The linear solver used to obtain these results was a stabilized
BiCG method [86] in conjunction with an incomplete LU decomposition preconditioner [70].
Also, the overlap of the linearization was chosen to be 10 cells.

The results of this are depicted in Figure 6.7 which shows the wall time of the simulations and
the parallel efficiency of the individual parts depending on the number of involved processors.
There, the parallel efficiency αpar is defined as the CPU time required by a single processor
to finish the simulation tseq divided by time the required by the parallel run tpar and by the
number of processors ncores:

αpar =
tseq

tpar · ncores
.

A remarkable aspect of Figure 6.7b is the fact that the efficiency of the linearization process is
not dependent on the number of processors and is even sightly better for parallel runs than
for sequential ones. The latter observation can probably be attributed to cache effects.

As clearly visible in Figure 6.7, the part of the simulations that does not scale well is the linear
solver: We can observe that the wall time required for the linear solver even increases for 8
processes compared to 4. For more than 8 cores, the linear solver scales again, albeit its parallel
efficency asymptotically decreases to zero. Quite likely, we can explain the former behavior
by the fact that the memory bandwidth of a single node of the used computer system is
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Figure 6.7: Parallel performance of the CO2 injection problem simulated in three spatial
dimensions using an isothermal model that assumes immiscibility. The problem
was simulated on a compute cluster equipped with dual-socket 2.83 GHz Intel R©

XeonTM E5440 CPUs. The simulation used a hexahedron grid featuring about 1.45
million elements (200 cells in radial, 60 elements in angular, and 120 elements in
vertical direction).

shared amongst all eight processors on a single compute node. For more than four concurrent
processes, the limiting factor of the linear solver thus becomes the available bandwidth to the
main memory. Using more than eight processors then leads to a distribution of the simulation
to more than one compute node, which increases the overall bandwidth to the main memory.
If we continue to use more processors, the need for inter-node communication during the
linear solution process increases proportionally. In turn, this leads to the asymptotic decrease
of the parallel efficiency which is featured in Figure 6.7b.

The gist of Figure 6.7b is that, in the case of the synthetic CO2 injection problem, using more
than approximately 64 processors does not lead to sufficient performance improvements to
justify the additional computational resources. This situation might change if we could im-
prove the parallel efficiency of the linear solution part of the simulation, for example by using
more sophisticated linear solvers like multi-grid methods [82]; these are not investigated in
the context of this thesis, though.

Finally, Table 6.3 shows the CPU time required on a single core of a 3.5 GHz Intel R© CoreTM

i7-3770K CPU for various simulation approaches to this problem. As expected, the two-
dimensional simulations which use radial domain extrusion are much faster than the fully
three-dimensional one. From this table, we can also conclude that in contrast to the heat-pipe
problem discussed in Section 6.1, the model which directly solves non-linear complementarity
functions does not profit much from its increased robustness regarding changes of the phase
presence, but is obviously hit by increased costs for linearizing the non-linear system of
equations and solving the resulting linear systems of equations: If energy is conserved via
an additional equation, the model based on primary variable switching requires approxi-
mately 70 % more time steps than the model which solves the non-linear complementarity
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Model Grid Time Steps NEWTON-
Iterations

Wall Time /[h]

Immiscible 3D 133 1114 69.54
Immiscible 2D 115 929 0.24
Immiscible, non-isothermal 2D 115 932 0.49
PVS 2D 1066 12278 7.21
PVS, non-isothermal 2D 1744 20569 20.34
NCP 2D 1032 11817 12.22
NCP, non-isothermal 2D 1012 11503 17.43

Table 6.3: Performance metrics for various approaches on a single core of an 3.5 GHz Intel R©

CoreTM i7-3770K CPU.

functions directly, although this is only barely enough to compensate the additional costs of
the additional equations required by the NCP model.

Summarizing this example, we can conclude that the most effective approach to model
radially symmetric problems is to use a two-dimensional grid in conjunction with radial
domain extrusion. Further, Figure 6.6d shows that the results obtained using models that
include miscibility are easily distinguishable from the ones neglecting it, even if miscibility
is quite low as is the case for CO2 injection scenarios. At the same time, it indicates that
we do not need to consider energy as a conservation quantity for CO2 injection scenarios if
the temperature of the injected CO2 is close to the temperature of the reservoir. Finally, we
observe that the scalability of parallel runs of such simulations usually is not very good, and
that this is primarily caused by the part which solves the linear systems of equations.

6.3 The Ninth SPE Benchmark Problem

The next setup which we will discuss is a slightly simplified version of the ninth benchmark
problem of the society of petroleum engineers [45] (SPE-9): Instead of the 27 wells of the
original specification, the problem which we discuss has only one injection and one produc-
tion well. The spatial domain is outlined in Figure 6.8. In planar direction, it is a rectangle
of 2.2 km by 2.2 km, and exhibits a thickness of 110 m. The domain is skewed by 16 degrees
with its deepest point being at a depth of 3200 m. This domain is discretized using 24 times 24

rectangles in planar direction and 16 layers of varying thicknesses in depth direction. The
intrinsic permeabilityK varies widely within the spatial domain as outlined in Figure 6.8b.
Initially, the pressure in the domain is 248 bar. Elements deeper than 3030 m are initially set to
be fully water saturated, while elements above that threshold exhibit an initial oil saturation
of 100 %.

While all borders of the reservoir are assumed to be completely impermeable, the reservoir is
penetrated by the two boreholes mentioned above: The one used for the production of oil and
gas is located at the center of the topmost and most north-eastern element. The well which
injects water is assumed to be located at the center of the bottommost, most south-western
element of the grid. Both wells are implemented as source terms using the PEACEMAN well
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(a) The Grid, Initial Oil Saturation So and Well Locations

(b) Intrinsic Permeability ‖K‖/m2

(c) Oil Saturation After 9000 Days

(d) Oil Pressure po/Pa After 9000 Days

Figure 6.8: The simplified SPE-9 benchmark problem.



The Ninth SPE Benchmark Problem 89

t/d

qW /(100 stb/d)

Black-oil
NCP

0 2250 4500 6750

8.0

13.5

19.0

24.5

30.0

t/d

qW /(100 stb/d)

Black-oil
NCP

0 75 150 225

8.0

13.5

19.0

24.5

30.0

(a) Water Injection Rates

t/d

−qO/(100 stb/d)

Black-oil
NCP

0 2250 4500 6750

7.5

9.6

11.8

13.9

16.0

t/d

−qO/(100 stb/d)

Black-oil
NCP

0 75 150 225

7.5

9.6

11.8

13.9

16.0

(b) Oil Production Rates

t/d

−qG/(1000 m3/d)

Black-oil
NCP

0 2250 4500 6750

35.0

46.2

57.5

68.8

80.0

t/d

−qG/(1000 m3/d)

Black-oil
NCP

0 75 150 225

35.0

46.2

57.5

68.8

80.0

(c) Gas Production Rates

Figure 6.9: Predicted production and injection rates for the simplified SPE-9 benchmark:
The left side shows the production and injection curves for the whole simulated
period of 9000 days, the graphs on the right show the same curves for the first 300
days. The unit stb stands for stock tank barrel, and it is the amount of mass
which is contained within one barrel at atmospheric pressure, i.e., 0.159 m3; the
gas production rates are given in terms of the volume of the produced gas at
atmospheric pressure.
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Figure 6.10: Typical behavior of the NEWTON-RAPHSON method for the SPE-9 problem if
using the PVS model: The phase presence pseudo variables oscillate. The value
displayed χpp is calculated using

χpp := 20 · p̄o + 21 · p̄w + 22 · p̄g

where p̄α is 1 if fluid phase α is present at a given spatial location, and zero
otherwise. The phase presence initially displayed on the upper left is changed
to the one on the upper right in the next NEWTON-RAPHSON iteration, then it
assumes the value on the lower left, and finally goes back to the initial state as
displayed on the lower right.

NCP Black-Oil
n [−] 84 60
nNEWTON [−] 536 327
tCPU [h] 0.77 0.19

Table 6.4: Comparison of the performance of the numerical models using the specialized
black-oil model and the NCP model incorperating non-linear complementarity
functions for the SPE-9 problem. Here, n corresponds to the number of time steps
required to simulate the setup for 9000 days, tCPU is the required computation
time of a single core of an Intel R© CoreTM i7-3770K CPU, and nNEWTON is the total
number of iterations of the NEWTON-RAPHSON method required for the whole
simulation.

model [19]. The parameters used are a skin factor of zero, a borehole radius of 7.5 cm, and a
bottom-hole pressure of 275 bar for the injection well and 206 bar for the production well.

This setup was simulated using the PVS and the NCP models as well as with the black-
oil model. The obtained results for the water injection rate as well as for the oil and gas
production rates agree very well as we can see in Figure 6.9. Inspecting this figure, we also
note that the production and injection rates for the PVS model are not included. The reason
for this is that the NEWTON-RAPHSON algorithm is very unstable for the SPE-9 problem
when using the PVS model. This caused a non-recoverable breakdown at the beginning
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(a) (b)

(c) (d)

Figure 6.11: The SPE-5 benchmark problem: (a) The grid, initial oil phase saturation, and
the locations of the wells. (b) Oil phase saturation after three years of production
as seen from above. (c) The oil phase saturation after three years of production
as seen from below. (d) The water phase saturation after three years of only oil
production and one subsequent year of water injection plus oil production as seen
from below.

of the simulation. The reason for this is illustrated in Figure 6.10. It displays the values
of the phase-presence pseudo primary variables for successive iterations of the NEWTON-
RAPHSON algorithm of a failing time step: The presence of the phases keeps oscillating
between iterations instead of reaching a stable state. This behavior is likely caused by the
similar values of the fugacity coefficients for components which are not preferred by the gas
and the water phases. Since the NCP model directly embeds the presence of the fluid phases
in the non-linear system of equations to be solved, it is less vulnerable to this issue and does
not suffer a breakdown.

Moreover, we can infer from Figure 6.9 that the production and the injection rates calculated
using the specialized black-oil model agree quite well with the ones computed using the
generic NCP model. As outlined in Table 6.4, the computational effort for the generic NCP
model is higher, though.
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Component 〈·〉κ pκcrit [bar] T κcrit[K] ωκ

Water (H2O) 220.64 647.10 0.344
Methane (C1) 460.43 190.56 0.013
Propane (C3) 424.92 369.83 0.1524
Hexane (C6) 301.23 507.44 0.3007
Decane (C10) 209.60 617.67 0.489
Pentadecane (C15) 137.89 705.56 0.65
Icosane (C20) 111.69 766.67 0.85

Table 6.5: PENG-ROBINSON parameters used for the fifth SPE benchmark problem. All binary
interaction coefficients k̄κλα are zero, except for C1 interacting with C15 or C20, and
C3 interacting with C15 or C20. In the former case, the interaction coefficient is
assumed to be 0.05 while in the latter case k̄κλα = 0.005 is used.

6.4 The Fifth SPE Benchmark Problem

Let us now consider the problem specified by the fifth comparative solution project of the
Society of Petroleum Engineers [46]. This problem is the subject of Figure 6.11 and features a
simple three-dimensional CARTESIAN grid exhibiting 7 by 7 by 3 elements with a total extend
of 1067 m by 1067 m by 30.5 m, as outlined. The bottom of the domain is assumed to be at
a depth of 2750 m which yields an initial pressure of 275 bar. Like for the simplified ninth
benchmark problem, the boundary of the domain is fully closed, and production and injection
are handled by vertical boreholes using the PEACEMAN well model [19]. For this problem,
the injection well is located in the highest, most south-western cell, while the production well
is located in the deepest north-eastern cell, with a bottom hole pressure of 310 bar for the
injection well and 69 bar for the production well. Initially, the reservoir exhibits a uniform
water saturation of 20 % and an oil saturation of 80 %. Of the three scenarios described in the
benchmark specification [46], only the first is considered: This scenario specifies a period of
three years where oil and gas is produced without any injection occuring. After that, water
and gas injections are alternated yearly. In this scenario, oil production and water injection
is capped at 12000 stock-tank barrels per day, while the injection rate of gas is limited to 12

thousand cubic feet at standard conditions per day.

The interesting part of the problem are the thermodynamics of the involved fluids: Like
the black-oil model, this problem assumes the potential presence of the three fluid phases
gas, oil, and water, but it specifies the thermodynamic properties using seven components,
and the PENG-ROBINSON parameterization of the cubic equation of state. The parameters
used for these thermodynamic relations are outlined in Table 6.5. Also, the problem applies
the standard mixing rule (3.4). With this, we calculate the mass densities ρo and ρg of the
oil and the gas phases. The fugacity coefficients for all components are calculated using
Equation 3.15 for the initial state and are then used throughout the simulations.

For this thesis, this problem was simulated using the PVS and NCP models. As we can infer
from Figure 6.12, the predicted injection and production rates as well as the average pressure
within the reservoir are virtually indistinguishable. Moreover, the computed rates and the
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Figure 6.12: Predicted production and injection rates for the SPE-5 benchmark. The rates for
oil production and water injection are given in stock tank barrels per day (stb/d),
the gas production rate is plotted in thousands of cubic feet per day (MCF/d).
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NCP PVS
n [−] 858 826

nNEWTON [−] 5334 4840
tCPU [h] 0.67 0.50

nNEWTON/tCPU [1/s] 2.20 2.67

Table 6.6: Comparison of the performance of the numerical models using primary variable
switching (PVS) and non-linear complementarity functions (NCP) for the SPE-5
benchmark problem. Like for the previously presented problems, n corresponds
to the number of time steps required to simulate the problem for 17 years, tCPU is
the CPU time required for the simulation using an Intel R© CoreTM i7-3770K CPU
running at a clock speed of 3.50 GHz. Further, nNEWTON is the total number of
iterations of the NEWTON-RAPHSON method.

average reservoir pressure agree very well with the results of most simulators published
in the original specification [46]. If we consider the computational effort required for our
simulations as presented in Table 6.6. One aspect worth mentioning here is that the ratio of
the computational costs per NEWTON-RAPHSON iteration for the PVS and the NCP models is
smaller for the SPE-5 problem than for the setups discussed before. This is due to the fact
that solving the local systems of equations for the PVS model is much more elaborate in the
three-phase case than if only two phases are involved. In conjunction with the large number
of components, this leads to the PVS-based simulation to exhibit high computational costs
per NEWTON-RAPHSON iteration. Unlike for the previously presented examples, the number
of NEWTON-RAPHSON iterations required is higher for the NCP model than for the PVS
model.

6.5 The Ketzin CO2 Storage Project

After investigating the physical accuracy and comparing the computational performance
of the flow models amongst each other, let us now have a brief look at a setup which
describes a large-scale real-world experiment – the German CO2 injection pilot site near
Ketzin/Havel [55, 44, 49]. The geology of the site of this project features a dome-shaped
reservoir formation which exhibits relatively a high permeability as well as high porosity,
that is “sandwiched” between highly impermeable salt layers. Together with the intrinsic
permeability field of the reservoir, the shape of the reservoir formation is displayed in
Figure 6.13. The capillary-pressure and relative permeability curves used for the simulation
are presented in Figure 6.14.

The planar extend of this domain is a square of 5 km by 5 km, and the reservoir layer is
about 130 m thick. This domain is discretized by roughly 4 million tetrahedra using the
DUNE-ALUGrid manager [4, 15]. The resulting grid is depicted in Figure 6.13.

Figure 6.15 shows the shape of CO2 plumes after injecting roughly 55 thousand tons of CO2
over a period of slightly more than three years while Figure 6.16 shows the predicted share
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(a) Grid and Intrinsic Permeability ‖K‖/Pa

(b) The Partition of the Grid Used for the Parallel Simulation

Figure 6.13: Discretization the Ketzin CO2 injection site.
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Figure 6.14: The material parameters used by the simulations of the Ketzin CO2 storage
project. It is assumed that these parameters only depend on the saturation of the
liquid phase.
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(a) Gas Saturation Predicted by the Model Assuming Immiscibility

(b) Gas Saturation Predicted by the NCP Model

Figure 6.15: The simulated gas-phase saturation for the Ketzin CO2 injection experiment after
injecting about 55 thousand tons of CO2 during a three year period. The extend of
the CO2 plume for the NCP case which includes miscibility is clearly smaller than
for the case where miscibility is neglected. Both simulations assume the potential
presence of the two phases “liquid” and “gas”, and use the two components brine
and CO2 which are described using the relations provided by IAPWS [88], and
SPAN and WAGNER [77]. Based on the conclusions of Section 6.2, energy is not
considered as a conservation quantity in these simulations.
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Figure 6.16: Predicted share of CO2 dissolved in the brine phase for the Ketzin CO2 injection
experiment. The brine-CO2 miscibility relations used in this simulation have been
proposed by SPYCHER and PRUESS [78].

of CO2 dissolved in the brine phase if using a model that considers miscibility (in this case
using the NCP model).

In comparison to the synthetic CO2 injection problem which we discussed in Section 6.2,
miscibility effects play a much more important role in this scenario, as 40 % to 60 % of the
injected CO2 are predicted to be dissolved in the brine. We can also clearly observe the
relevance of miscibility by comparing the shape of the CO2 plume of Figure 6.15a to that of
Figure 6.15b. In this context we should be aware that—due to using finite volume methods as
spatial discretizations for these simulations—the amount of dissolved CO2 is overestimated
systematically. The reason for this is that finite volume discretizations use only a single
value to represent the conditions within an individual element. For large finite volumes,
this leads to CO2 being assumed to be present in regions of the elements where it cannot be
present in reality. This implies that the amount of brine which CO2 is assumed dissolve in
is overestimated. In turn, this over-estimation of the amount of dissolved CO2 leads to an
underestimation of the gas phase saturation. In the case of the Ketzin project, this supposition
is supported by seismic evidence [55]. For this setup, we should also be aware that the input
parameters, like the intrinsic permeabilityK exhibit large uncertainties, so that the results
presented in Figures 6.15 and 6.16 should be used with care.

Nevertheless, these simulations prove that the methods presented in this thesis can be used
for large-scale geological applications and that miscibility is a factor which needs to be
considered in many real-world applications.



7 Summary and Conclusion

In this thesis, we first motivated the continuum mechanical approach and derived the
conservation equations for the physical quantities mass, momentum, and energy on this scale.
After adapting the momentum conservation equations to the special case of NEWTONIAN

fluids, we used the obtained relations to derive the conservation equations for macro-scale
fluid flow in porous media. We then discussed how we can close the system of equations in a
mathematical sense. It turned out that one relation per fluid phase needs to be defined using
model assumptions. For this purpose, we presented the assumptions of the well established
immiscibility model [39], primary variable switching model [23], and black-oil model [19] and
introduced a new set of model assumptions which are based on directly including non-linear
complementarity problems into the system of equations to be solved [48].

Following this coverage of all relevant equations, we discussed how the resulting systems of
equations can be discretized and how the resulting algebraic non-linear systems of equations
can be solved. After briefly looking at the software which was used to implement the
aforementioned concepts, we finally discussed some numerical examples.

The first of these was the heat-pipe setup proposed by UDELL [84]. This problem features
a one-dimensional spatial domain occupied by water that evaporates and condenses. For
this problem, we could derive a semi-analytical solution for the steady-state with which
we compared to results obtained using the numerical models based on primary variable
switching (PVS) and non-linear complementarity problems (NCP) and observed that the
numerical results obtained using both models are identical up to rounding errors. We further
observed that the numerical solutions converged to the semi-analytical one as we increased
the spatial resolution of the grid. This led us to the conclusion that from the point of view
of physical and numerical accuracy, both the NCP and the PVS models produce correct
results, and that thus the computational cost is the main factor for deciding which one to
use. Analyzing this computational performance of both approaches, we found that for this
problem, the NCP model required an order of magnitude fewer time steps than the PVS
approach. This increased robustness more than amortized higher costs per time-step of the
NCP model.

After the heat-pipe problem, we compared the NCP and the PVS models with the immis-
cible model for a synthetic CO2 injection problem. For this problem we used a radially
symmetric domain which allowed us to compare the numerical results obtained using a
three-dimensional simulation with the ones computed using radial domain extrusion in
conjunction with a two-dimensional spatial domain. We found that the results of both
approaches are comparable, but that the approach using radial domain extrusion is much
cheaper from the point of view of computational effort. We deduced that we should choose a
2D approach in conjunction with radial domain extrusion if possible. For this problem, we
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also compared the immiscible model with the ones that consider miscibility, and found that
the results differed significantly. Having said that, the results obtained using the immiscible
model should still be accurate enough for many purposes.

Since the three-dimensional grid used by this problem featured approximately 1.4 million
elements, it was large enough to apply domain decomposition methods on a parallel machine.
Simultaneously, it was small enough to complete sequential simulations in an acceptable time
frame. For this reason, we used this problem to analyze the efficiency of the parallelization.
In this context, we found that the computational time required for this simulation is clearly
dominated by the procedure of solving the linearized systems of equations, and, even worse,
that this procedure typically does not scale well with the number or processors involved.

Next, we compared the computational effort required for the three models for this problem.
We found that the effort in terms of the number of time steps and NEWTON-RAPHSON

iterations is much lower for the immiscible model compared to the other two. For the
two models that include miscibility, the NCP model requires fewer time steps and fewer
NEWTON-RAPHSON iterations, but in terms of processing time, it is still slower than the PVS
approach. The reason for this is the fact that the discretization and linearization as well as
the linear solution processes are more elaborate for the NCP model. This is the case because
it includes one additional equation and primary variable per phase compared to the PVS
model. Further, in contrast to the heat-pipe problem, the determination of the presence of
the fluid phases does not seem to be a major limiting factor of this problem when it comes
to numerical performance, so the higher costs of each NEWTON-RAPHSON iteration are not
amortized by the fewer required time-steps.

After the synthetic CO2 injection problem, we considered a slightly simplified version of
the ninth benchmark problem of the society of petroleum engineers [45]. For this setup, we
compared the PVS and NCP models with the black-oil model. We found, that the PVS model
is incapable of simulating this setup, but that the NCP model and the black-oil model could
be used. For this setup, we observed that the injection and production rates calculated using
the two models agreed very well, but we also noted that the computational effort required
for the black-oil model was much lower.

This was followed by an investigation of the first scenario of the fifth benchmark problem
of the society of petroleum engineers [46]. Like the ninth SPE benchmark problem, this
specification originates from the field of oil reservoir engineering, and thus features the
three fluid phases oil, gas, and water. Compared to the ninth benchmark problem, it uses
a simpler CARTESIAN grid with uniform material properties. The interesting part of this
problem are its complicated thermodynamic relations which involve cubic equations of state.
The predicted production and injection rates as well as the average pressure of the reservoir
which we obtained for this problem using the PVS and NCP models were very similar. From
the point of view of the required computational effort, the NCP model was worse than the
PVS model, but the on a per NEWTON-RAPHSON iteration basis the NCP model difference to
the PVS model was smaller than in the other examples. We attributed the latter observation
to the relatively large number of components of this problem and to the observation that
the systems of equations which need to be solved locally are relatively large for three-phase
problems when using the PVS model compared to those which need to be solved for the NCP
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model.

Finally, we compared the results of the immiscible model and the ones of the NCP model
for the CO2 injection experiment in Ketzin/Havel, Germany. For these simulations, an
unstructured tetrahedral grid featuring roughly four million elements, and spatially varying
permeability and porosity fields were used. The results obtained using a model which
assumes immiscibility differed considerably from the results produced by the NCP model.
We found that the reason for this is that the share of CO2 which is predicted to dissolve
in the liquid phase is quite significant in this case. However, in this context we noted that
this is probably an overestimation which is due to the spatial discretization used. Even so,
miscibility is often a relevant effect in large-scale geological applications, and should thus
not be neglected at the outset.

In summary, the NCP model has proven to be the most versatile as it performed reasonably
well for all problems presented in the context of this thesis. Further, from a computational
point of view, it is generally advisable to use a model that directly takes advantage of
additional knowledge available for a given setting. For example, if miscibility of components
can be neglected, using the immiscible model often leads to a large improvement of the
computational performance. Another example is if the setup to be simulated can be assumed
to be radially symmetric: Then, using a two-dimensional simulation in conjunction with
radial domain extrusion exhibits much lower computational costs while the quality of the
results is basically identical compared to fully three-dimensional simulations.

Future Research

Like all scientific works, this thesis has only a limited scope, so there are plenty of topics of
interest which could not be covered. In the following, we will outline a few of those.

Model Coupling

For many problems, we may benefit using different numerical models for parts of the
simulation that feature diverse characteristics. For example, we could use a model which
assumes immiscibility for periods of time where miscibility of components is unimportant,
and use a more elaborate model for the remaining time [25].

Another situation for which coupling multiple models might be beneficial are multi-physics
situations [34]. For these problems, most of the spatial domain can be described well by
a simple model, for example a model neglecting energy or only considering a subset of
all fluid phases, while a small part of the domain needs to be simulated using a more
comprehensive model. For the fully implicit methods which we covered in this thesis, the
implementational effort required for such schemes is quite high [34],and for this reason
multi-physics approaches currently mostly use semi-implicit methods [34].

Also, we need to use several models for the spatial domain if the the flow characteristic is
vastly different in various parts of the domain. For example, problems that incorporate a
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part occupied by a porous medium and a part which features turbulent flows, like river-
groundwater systems [37] or the soil-atmosphere interactions [57], require us to use a coupling
between the models for the individual spatial subdomains.

Finally, we can also think of coupling the models for flow and transport in porous media
which we discussed in this thesis with geomechanical models [25] or with large-scale models
for global phenomena like climate.

Parameter Uncertainty

In the context of this work, we assumed the external parameters—like the intrinsic per-
meability K—as quantities precisely known a priori. This is rarely the case for real-world
applications. There, only rough indications about the distribution of these parameters, and
a limited set of measured values are usually available for practical and economic reasons.
This means that in reality all parameters used in our models feature an uncertainty which we
would need to quantify in order to obtain predictive results. This is a fulminant challenge,
and we refer the interested reader to OLADYSHKIN et al. [62], CIRPKA et al. [21], and to
BÁRDOSSY et al. [17].

Advanced Discretizations

For this thesis, only finite volume were used as spatial discretizations. While conceptually
finite volume schemes are easy to understand, locally conservative [31] as well as numerically
stable [31], they also exhibit severe disadvantages. Amongst those are slow grid convergence
rates and a large impact of the numerical dispersion effect [31]. It would thus be benefi-
cial to investigate more sophisticated spatial discretizations like discontinuous GALERKIN

methods [5] or mimetic finite difference methods [12].

Also, as time discretization scheme, the implicit EULER method was exclusively used. Like in
the case of finite volume schemes for spatial discretization, this scheme is simple and exhibits
good numerical stability [6], but its convergence rate tends to be low because of the relatively
large error term. We could thus benefit from investigating better time discretization schemes
like implicit RUNGE-KUTTA methods [16] or backward differential formula methods [6].

Adaptivity

Adaptive methods are related to the advanced discretizations and multi-physics ap-
proaches [26]. mentioned above. Generally speaking, there are two different approaches
to adaptivity: For h-adaptive methods, more elements are added to (or removed from) the
grid as soon as the estimated error in the obtained solution is too large (or low enough). For
p-adaptive schemes [26], a spatial discretization with a better error term is used for regions of
the domain for which a large error is detected.

Finally, h-p-adaptive schemes [26] are combining these two concepts. For them, a higher-
order space discretization is used if it is computationally cheaper than refining the grid,
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else the resolution of the grid is locally increased. Typically, h-p-discretization schemes are
challanging to implement [26] since, in addition to error estimates for the refined grid and
for the solution with a locally better discretization, we need to find a balance between the
two approaches in order to decide which one is better in a given situation.

Further Applications

The final item of this non-exhaustive list of topics that are not covered by this thesis is a closer
investigation of additional applications of multi-phase flows in porous media. Amongst
these applications we find ground decontamination methods [22, 39], measures to control
subsurface coal fires [24], polymer-electrolyte membrane fuel cells [7], and many other
chemical engineering applications [42].





A Reproducibility and Raw Data

For the interested and sufficiently determined reader, all results presented in this thesis
are available at http://www.hydrosys.uni-stuttgart.de/institut/hydrosys/
publikationen/phd_data/ in their raw and refined forms. The only exception is the
data for the Ketzin CO2 storage project discussed in Section 6.5, which is not included in its
raw form due to licensing reasons.

The source code of the software packages which were used to produce these results are also
provided. In addition to the raw data and the source code of the simulations which we
discussed within this thesis, the LATEX sources of this document, and editable versions of all
pictures used within it, are available at this site.

The source code of the software is provided under the terms of the GNU General Public
License (GPL), version two—or, at your option—any newer version of the license. The
sources of this document and the raw data of the presented results are licensed under the
Creative Commons Attribution Share-Alike 3.0 license. Further information on the used
licenses can be found at
http://www.gnu.org/licenses/gpl-2.0.html
and at
http://creativecommons.org/licenses/by-sa/3.0/

http://www.hydrosys.uni-stuttgart.de/institut/hydrosys/publikationen/phd_data/
http://www.hydrosys.uni-stuttgart.de/institut/hydrosys/publikationen/phd_data/
http://www.gnu.org/licenses/gpl-2.0.html
http://creativecommons.org/licenses/by-sa/3.0/
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