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Notation

The following table shows the significant symbols used in this work. Local notations are
explained in the text.

Symbol Definition Dimension

Greek Letters:

αup upwinding parameter [ - ]
γBOX

i j transmissivity integral [ - ]
Γ boundary between two subdomains [ - ]
Γα,D part of a domain comprising Dirichlet boundary con-

ditions
[ - ]

Γα,N part of a domain comprising Neumann boundary
conditions

[ - ]

ΓBi integration path along the boundary of box Bi [ - ]
δαw Kronecker-delta (with α ∈ {w,n}) [ - ]
∆t time step [s]
∆x element size [m]
ε residuum [ - ]
ηi set of all neighboring nodes of node i [ - ]
η j error indicator or estimator value associated with

element j
[ - ]

λ Brooks-Corey-parameter (grain size distribution) [ - ]
λα mobility of phase α [(m s)/kg]
λ mean mobility [(m s)/kg]
µ dynamic fluid viscosity [kg/(m s)]
µα dynamic fluid viscosity of phase α [kg/(m s)]
ρα fluid density of phase α [kg/m3]
φ porosity [ - ]
φeff effecitve porosity [ - ]
φeff,α effective porosity for phase α [ - ]
ψαi total potential of phase α at node i [ - ]
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Latin Letters:

Bi control volume or box for node Ki [ - ]
∂Bi boundary of box Bi [ - ]
cormax value controlling the coarsening bound for the

’max value’ method
[ - ]

cormean value controlling the coarsening bound for the
’mean value’ method

[ - ]

D dispersion tensor [m2/s]
e scalar entity

(for the pw−Sn-formulation: eα = Sn φρα)
[kg / m3]

Ei set of elements connected to node Ki [ - ]
F convective flow and diffusion

(for the pw−Sn-formulation: Fα = ρα vα)
[kg / (m2 s)]

fα fractional flow function for phase α [ - ]
g vector of gravitational acceleration (0,0,−g)T [m/s2]
g (scalar) gravitational acceleration [m/s2]
G solution domain [ - ]
∂G boundary of solution domain [ - ]
h piezometric head [m]
kr α relative permeability for phase α [ - ]
K tensor of (intrinsic) permeability [m2]
Kα tensor of permeability for phase α [m2]
K f tensor of hydraulic conductivity [m/s]
Ki node of the finite element mesh [ - ]
mαi flow of phase α over the Neumann boundary

∂Bi ∩Γα,N

[kg / (m2 s)]

M(lump)
i j (lumped) mass matrix [ - ]

ML maximum number of mesh refinement level [ - ]
n outer normal vector of ∂G [ - ]
Ni basis functions for node i [ - ]
N number of elements with an error of η [ - ]
pc capillary pressure [Pa]
pcmax maximum capillary pressure for a linear pc(Sw)-

relationship
[Pa]

pi
c,min minimal entry pressure [Pa]

pd entry pressure (pc(Sw)-relationship after Brooks-
Corey)

[Pa]

p∆
d difference of the entry pressures for two subdomains

having different soil properties
[Pa]

Pe Peclet number [ - ]
pn pressure of the non-wetting phase [Pa]
pw pressure of the wetting phase [Pa]
Qα source or sink of phase α in the domain [1/s]
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r sources and sinks
(for the pw−Sn-formulation: rα = ρα Qα)

[kg / (m3 s)]

refmax value controlling the refinement bound for the
’max value’ method

[ - ]

refmean value controlling the refinement bound for the
’mean value’ method

[ - ]

Sα saturation of phase α [ - ]
Sα r residual saturation of phase α [ - ]
Sd

w downstream water saturation [ - ]
Se effective saturation [ - ]
Su

w upstream water saturation [ - ]
S∗w threshold saturation [ - ]
Sw i water saturation at the inflection point of the frac-

tional flow function
[ - ]

Sw t water saturation at the tangent point of the fractional
flow function

[ - ]

t time [s]
tolcoarsen tolerance for coarsening [ - ]
tolrefine tolerance for refinement [ - ]
u unknown quantity [ - ]
v Darcy velocity [m/s]
vα phase velocity of phase α [m/s]
va,α average phase velocity of phase α [m/s]
va average velocity [m/s]
vt total velocity [m/s]
Vα volume fraction of phase α [m3]
Vi volume for the box associated with node i [m3]
Wi weighting function for node i [ - ]
z elevation head [m]
zi geodetic height of node i [m]

Subscripts:

α phase, either wetting (w) or
non-wetting (n)

d downstream
n non-wetting phase (e.g. oil, gas)
u upstream
w wetting phase (e.g. water)

Superscripts:

˜ approximation
ˆ discrete value at a node
cent central weighting method
n time step
up (fully) upwind weighting method





Abstract

In recent years the demand for numerical simulations which help to support the work of en-
gineers has constantly gained weight. In the same way the computational power advances,
the complexity of the problems and demands posed to the numerical simulation tools in-
creases, too.

This thesis expands the simulation tool MUFTE-UG for two-phase flow processes in porous
media with adaptive methods The approaches presented here can be divided into two parts:

On the one hand, a space adaptive method is introduced. Here, the element-size resolution
throughout the discretization mesh is changed in certain areas from time step to time step.
A marking of the relevant elements which need to be refined or coarsened is realized by an
empirically derived error indicator. While at first three different indicators are compared,
the final investigations of the various test cases are performed with an indicator locating
a steep gradient of the saturation distribution in the system. As it shows that the applied
h-adaptive strategy is not mass conservative due to mesh manipulations, an algorithm is
developed which ensures the mass preservation for coarsening as well as for refinement.

On the other hand, the discretization method is adaptively adjusted inside the domain.
Since advection-dominated processes require an other numerical treatment than diffusion-
dominated processes (in the here presented case realized by the application of a ’fully up-
winding’ or a ’centrally weighted’ scheme), at first a suitable indicator needs to be found
which accounts for these processes. For this, the two-phase (element) Peclet number is de-
rived which describes the ratio between advection and diffusion.

The developed methods are applied to homogeneous and heterogeneous test cases. For
the choice of the homogeneous test cases it is considered that the here introduced methods
need to be capable of handling purely advection-dominant problems (e.g. Buckley-Leverett
problem), purely diffusion-dominant problems (e.g. McWhorter problem) and problems,
where both effect appear in the domain at the same time (e.g. Sandbox problem). The
heterogeneous test case resembles the Sandbox problem with a lense.

Overall it can be said that the deployed space adaptive methods work very well for all the
investigated test cases. The results obtained by the adaptive choice of discretization method
are only mildly satisfactory. Here it shows, especially for the heterogeneous case, that the
switch to the centrally weighted scheme needs a very careful adjusting.





Kurzfassung

In den vergangenen Jahren hat die Nachfrage nach numerischen Simulationsprogrammen,
die eine Unterstützung der täglichen Arbeit von Ingenieuren bieten, ständig an Gewicht
zugenommen. Im gleichen Maße in dem die Rechnerleistung zunimmt, steigen auch die
Komplexität der Fragestellungen und die Anforderungen an die Simulationsprogramme.

Diese Arbeit erweitert das Simulationsprogramm MUFTE-UG für Zwei-Phasen
Strömungsprozesse in porösen Medien um adaptive Methoden. Die hier vorgestellten
Vorgehensweisen können in zwei Bereiche unterteilt werden:

Auf der einen Seite wird eine orts-adaptive Methode vorgestellt. Dabei wird die Ele-
mentgröße in bestimmten Gebieten des Diskretisierungsnetzes von Zeitschritt zu Zeitschritt
angepasst. Das Markieren der relevanten Elemente, die verfeinert oder vergröbert werden
sollen, wird mittels eines empirischen Fehlerindikators realisiert. Zunächst werden drei ver-
schiedene Indikatoren verglichen. Die letztendlichen Untersuchungen werden mit einem
Indikator durchgeführt, der einen steilen Gradienten der Sättigung im Gebiet lokalisiert. Da
sich zeigt, dass das verwendete h-adaptive Verfahren aufgrund von Netz-Manipulationen
nicht massenkonservativ ist, wird ein Algorithmus entwickelt der die Erhaltung der Masse
für das Vergröbern und das Verfeinern sicherstellt.

Auf der anderen Seite findet ein adaptives Anpassen der Diskretisierungsmethode inner-
halb des Gebietes statt. Da advektions-dominante Prozesse eine andere numerische Behand-
lung als diffusions-dominante Prozesse benötigen (was in dieser Arbeit durch Anwendung
der ’fully upwinding’ oder ’zentral gewichteten’ Methode geschieht), muss zunächst ein
geeigneter Indikator gefunden werden, der diese Prozesse identifiziert. Hierfür wird die
Zwei-Phasen (element-basierte) Peclet-Zahl hergeleitet, die das Verhältnis zwischen Advek-
tion und Diffusion beschreibt.

Die entwickelten Methoden werden für homogene und heterogene Testfälle eingesetzt. Bei
der Wahl der homogenen Fälle wurde berücksichtigt, dass die vorgestellten Methoden in
der Lage sein sollen sowohl rein advektions-dominante Probleme (z.B. Buckley-Leverett
Problem) und rein diffusions-dominante Problem (z.B. McWhorter Problem) als auch Prob-
leme behandeln können soll, bei denen beide Effekte gleichzeitig im Gebiet auftreten (z.B.
Sandbox Problem). Als heterogenes Test wird das Sandbox Problem mit einer Linse gewählt.

Zusammenfassend kann gesagt werden, dass die Ergebnisse der verwendeten orts-
adaptiven Methoden für alle Testfälle sehr gut sind. Die Ergebnisse, die mit der adaptiven
Anpassung der Diskretisierungsmethode erreicht wurden sind nur mäßig zufriedenstel-
lend. Hier zeigt sich, dass, insbesondere für den heterogenen Fall, der Übergang zur zentral
gewichteten Methode sehr sorgfältig gewählt werden muss.





1 Introduction

1.1 Motivation

Flow processes in porous media play an important part in the human society, although this
may not always be evident. A theme of topical interest, for example, is the issue of dike
stability (Figure 1.1). As the increase of natural disasters related to water and especially
the floods of the river Elbe in the eastern parts of Germany this year have shown, a correct
prognosis of the stability of protective structures is very important. For these predictions, an
understanding of the relevant flow processes of water and air inside the dikes is necessary.
Numerical simulations of two-phase flow processes in porous media represent a powerful
tool for providing local experts with knowledge about these flow behaviors.

Another important issue is the simulation of water and NAPL flows in the soil. NAPL
stands for non-aqueous phase liquid. NAPLs are usually liquid organic pollutants which
are practically immiscible with water. These liquids can be divided into LNAPLs (liquids
lighter than water) and DNAPLs (liquids denser than water). In most cases, the interest in
simulating water - NAPL flows lies in tracking contaminants in the soil and in surveying
and improving soil recovery strategies (e.g. Class [17]). If the infiltration of NAPLs into
the soil takes place in the vadose or unsaturated zone, it may also be important to track the
movement of the gas in the soil and therefore consider three-phase flow.

These examples represent only a small part of the wide field of multiphase flow processes.
As numerous as the applications are the special cases one has to deal with. Certain aspects,
however, can be found in a large number of problems. In the following, two of these aspects
are explained further.

The first one is a so-called ”sharp front”. Here, diffusive effects play only a negligible role
and the transition between a region completely saturated with one fluid (e.g. water) and
a region completely saturated with another fluid (e.g. oil) is (nearly) abrupt. Sharp fronts
pose a difficult problem for a numerical scheme. The difficulties lie not only in the choice of
a sufficiently small element-size resolution, but also in the choice of a suitable discretization
technique, as the numerical solutions for problems including sharp fronts tend to show
oscillations if the correct measures are not taken.

The second aspect concerns heterogeneities, i.e. regions with different material properties,
such as, for example, porosity and permeability. They have a great influence on the flow pro-
cesses, as they affect flow paths and the intrusion into soil layers, for example, and therefore
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Figure 1.1: Water flows through a broken dike

the mass distribution of phases in a system. Especially in civil engineering applications, the
number of heterogeneous problems is greater than that of homogeneous ones.

The aspects mentioned above increase the - already large - complexity of two-phase flow
problems even more. Especially for real-life problems (as opposed to academic problems),
it is not only important to get correct results as a basis for predictions, but also to get results
fast. The prediction of the stability for a sea-dike in a storm surge with rising water level may
serve as an example: the computation should be faster than realtime in order to undertake
the right measures (bring in sandbags or evacuate the residents) in time.

The scenario depicted in Figure 1.2 illustrates some of the problems involved in the numeri-
cal simulation of two-phase flow applied to engineering problems. It shows a highly hetero-
geneous dam, which is infiltrated from the left by water (indicated by the shaded area). In
the upper left part of the domain, a small lake is situated, which serves as a constant inflow
condition to the dam.

Firstly, the domain is large when compared to academic problems. In order to keep the com-
putational time reasonable, one would choose relatively large elements. However, in order
to represent the front of the water well enough, small elements are needed in this region. An
increase in the number of elements inevitably leads to an increase in computational storage
requirements and execution time. Here, it is important to keep in mind that the problem
should still remain computable.
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Figure 1.2: System of a real-life dam. The different areas represent parts with different soil
parameters.

Secondly, the domain is composed of a large number of subdomains with different soil prop-
erties. The interfaces between, for example, different permeabilities constitute a challenge
to the numerical scheme. In the case considered here, multiple interfaces have to be consid-
ered in one time step. Also, the flow is not always perpendicular or parallel to the interfaces.
And, last but not least, a large variety of permeabilities leads to a non-well conditioned sys-
tem matrix and thus to a difficult solving behavior of the problem.

Thirdly, in some regions of the domain, advective processes dominate whereas, in other
regions, diffusion-dominated processes are present at the same time. This makes a further
demand on the numerical scheme, as each of these processes requires special treatment.

All together, these aspects result in the need for adaptive methods which, on the one hand,
improve the mesh-size resolution in critical areas (see Figure 1.3) and, on the other hand,
can be employed to steer the behavior of the numerical scheme. In this work, adaptivity
means that, according to an indicator which identifies regions of higher importance, steps
are taken to improve the solution in these regions whereas regions of lower importance are
treated with lower computational endeavor. This applies to the mesh size as well as the
numerical scheme.

1.2 Goal and structure

In this work, the adaptive capabilities of the numerical simulator MUFTE-UG are expanded.
The program combines the physical context and the discretization methods of MUFTE (Mul-
tiphase Flow, Transport, and Energy Model, Institut für Wasserbau, Stuttgart, e.g. Helmig et
al. [29], Class et al. [19]) with the solution methods and multigrid techniques of the software
toolbox UG (Unstructured Grids, Interdisziplinäres Zentrum für Wissenschaftliches Rech-
nen, Heidelberg, e.g. Bastian et al. [5]).

A powerful adaptive mesh refinement, even for parallel and three-dimensional simulations,
has already been implemented by Lang [44]. The aim of this work is to apply these tech-
niques to the strongly coupled hyperbolic-parabolic two-phase flow equations with par-
ticular reference to heterogeneities. Additionally, the goal is to provide an error indicator
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Figure 1.3: Different meshes for the simulation of a dike. Left: coarse mesh; middle: fine
mesh; right: adaptive mesh.

suitable for a large set of applications. It should not only be applicable to the incompress-
ible, isothermal two-phase flow investigated here, but also to even more complex problems
such as, for example, non-isothermal multiphase multicomponent flow. The emphasis lies
on its practical applicability to engineering tasks: the indicator should be easy to implement
and operate.

The adaptive mesh-refinement techniques were deployed to a variety of test cases ranging
from diffusion-dominated flows in a homogeneous medium to diffusive-advective flows in
a medium with a heterogeneity. Next to an adaptive mesh refinement and coarsening, an
adaptive choice of the numerical scheme (choice of the upwinding weighting) is also real-
ized to meet the requirements of regional flow behaviors. In order to arrive at a suitable
criterion for this choice, the two-phase Peclet number is derived. For a third adaptive vari-
ant, the Peclet number is used additionally to control the mesh-refinement and -coarsening
criteria. This leads to the following three cases: adaptive choice of mesh via indicator – adap-
tive choice of numerical scheme via Peclet number – adaptive choice of mesh via indicator
and Peclet number.

The different states of adaptivity employed in this work are brought together in the fol-
lowing graphic. In order to illustrate the current combination of options, a small icon will
indicate, which conditions are active. The icon in the margin, for example, represents the
state ’homogeneous domain, adaptive simulation, Peclet upwinding, standard adaptive re-
finement’. For consistency‘s sake, the uniform simulations will also be marked by an icon.

heterogeneous

uniform standard upwindinghomogeneous

adaptive Peclet upwinding Peclet adaptive

standard adaptive
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This thesis is structured as follows:

At first, the fundamentals of the physical and mathematical modeling of two-phase flow are
presented in Chapter 2. Here, the governing partial differential equations with their com-
plementary constitutive relationships are introduced. Also, the discretization techniques
applied in this work are explained. At this point, the focus is the special treatment of het-
erogeneities.

Next, the test cases for flow in a homogeneous medium are presented in Chapter 3. Three
representative cases covering the whole bandwidth of complexity of two-phase flow equa-
tions are chosen. For each of these cases, the simulation with a uniformly refined mesh is
carried out. They serve as reference solutions for the following adaptive simulations.

The basic principles of adaptive methods are then presented in Chapter 4. At first, an
overview of different adaptive methods is given. Then, the utilized error indicators are
discussed. Although the discretization method used in this work is considered as mass con-
servative, the adaptive method applied is not. Due to mesh manipulations, the mass in the
system can increase or decrease, depending on the problem. The background for this per-
formance and the algorithm ensuring mass conservation, which was developed in this work
for the simulation tool MUFTE-UG used here, are described in Chapter 5.

These chapters lead the way to the application of the chosen adaptive methods for the ho-
mogeneous test cases introduced earlier. Based on the results obtained by these simula-
tions (Chapter 6), a proposition for a criterion which is suitable for indicating the need for
a change in the numerical treatment is formulated. This criterion is based on the two-phase
Peclet number (Pe), which is introduced in Section 7.1. The investigations of the homoge-
neous test cases are completed in Chapter 7 by the application of the Pe-criterion on the
one hand to the choice of the numerical scheme, on the other hand to the refinement and
coarsening strategies.

In Chapter 8, the heterogeneous test case is introduced. Here, the uniform as well as adap-
tive simulation results with and without the developed Pe-criterion are presented.

Finally, the efficiency of the adaptive algorithm is underlined by comparing numerical sim-
ulation results with experimental data and applying it to a real-life dam in Chapter 9.

Chapter 10 ends this thesis with a summary and outlook.
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2.1 Basic definitions and concepts

Averaging process

A wide range of materials can be considered as porous media. Among them are, for exam-
ple, synthetic foams (used as an impact absorber in cars) and bone materials. The porous
material that will be considered in this thesis, however, is the subsurface. The subsurface
consists in general of soil material (e.g. sand, clay, loose or solid rock matrices) and is con-
nected to one or more of the following: the atmosphere, surface water and the sea (Dyck and
Peschke [22]). It may be fully or partially saturated by liquids, such as for example water.

Whether the porous media are regarded as compressible or not, they all have this charac-
teristic in common: they consist of a solid material (such as soil grains) and void spaces of
different sizes in between (either connected or not). These spaces are also called pores.

Especially for natural materials, it is impossible to describe the geometry of the pores and
grains completely. Therefore, the porous media flow models are often based on a continuum
approach. Here, the properties on the microscale1 are averaged over a representative ele-
mentary volume (REV), which represents the macroscale (≥ mm). The discontinuities that
are present on the microscale (for example microcracks, fluid interfaces) are now ’smeared’
and no longer distinguishable (see Figure 2.1). This averaging process creates a new set of
parameters, which are only available on the macroscale. These are, for example, the satura-
tion and the porosity. They will be explained further in the following.

The difficulties associated with the continuum approach lie in the choice of the size of a
REV: If too large a REV is chosen, process-relevant discontinuities (for example fractures or
lenses with a different permeability) may also be ’smeared out’ and the simulation results
may therefore give a wrong picture of the actual circumstances.

For the examples shown in this thesis, it is always assumed that a valid REV is chosen.

Wetting – non-wetting fluid

When two-phase flow in porous media are considered, the fluids cannot only be distin-
guished by their specific fluid properities such as density or viscosity. They also differ in
their contact angle θ towards a solid surface, for example the grain surface. By definition,

1On the microscale (< mm), the grain geometry is described precisely and the different fluids are separated
from each other by a distinct interface in the pores.
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Figure 2.1: Transition from the microscale to a continuum approach: the interfaces between
the different phases are no longer clearly distinguishable and new properties are
introduced. (Vα = volume fraction of phase α)

the contact angle lies between 0◦ and 180◦. If the angle is smaller than 90◦, the fluid is called
the wetting phase (see Figure 2.2). If the contact angle is larger than 90◦, the fluid is called
the non-wetting phase.

In the case of the fluids considered in this thesis, water represents the wetting fluid and will
in the following be marked by the index w. The non-wetting phase is represented by oil or
gas and is marked by the index n.
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Saturation

Of these two (immiscible) fluids, each one fills its share of the pore space. Although the
exact location of the fluid particles is (due to the averaging process) no longer known, how
much of the pore space in a REV is filled with a certain phase it is still of interest. This is
described by the saturation of phase α (Sα):

Sα =
volume of fluid α within the REV

volume of the pore space within the REV
(2.1)

It is assumed that all fluid phases fill the pore space completely, so the different saturations
must add up to one:

∑
α

Sα = Sn + Sw = 1 (2.2)

Porosity

As the name implies, a porous medium consists of a solid matrix and pores. The amount of
pore space in a porous medium is referred to as porosity φ:

porosity φ =
volume of the pore space

volume of the REV

The pores in a medium usually consist of connected flow paths and so-called dead-end
pores. A fluid flowing through a porous medium can only move along the flow paths. This
is accounted for by the effective porosity:

effective porosity φeff =
volume of the flow paths

volume of the REV

In the case of a two-phase flow, the presence of one fluid affects the flow paths of the other
fluid. So fluid w can only flow where fluid n is not. In order to describe this phenomenon in
terms of volumes, the effective porosity for phase α is used:

effective porosity for phaseα φeff,α =
volume of the flow paths for phaseα

volume of the REV

φeff,w = (1− (Swr +Sn)) ·φ
φeff,n = (1− (Sw +Snr)) ·φ

(2.3)

Here, Swr and Snr represent the residual saturations of the wetting and non-wetting phase
respectively. They will be explained further in the next section.

These different definitions for the porosity now have the following consequences for the
concepts of velocities:
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Velocity

For single-phase flow, the flow velocity of a fluid in a porous medium is usually given by
the Darcy velocity v:

v = −K f grad h (2.4)

Here, K f is the tensor of hydraulic conductivity and h is the piezometric head. This Darcy
velocity is derived from an experimental point of view: it describes the amount of fluid (Q,
in [m3/s]) that flows over the whole cross-section of the domain (Adomain, in [m2]). So this
velocity assumes that the fluid flow is not restricted to the pores of a porous media alone,
but uses the complete area.

Of course, in reality the flow only takes place in the pores, so the same amount of fluid has
to flow through a much smaller area with a much higher velocity. The resulting velocity is
called average velocity va:

va =
v

φeff
(2.5)

For an extension to multiphase flow, we first rewrite the Darcy law (2.4):

v = −K f gradh

= −K
ρ g
µ

grad(
p

ρ g
+ z)

= −K
1
µ

(grad p+ρ g)

(2.6)

Here, the following relationships are included:

1. K f = K ρ g
µ

with the properties:
K f : tensor of hydraulic conductivity [m/s]
K : tensor of (intrinsic) permeability (depends solely

on the soil properties)
[m2]

ρ : fluid density [kg/m3]
g : (scalar) gravitational acceleration [m/s2]
µ : dynamic fluid viscosity [kg/(m s)]

2. h = p
ρ g

+ z

This states that the hydraulic head h is the sum of the pressure head p
ρ g

and the eleva-
tion head z.

3. ρ grad(g z) = ρ g

The multiplication of the scalar gravitational acceleration with the gradient of the el-
evation head results in the vector of gravitational acceleration g with the components
(0, 0, -g)T .
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Next, the Darcy law is expanded to multiphase flow (see Scheidegger [57], Helmig [31]):

vα = − 1
µα

Kα (grad pα − ρα g)

= − krα

µα
K (grad pα − ρα g)

= − λα K (grad pα − ρα g)

(2.7)

vα is called the phase velocity, where α represents the subscript for the different phases
w and n. Kα and krα denote the permeability and the relative permeability for each phase
respectively. The relative permeability will be discussed in the next section. The ratio krα

µα
is

also called mobility λα.

Now it is possible to define an average phase velocity va,α:

va,α =
vα

φeff,α
(2.8)

2.2 Constitutive relationships

Capillary pressure

As shown in Figure 2.2, the interface between a wetting and a non-wetting phase is always
curved. Due to equilibrium constraints, the pressure of the non-wetting phase has to be
larger at the interface than the pressure of the wetting phase. The difference between those
two pressures is called capillary pressure pc:

pc = pn− pw (2.9)

On the microscale, the capillary pressure depends on the interfacial tension and the pore
radius (see, for example, Helmig [31]). The smaller the pore radius, the larger the capillary
pressure. This implies that, in the case of a drainage of the wetting phase, the larger pores
are drained first and the fluid remains in the smaller pores. The resulting amount of wetting
phase that is left in the porous medium is called the residual saturation Swr (of the wetting
phase).

In analogy to the residual water saturation, a residual gas saturation Snr can also exist. This
means that, if the porous medium is filled to the maximum with water, small entrapped gas
or oil bubbles still exist that will not vanish in a simple infiltration process of water.

The existence of the residual saturations makes it clear that the concept of the capillary
pressure only makes sense for saturation states between these two extrema. In order to
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describe this in-between state and to scale the behavior for different residual saturations,
the effective saturation Se is introduced:

Se =
Sw − Swr

1 − Swr − Snr
0 ≤ Se ≤ 1 (2.10)

The relationship between the decrease of the saturation of the wetting phase and the increase
of the capillary pressure is expressed in the capillary pressure - saturation function. By
convention, this function is mostly expressed in Sw rather than Se:

pc = pc(Sw) (2.11)

Due to the irregular (and unknown) pore geometry, this relationship cannot be determined
analytically. Next to an experimental identification of the pc(Sw)-function, which is compli-
cated and costly, various empirical approaches exist.

The simplest one is to assume a linear dependence (see Figure 2.3 (left)):

pc(Sw) = pcmax

(
1 − Sw − Swr

1 − Swr − Snr

)
(2.12)

Here, pcmax represents the maximum capillary pressure for Sw(r) = 0.

A more sophisticated approach is the one after Brooks and Corey [14]:

pc(Sw) = pd

(
Sw − Swr

1 − Swr − Snr

)− 1
λ

(2.13)

pd represents the entry pressure (see Figure 2.3 (right)). This is the minimum pressure that
has to be overcome in order for the non-wetting phase to displace the wetting phase in the
system. This pressure is also called displacement pressure. The λ-parameter describes the
grain-size distribution of the soil. A small λ describes a highly non-uniform material while
a large λ-value stands for a material, consisting of a single grain size.

Relative permeability

Beside the capillary pressure, the relative permeability kr represents another important
quantity for multiphase flow.

Each phase α has a krα, which can be seen as a scaling parameter. It describes to what extent
the presence of one fluid disturbs the flow behavior of another fluid. This disturbance is
due to interaction forces as well as to a change of possible flow paths.
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Figure 2.3: Capillary pressure functions. Left: linear; right: after Brooks and Corey

For example, if the saturation of the non-wetting phase is increased, it will at first fill the
larger pores and will therefore restrict the wetting phase to the smaller pores and thus cause
longer flow paths.

So if one phase fills out the available pore space completely (not regarding the residual
saturation of the other phase), the relative permeability for this phase is 1. On the other
hand, if a phase is only present in residual saturation and therefore immobile, the relative
permeability is 0.

As it is impossible to describe the complex pore geometry precisely, the relationship between
the relative permeability and the saturation can only be described quantitatively.

Again, the simplest approach is to assume a linear relationship (see Figure 2.4 (left)):

krw(Sw) = Se (2.14)

krn(Sw) = 1−Se (2.15)

Here, again an approach after Brooks and Corey [14] is introduced (see Figure 2.4 (right)):

krw(Sw) = Se
2+3λ

λ (2.16)

krn(Sw) = (1−Se)
2
(

1−Se
2+λ

λ

)
(2.17)

As can be seen in Figure 2.4 (right), the two relative permeabilities do not add up to one for
this case. This means that both phases influence and slow each other down.
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2.3 Two-phase flow equations

The balance equations for the flow of two immiscible fluid phases in porous media are given
by the conservation of mass (Eq. (2.18)) and the conservation of momentum in terms of the
extended Darcy law (Eq. (2.19), see also Section 2.1):

∂(Sα φ ρα)
∂t

+ div (ρα vα) − ρα Qα = 0 (2.18)

vα = − krα

µα
K (grad pα − ρα g) α ∈ {w,n} (2.19)

For the two-phase flow of water and oil or gas, water represents the wetting (w) and oil or
gas the non-wetting (n) phase (see p. 7).

In Eqs. (2.18) and (2.19), the variables denote the following quantities (in order of appear-
ance): Sα unknown saturation, φ porosity, ρα density, t time, vα velocity, Qα a source or sink
in the domain, krα relative permeability, K intrinsic permeability tensor, µα dynamic viscos-
ity, pα unknown pressure, and g vector of gravitational acceleration. Inserting Eq. (2.19) into
Eq. (2.18) yields the two-phase flow equation:

Lα(pα,Sα) :=
∂(Sα φ ρα)

∂t
− div (ραλα K (grad pα − ρα g))

− ρα Qα = 0 α ∈ {w,n} (2.20)

with the mobility λα = krα/µα.

This equation is completed by two supplementary equations:

1. The void space in the porous medium is completely filled by the different fluid phases:

Sw +Sn = 1 ⇒ ∂Sw

∂t
=

∂(1−Sn)
∂t

= − ∂Sn

∂t
(2.21)
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2. The capillary pressure pc represents the difference between the two fluid pressures at
every point:

pc = pn− pw ⇒ grad pc = grad pn− grad pw (2.22)

With the use of these relations, two of the four unknowns in Eq. (2.20) (pw, pn,Sw,Sn) can be
eliminated. This results either in a pressure - pressure, saturation - saturation or pressure -
saturation formulation (Helmig [31]).

At first, we take a look at the saturation formulation (e.g. Aziz and Settari [1]). Equation
(2.18) can be formulated for each phase as follows:

wetting phase (e.g. water) w

L(Sw,vw) := φ
∂(ρwSw)

∂t
+ div {ρwvw}−ρwQw = 0 (2.23)

non-wetting phase (e.g. oil) n

L(Sn,vn) := φ
∂(ρnSn)

∂t
+ div {ρnvn}−ρnQn = 0 (2.24)

If we assume that both phases are incompressible (division by ρα is possible), apply Eq.
(2.21) and add Eqs. (2.23) and (2.24), we obtain

φ
[

∂Sw

∂t
+

∂(1−Sw)
∂t

]
+ divvw + divvn−Qw−Qn = 0 (2.25)

After introducing the total velocity vt = vw + vn and simplifying the time-derivative term,
we get the following relationship:

divvt = div(vw +vn) = Qw +Qn = Qt (2.26)

Next, we write Darcy’s law for each phase:

vw =−λwK (grad pw−ρwg)

vn =−λnK (grad pw + grad pc−ρng)
(2.27)

If the equation for vn is multiplied by −λw
λn

and then subtracted from the equation for vw, we
get after some rearranging

vw =
λw

λn
vn +λwK (grad pc +ρwg−ρng) (2.28)
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and with vn = vt −vw

vn =
1

1+ λw
λn

[vt −λwK (grad pc +ρwg−ρng)] (2.29)

Now we introduce the fractional flow functions

fn =
λn

λw +λn
=

krn(Sn)
µn

krw(Sw)
µw

+ krn(Sn)
µn

; fw =
λw

λw +λn
=

krw(Sw)
µw

krw(Sw)
µw

+ krn(Sn)
µn

(2.30)

and the mean mobility

λ =
λwλn

λw +λn

so the resulting equation is

vn = fnvt −λK(grad pc +ρwg−ρng) (2.31)

If we now insert Eq. (2.31) into Eq. (2.24), we get

−φ
∂Sw

∂t
+ div

[
fnvt −λK(grad pc +ρwg−ρng)

]
−Qn = 0 (2.32)

Next, the following relationships are introduced:

grad pc =
d pc

d Sw
gradSw

div( fnvt) = vt grad fn + fn divvt

= vt
d fn
d Sw

gradSw + fnQt

div
[

λ K (ρwg−ρng)
]

= K (ρwg−ρng) · gradλ

= K (ρwg−ρng) · dλ
d Sw

gradSw

fn + fw = 1
d fn
d Sw

= −d fw
d Sw

−Qn + fnQt = Qw− fwQt

(2.33)

We have to remember that the fluids were assumed to be incompressible. Also, it is assumed
that g is not a function of space.
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If we now insert these relationships in Eq. (2.32), we finally obtain the saturation formula-
tion for two-phase flow:

L(Sw) := − φ
∂Sw

∂t︸ ︷︷ ︸
term 1

−
[

vt
d fw
d Sw

+K (ρwg−ρng)
dλ
d Sw

]
· gradSw

︸ ︷︷ ︸
term 2

− div
[

λK
d pc

d Sw
gradSw

]

︸ ︷︷ ︸
term 3

+(Qw− fwQt)︸ ︷︷ ︸
term 4

= 0

(2.34)

In order to solve this equation, vt has to be calculated beforehand, which is by no means
trivial for 2D.

As the capillary pressure and the relative permeability show a highly non-linear dependence
on the saturation, Eq. (2.34) represents a strongly coupled non-linear partial differential
equation, which is of a mixed parabolic-hyperbolic type.

With the help of the four terms identified in Eq. (2.34) - an accumulation or storage part
(term 1), an advective or convective part (term 2), a diffusive part (term 3), and a source and
sink part (term 4) - the mixed character of the two-phase flow will be further explained:

For low water saturations (Sw ≈ Swr), the absolute value of the derivative of the capillary
pressure d pc

d Sw
becomes significantly large (see Figure 2.5) and therefore term 3 dominates Eq.

(2.34). In this case, the differential equation is formally parabolic.

If, however, the water saturation is very large (Sw ≈ 1−Snr), d pc
d Sw

tends to zero and term 2
dominates the equation. In this case, the character of Eq. (2.34) becomes hyperbolic.

Since in a problem domain the water saturation is usually not constant but ranges between
the aforementioned extremes, both parabolic and hyperbolic properties are present at the
same time and have to be accounted for by the numerical scheme.

The approximation of the advection (hyperbolic) term is the main problem for discretizing
the two-phase flow equations. In order to explain the problems that arise here, we have a
look at a special case of the two-phase flow: the Buckley-Leverett problem, which is also
described in Section 3.1.1. Here, capillary effects are neglected (term 3 = 0) and sources and
sinks are omitted. For a quasi-1D system, this leads to the following equation (Buckley and
Leverett [15]):

φ
∂Sw

∂t
+vt

d fw
d Sw︸︷︷︸

fw′

∂Sw

∂x︸︷︷︸
gradSw

= 0 (2.35)
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Figure 2.5: Example of a capillary pressure curve after Brooks-Corey and its derivative with
respect to Sw (Swr = 0)

In this case, the water saturation will move at a rate proportional to the derivative of the
fractional flow function ( fw′) and the shape of the saturation profile becomes similar to that
of fw′ (Dullien [21]).

As can be seen in Figure 2.6, the shape of fw′ is non-convex for a non-linear relative perme-
ability function. Therefore, more than one value of the saturation can be associated with a
certain value of fw. As a front shape like this would be physically meaningless, the correct
saturation profile can be found by satisfying two conditions (Lake [43], Helmig [31]):

1. Rankine-Hugenoit jump condition:
With the help of the law of conservation of mass, a sharp front or shock is constructed,
which results in a discontinuity of the saturation (Dullien [21], LeVeque [47]).

Graphically, the front is constructed by drawing a tangent to the fractional flow curve
from the point of the initial saturation in the domain (Swr) (see Figure 2.7). At the point
of Sw t (saturation at the tangent point), the area of the fields A and B in the left picture
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are the same: mass is distributed equally. In this figure, also Sw i is pictured, which
represents the saturation at the inflection point.

The front velocity has to fulfil the following condition (Helmig [31]):

ṽ∆Sw =
fw(Su

w)− fw(Sd
w)

Su
w−Sd

w
=

∆ fw
∆Sw

(2.36)

Here, Su
w represents the upstream and Sd

w the downstream water saturation of the
shock. This means that the velocity at which the front travels is proportional to the
slope of the tangent. Saturations which are larger than Sw t (see Figure 2.7) travel at a
velocity that is proportional to the tangent at these saturations.

Equation (2.36) states that the specific front velocity has to correspond to the physical
process (jump in the saturations, relative permeability - saturation relationship) in or-
der to satisfy the continuity condition at the jump. This condition, however, does not
guarantee that the form of the solution corresponds to the physical solution. This is
checked by the next condition:

2. Entropy condition:
The saturation jump has to satisfy (LeVeque [47]):

fw(Sw)− fw(Su
w)

Sw−Su
w

≥ vshock≥ fw(Sw)− fw(Sd
w)

Sw−Sd
w

(2.37)

This is valid for all Sw(x, t) between Su
w and Sd

w. Interpreted physically, the upstream
velocity vu of the shock always has to be larger than the downstream velocity vd. Or
in other words, the formulation for the shock front must be self-sharpening.

If capillary pressure effects dominate, the entropy condition is fulfilled (Helmig [30]).
If, however, term 3 in Eq. (2.34) tends to zero, the discritization method has to intro-
duce enough numerical diffusion in order to continue to satisfy the entropy condition.

The two above-mentioned conditions are explained using the example of a special case; they
are, however, also valid for general two-phase flow.

For most practical applications, the saturation formulation is not feasible due to the a priori
calculation of the total velocity and the constriction to incompressible fluids alone. There-
fore, as it is also the case in this work, the pressure-saturation formulation is applied.

For the unknowns water pressure pw and oil saturation Sn, the resulting equations look as
follows :

wetting phase (e.g. water) w

Lw(pw,Sn) := −φ
∂(Sn ρw)

∂t
− div (ρw λw K (grad pw − ρw g))

− ρw Qw = 0 (2.38)
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non-wetting phase (e.g. oil) n

Ln(pw,Sn) := φ
∂(Sn ρn)

∂t
− div (ρn λn K (grad pc + grad pw − ρn g))

− ρn Qn = 0 (2.39)

or in a more general way:

Lα(pw,Sn) := (−1)δαw φ
∂(Sn ρα)

∂t
− div (ραλα K (grad pw + δαn grad pc − ρα g))

− ρα Qα = 0 α ∈ {w,n} (2.40)

The porosity φ is assumed to be constant over time.

In this formulation, the advective (hyperbolic) and diffusive (parabolic) properties of the
two-phase system cannot be explicitly distinguished. This makes the numerical treatment
of these equations even more challenging, as both effects need a special treatment.

In order to identify regions where one of these properties dominates and therefore to im-
prove the numerical scheme, a criterion can be applied which describes the interaction be-
tween advection and diffusion in the system: the Peclet number. This will be further ex-
plained in Section 7.1.
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2.4 Discretization

For the partial differential equations describing two-phase flow in porous media which were
introduced in the previous section, analytical solutions only exist in a few special cases.
Therefore, numerical methods are applied, which, by means of a discretization scheme, ap-
proximate the partial differential equations by algebraic equations. As each of these approx-
imations covers only a small domain in space and/or time, the numerical solution is then
obtained at discrete points in space and time (Ferziger and Perić [24]).

In order to represent a suitable discretization scheme, the chosen method must meet certain
requirements. Generally, it has to be consistent (for a refinement of the discretization length
(either space or time), the difference between the numerical solution and the analytically
exact solution of the differential equation tends to zero), stable (small errors in the solution
which occur during the numerical simulation, are not amplified), and convergent (for a
decrease in the grid spacing, the numerical solution tends towards the exact solution of the
differential equation). Furthermore, the discretization method should embrace the physical
character of the differential equations: since the two-phase flow equations introduced here
are based on conservation laws, the numerical scheme should reflect these laws by being
e.g. mass conservative.

For the discretization of flow equations, different approaches exist. The basic techniques are
the finite difference method, the finite element method, and the finite volume method. An
overview of different discretization schemes and their properties can be found, for example,
in Huyakorn and Pinder [36], Forsyth [25], Helmig [31], and Hinkelmann [33].

In the following sections, the numerical methods utilized in this work are introduced. Since
transient problems are considered, a discretization for space as well as time has to be pro-
vided. In Section 2.4.1, the applied time discretization method will be described. After-
wards, in Section 2.4.2, the chosen space discretization schemes will be explained. In this
thesis, a node-centered finite volume method which is based on a Galerkin finite element
method, the so-called Box Method, will be applied. It has the advantage that it can be em-
ployed for unstructured grids. Furthermore, the method is locally (for each finite volume)
mass conservative. In this section, a discretization technique, which pays special attention
to the handling of interfaces between differently permeable soils, is also explained. The last
section of this chapter is devoted to the solution process of the obtained algebraic equations.

The discretization techniques described here will be applied in the further course of this
work to homogeneous as well as heterogeneous test problems. As for two-phase flow prob-
lems, special attention has to be paid on the one hand to the treatment of the strong non-
linear advective terms, on the other hand diffusion dominated processes also have to be
accounted for correctly; the Box Method described here will be utilized for both extremes.

The convergence behavior of this method (improvement of the numerical solution for de-
creasing element sizes) serves later on as a basis for the adaptive methods applied in this
work. Also, it will be shown that the different extremes of the two-phase flow equations
each require a special treatment concerning the discretization. Therefore, a special proce-
dure for the Box Method explained here will be introduced in Chapter 7.
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2.4.1 Discretization in time

When unsteady flows are computed, as it is the case for the two-phase flow equations intro-
duced in the previous section, a time discretization needs to be applied.

The particular distinctiveness of time lies in the direction of influence: interferences imposed
on the flow at a given instant will affect the flow only in the future - there is no backward
influence. This implies that (apart from boundary conditions) it is not possible to apply
conditions to the solution at any time after the start of the calculation.

Generally, two different methods of time discretization can be distinguished:

On the one hand, time can be considered as ’just another dimension’. This approach leads
to, for example, space-time finite element methods and space-time Discontinuous Galerkin
methods.

On the other hand, a semi-discrete method can be applied. Here, the time-derivative term
in the equations is approximated by either a one-step or a multi-step scheme. While the first
one only consideres values of the solution for tn for the computation of the current point
in time tn+1, the latter additionally embraces solutions at preceding time levels tn−k (k≥ 0).
For multi-step schemes the data as well as the mesh needs to be stored for all time levels
considered. This leads to an increase in transfer operations which, especially when space-
adaptive methods are applied, is not unproblematic.

For the time discretization in this work, the implicit Euler scheme (finite difference method
of the first order), a one-step scheme, is applied. Here, the time-dependent partial derivative
of an unknown u is approximated by:

∂u
∂t

=
un+1−un

∆t
= f (un+1) with ∆t = tn+1− tn (2.41)

The indices n+1 and n denote the point in time at which u is evaluated. As the right-hand
side is formulated for the new time level, a system of equations with all degrees of freedom
has to be solved for each time step. For the time dependent terms in Eqs. (2.38) and (2.39),
the discretization with the implicit Euler scheme yields:

wetting phase (w) non-wetting phase (n)

−{[Sn ρw]n+1
j − [Sn ρw]nj}

φ
∆t

{[Sn ρn]n+1
j − [Sn ρn]nj}

φ
∆t

(2.42)

The implicit Euler scheme is unconditionally stable for arbitrary time steps and very suit-
able also for complex problems (e.g. Helmig [31], Helmig and Bastian [27]). Yet it has to be
remarked that an investigation of the Taylor series expansion shows that due to the time dis-
cretization numerical diffusion is introduced in the system (Helmig [30]). However, efforts
to reduce this effect are made by the application of an automatic time step control, which is
implemented in MUFTE-UG (see Section 2.4.3).
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2.4.2 Discretization in space

2.4.2.1 Subdomain collocation finite volume method (Box Method)

For the spacial discretization, the Box Method (subdomain collocation finite volume
method) is used (Bastian [7], Helmig [27]). First, the model domain G is discretized by a
finite element (FE) mesh consisting of a set of nodes Ki and a set of adjoining elements ei

(see Figure 2.8). The boundary ∂G of the domain is composed of parts which have a Dirich-
let boundary condition (Γα,D) and parts holding a Neumann boundary condition (Γα,N), so
that: ∂G = Γα,D∪Γα,N with α ∈ {w,n}.

Then, a secondary finite volume (FV) mesh is constructed in the following way: for each
node Ki , a control volume or box Bi is constructed by connecting the midpoints of the ad-
joining element sides and the barycenters of the neighboring elements. Each control volume
Bi consists of k subcontrol volumes bk

i , which describe the intersection of Bi with the ele-
ments ek connected to node Ki (see Figure 2.8). The boundary of the box is described by ∂Bi ,
the integration path along this boundary is given by ΓBi . The right part of Figure 2.8 shows
the representation for an element. Here, the different subcontrol volumes (scv’s) inside an
element are pictured. In addition, the subcontrol volume faces (scvf’s), dividing the indi-
vidual subcontrol volumes and connecting the edge midpoints with the element barycenter,
are shown. Furthermore, the integration point (IP) xk

i j located in the middle of a subcontrol
volume face between the subcontrol volumes bk

i and bk
j is explained. And last but not least,

the outer normal vector nk
i j for a subcontrol volume face is indicated.

Another thing that can be observed in Figure 2.8 is that two subdomains of G, which have
different properties, meet along the boundary of control volumes as indicated by Γ. As a
consequence, different properties can exist in one element, but a control volume always has
one specific property.
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Figure 2.8: Overlap of the FE and FV mesh (left), zoom into element e6 with corresponding
subcontrol volumes (right) (after Jakobs et al. [37])
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Just like the finite element method, the Box Method is based on the principle of weighted
residuals:

The function of an unknown f (u) in the whole domain is approximated ( f (ũ)) by the dis-
crete values at the nodes of the discretization mesh (û j ) and linear basis functions (Nj ).
For the pressure - saturation formulation, this yields:

S̃α = ∑
j

Ŝα j ·Nj

p̃α = ∑
j

p̂α j ·Nj grad p̃α = ∑
j∈ηi

(p̂α j − p̂αi)gradNj

g̃ =−g ∑
j

ẑj ·Nj gradz = ∑
j∈ηi

(ẑj − ẑi)gradNj

(2.43)

where g is the gravitational acceleration, ẑj is the z-coordinate for node j and ηi is the set of
all neighboring nodes of node i. The basis functions Nj are common C0-Lagrange polynomi-
als with the value 1 for node j and 0 for all other nodes.

If the approximations of Eq. (2.43) are inserted into the partial differential equations (2.40),
they are no longer exact fulfilled, but lead to a residuum ε. Application of the principle
of orthogonality leads to the residuum being weighted with weighting functions Wi and
vanishing in the whole domain G:Z

G

Wi · ε dG
!= 0 with ∑

i

Wi = 1 in G (2.44)

Generally speaking, each of the weighted two-phase flow equations can be written as:Z
G

Wi
∂e
∂t︸ ︷︷ ︸

I

dG +
Z
G

Wi divF︸ ︷︷ ︸
II

dG −
Z
G

Wi r︸︷︷︸
III

dG
!= 0 (2.45)

where

for the pw−Sn-formulation:

e : scalar entity eα = Sn φρα
F : advective flow and diffusion Fα = ρα vα
r : sources and sinks rα = ρα Qα

For the time-dependent term I of the pressure - saturation equations for the wetting (Eq.
(2.38)) and non-wetting (Eq. (2.39)) phases and taking into account Eqs. (2.42) and (2.43),
the following expression is obtained:
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(−1)δαw

Z
G

Wi φ
∂(S̃n ρα)

∂t
dG

= (−1)δαw

Z
G

Wi φ{[S̃n ρα]n+1
j − [S̃n ρα]nj}

1
∆t

dG

= (−1)δαw

Z
G

Wi φ
1
∆t

Nj {[Ŝn ρα]n+1
j − [Ŝn ρα]nj} dG

= (−1)δαw ∑
j∈ηi

Mi j φ
1
∆t
{[Ŝn ρα]n+1

j − [Ŝn ρα]nj} α ∈ {w,n} (2.46)

Here, ηi is the set of all neighboring nodes of node i and δαw represents the Kronecker delta.
For the mass matrix Mi j =

R
G

Wi Nj dG, a mass lumping is applied (Helmig [31], Huber [35]).

The physical interpretation is a reduction of the storing capacities of the mesh on the nodes
only. Mathematically, this is expressed by:

Mlump
i j =

{ R
G

Wi dG =
R
G

Ni dG = Vi for i = j

0 for i 6= j
(2.47)

where Vi represents the volume for the box associated with node i. All coefficients of a row
of the mass matrix are concentrated in the diagonal entry.

Analogously, the source-sink term III yields:Z
G

Wi (ρα Qα) dG = Vi
(
ρn+1

αi Qn+1
αi

)
(2.48)

Qα denotes the flow rate of a source or sink in the domain and is given in the units of
[(m3 / s) · (1 / m3)] = [1/s] (flow rate per volume of the subcontrol volume).

For term II, at first the chain rule and then the Green-Gaussian integral theorem is applied:

Z
G

Wi divF dG =
Z
G

grad(Wi ·F) dG −
Z
G

(gradWi) ·F dG

=
I

∂G

(Wi ·F) ·n d∂G −
Z
G

(gradWi) ·F dG (2.49)

Here, ∂G represents the boundary of the domain G and n denotes the outer normal vector of
∂G.

For the Box Method, the weighting function is chosen as follows: Wi is chosen as piecewise
constant over the control volume Bi with the following constraints:
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Wi(x) =
{

1 if x ∈ Bi

0 if x /∈ Bi
(2.50)

With this definition, gradWi in Eq. (2.49) results in 0 and only the surface integral remains
(the value of Wi on the border of Bi is 1).

If this is applied to Eq. (2.20) and the definitions of Eq. (2.43) are inserted, the following
expression is obtained:Z

G

Wi divF dG

= −
Z
G

Wi div (ρα λα K (grad p̃w +δαn grad p̃c−ρα g̃)) dG

= −
Z
G

Wi div

(
ρα λα K

(
∑
j∈ηi

(p̂w j− p̂wi) + δαn ∑
j∈ηi

(p̂c j− p̂ci)

− ραg ∑
j∈ηi

(ẑj − ẑi)

)
gradNj

)
dG

= −
Z
G

Wi div

(
ρα λα K ∑

j∈ηi

(ψα j −ψαi)gradNj

)
dG

= −
I

∂Bi

Wi

(
ρα(i j ) λA

α(i j ) K ∑
j∈ηi

(ψα j −ψαi)gradNj

)
·n dΓBi

= − ∑
l∈Ei

∑
j∈ηi

ρn+1
α(i j ) λA,l

α(i j ) γBOX,l
i j (ψn+1

α j −ψn+1
αi ) − mαi (2.51)

Here, Ei is the set of elements which are connected to node i.

ψαi represents the total potential of phase α at node i and is defined as:

ψαi = p̂wi +δαnp̂ci−ραi g ẑi (2.52)

where ẑi is the geodetic height of node i. The direction of the (discrete) flow of phase α is
therefore represented by (ψα j −ψαi).

γBOX
i j is the transmissivity integral with:

γBOX
i j =

I
∂Bi\Γα,N

K gradNjndΓBi (2.53)

Note that the integral comprises the boundaries of all boxes Bi , but excludes the Neumann
boundaries Γα,N.
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The flow over these boundaries (∂Bi ∩Γα,N) is considered by mαi [kg / (m2 s)].

The subscript (i j ) indicates that this value is evaluated at a location halfway between the
nodes i and j , where the box boundary intersects with the element edge. For the density,
this results in an arithmetic weighting:

ρα,(i j )/2 =
1
2

(ραi +ρα j) (2.54)

For the mobility in Eq. (2.51), the superscript A states that λ can be included in different
ways:

For the central weighting method (A = cent), the mobility is also weighted arithmetically
along the element edge l i j :

λcent
α(i j ) =

1
2

(λαi +λα j) (2.55)

As already introduced in Section 2.3, the entropy condition always has to be fulfilled. If
the capillary effects are not dominant enough, numerical oscillations and erroneous front
approximations will occur and impair the solution. The standard procedure for avoiding
this behavior is to introduce an optimal dose of artificial diffusion. This can be achieved with
a wide range of schemes (for an overview, see Helmig [30], Kröner [41]). The method that
was pursued in this work is the fully upwind method, where the mobility λ is considered
constant in an element and holds the value of the mobility at the upstream node (see Figure
2.9).

This is evaluated by the following expression (A = up):

λup
α(i j ) =

{
i for (ψα j −ψαi )≤ 0
j for (ψα j −ψαi ) > 0

(2.56)

The artificial diffusion results in a stabilization of the solution (Lantz [45], Leonard [46]).
A side effect, however, is an anisotropic dispersion and a smearing of the saturation front
(Helmig [30]). As the non-linear two-phase flow equations are self-sharpening, however,
this smearing has a less dramatic effect on the solution than in the case of linear problems
(Aziz and Settari [1]).

x∆

vn
IP

i jλ i jλ

n iψ
n jψ iλ

jλiλ
jλ

i jIPupstream downstream i ij j

central weighting fully upwind

Figure 2.9: Different weighting of the mobility
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In order to choose the degree of upwinding in the numerical code, the upwind parameter
αup is introduced as follows:

λIP = αup ·λup+(1−αup) ·λcent with 0.0≤ αup≤ 1.0 (2.57)

A value of αup = 0.0 therefore results in a centrally weighted scheme, whereas αup = 1.0
leads to the fully upwinding method.

Combining Eqs. (2.46), (2.51), and (2.48) yields the expression for the box-discretized pw−Sn

two-phase flow equations:

gαi(pn+1
wi , pn+1

w j ,Sn+1
ni ,Sn

ni) = (−1)δαw ∑
j∈ηi

Mi j φ
1
∆t
{[Ŝn ρα]n+1

j − [Ŝn ρα]nj}

+− ∑
l∈Ei

∑
j∈ηi

ρn+1
α(i j ) λA,l

α(i j ) γBOX,l
i j (ψn+1

α j −ψn+1
αi )

−Vi
(
ρn+1

αi Qn+1
αi

)

−mαi (2.58)

In the code of MUFTE-UG (Bastian et al. [5], Bastian [6], Helmig et al. [29]), the Box Method
- which is a combination of a finite element and finite volume method - is realized in such
a way that the entries in the global stiffness matrix are computed according to the finite
element formulation. This means that, inside a loop over all elements, all line integrals
within a single element are computed. These line integrals are made up of segments of
control volume boundaries, which are approximated by the midpoint rule: the value at the
integration point x(i j ), which is the midpoint of the subcontrol volume face between the
nodes i and j (see Figure 2.8), is multiplied by the length of the corresponding subcontrol
volume face.

2.4.2.2 Approximation of heterogeneities

In order to satisfy the momentum equation at the interface between two subdomains with
different material properties, the capillary pressure has to be continuous over the inter-
face (Bear [10]). This condition is called the capillary equilibrium condition (van Dujin
et al. [20]). It implies that the saturation at the interface experiences a jump, as explained in
Figure 2.10: For the same value of pc interface, the saturation of water is smaller in the coarse
domain (S1

w) than in the fine-sand lense (S2
w).

For a fully water-saturated medium, the capillary equilibrium condition is violated when
a Brooks-Corey capillary pressure function is applied. In this case, the capillary pressure
takes the value of the entry pressure pd, which leads to pc|G1(Sw = 1) = pd|G1 < pd|G2 =
pc|G2(Sw = 1) (see Figure 2.10). In this figure, also S∗w is shown. It represents the threshold
saturation: here, the capillary pressure of the coarse material is equal to the entry pressure
of the fine material.
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Figure 2.10: Jump of the saturation at the interface of two different media due to the conti-
nuity in the capillary pressure

If the central weighted box scheme is used for heterogeneities, one runs into the problem
described in Figure 2.11 at t = ti . Due to the higher capillary pressure in the fine-sand domain
(comprising the nodes K3 and K4 in this example), a pressure gradient for the non-wetting
phase points in the opposite direction of the flow. As, however, Sn and therefore the mobility
λn are zero, no flow is possible. When the non-wetting phase approaches the interface at
t = ti +1, Sn|K2 and with it λn|K2 become larger than 0. As the mobility is interpolated linearly
between the two nodes on each side of the interface (here: nodes K2 and K3), λn is larger
than 0 at the integration point on the interface. This means that a flow of the non-wetting
phase is possible. As the pressure gradient points from the fine-sand lense to the coarse
domain (here: from right to left), the non-wetting phase flows out of the lense, which leads
to negative saturations. This is clearly a highly non-physical effect.

The fully upwinding scheme ensures a correct reproduction of the physical flow situation
(Helmig and Huber [28]). In the case of our example, node K3 is the upstream node for
the integration point at the interface. The corresponding mobility is zero - again, no flow
is possible. However, as the non-wetting phase enters the lense, the convergence of the
numerical solver deteriorates noticeably. This is due to the fact that the upwind vertex
oscillates between the nodes K2 and K3, depending on the current pressure state.

Another problem one runs into when applying the Box Method is depicted in Figure 2.12.
Here, the distribution of pw and pn across an interface of two subdomains with different
permeabilities is shown (left: coarse material, high permeability, low entry pressure; right:
fine material, low permeability, high entry pressure). The state is shown for a fully water-
saturated domain.

In order for the non-wetting phase to infiltrate into the fine sand domain, the corresponding
entry pressure, or rather the difference between the entry pressures of the two domains p∆

d ,
has to be overcome. The analytical case is indicated by the number 1. Here, the interface is
evaluated exactly at the borderline of the two domains. The corresponding saturation of the
non-wetting phase which has to be reached represents 1−S∗w, as explained in Figure 2.10.

Numbers 2 to 4 in Figure 2.12 represent different discretization lengths, where the symbols
indicate the respective node location. Note that the interface is always located between
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Figure 2.11: Sn, pn, pc, and λn for a centrally weighted method at an interface between differ-
ent materials
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two nodes, as explained in Figure 2.8. Due to the discretization, the absolute value of the
first pressure of the non-wetting phase encountered in the fine-sand domain decreases for
increasing element lengths. For the same reason, the absolute value of the pressure for the
last node in front of the interface increases.

As can be seen by comparing the lengths of the lines representing the pressure differences
for cases 1 through 4, the pressure which has to be overcome for infiltration decreases. In
the case of the discretization represented by number 4, the pressure in the coarse domain is
already larger than the pressure in the fine domain: Here, the non-wetting phase can enter
immediately.

In order to avoid this dependence on the discretization length and to ensure that the non-
wetting phase can only infiltrate when the entry pressure and S∗w has been reached, another
discretization scheme can be applied, which is described in the next section.

2 23 34 4
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{

: different discretization lengths

: pressure, which has to be overcome for infiltration
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n
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2
34

1

Figure 2.12: Explanation of different entry pressures for different discretization lengths for
the Box Method
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2.4.2.3 The PPSIC Method (Box-Trans Method)

The scheme presented in this section is called phase pressure saturation interface condition
(PPSIC) or transition condition (trans-condition) (Helmig et al. [32], Bastian et al. [8]).
Here, the transition of the saturations at the interface is computed by regarding the capillary
pressure pc at the interface as a quasi-primary variable.

At first, the threshold saturation S∗w is defined according to Figure 2.10. It represents the
value of the saturation, where the capillary pressure of the coarse material is equal to the
entry pressure of the fine material: pG1

c (S∗w) = pG2
d . Then, the saturation at the interface is

calculated using the extended capillary pressure condition (van Duijn et al. [20]):

Sw|GΓ
2 =

{
1.0 if Sw|GΓ

1 ≥ S∗w
InvG2

pc if Sw|GΓ
1 < S∗w

(2.59)

with InvG2
pc

as the inverse of the capillary pressure saturation function of subdomain G2.

In order to integrate the interface condition into the Box Method, the evaluation of the pa-
rameters has to be changed from patch-wise to element-wise. In an element-oriented ap-
proach, the interface between two subdomains runs along the element edges and not along
the subcontrol volume faces (see Figure 2.13, compare Figure 2.8).

The node Ki exists only once and only one saturation (Sn,i) is stored for it. The node can have,
however, two (or more) saturation values associated with it, depending on the location of
the element currently evaluated (here: Sn|KG1

i and Sn|KG2
i ).

The calculation of the saturation values is done in the following way: At first, the minimal
entry pressure pi

c,min is calculated.
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Figure 2.13: Element-oriented Box Method. The interface between two subdomains lies
along the element edges (after Jakobs et al. [37])
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It represents the smallest entry pressure for all elements connected to node Ki :

pi
c,min = min

k∈E(i)
pc(xk,(1−Sn,i)) (2.60)

Here, E(i) represents the set of indices of those elements connected to node Ki and xk the
barycenter of element ek.

pi
c,min is then used to calculate the saturations Sn,i,k belonging to the representation of node

Ki in element ek. This leads to the following relationship:

Sn,i,k =

{
0 pi

c,min < pc(xk,1.0)

1−Sw where Sw solves Invek
pc

(xk, pi
c,min)

(2.61)

This definition makes it possible for an arbitrary number of subdomains to meet at node Ki .

The element-wise evaluation is only pursued for the domain-dependent variables. All other
variables are calculated using the approach described in Section 2.4.2.1. For a further dis-
cussion of the PPSIC Method, refer to de Neef and Molenaar [49] and de Neef [50]. A more
detailed description of the implementation of the PPSIC Method can be found in Bastian [7].

Remark:

For the stabilization of the advective flux term, a classical first order fully upwinding tech-
nique is used in this work for the Box- and Box-Trans Method. Another possible measure
would be to apply so-called higher resolution schemes. To these count, for example, the
total variation diminishing technique (TVD), flux limiters, and slope limiters. These meth-
ods are very efficient on structured grids, for real-life problems, however, which are usually
simulated on highly unstructured grids, these methods present some difficulties (see e.g.
Huber [34]) and are not pursued in this work.

2.4.3 Solving the algebraic equations

Applying the discretizations explained in the previous section to the two-phase flow equa-
tions results in a possibly large, strongly coupled non-linear system of algebraic equations.

These equations are solved by the software-toolbox MUFTE-UG. This toolbox is a compound
of two parts: whereas the MUFTE part includes the discretization schemes and problem state-
ments, the UG part provides the underlying data structures and fast solvers.

In this work, the two-phase flow equations are solved using a damped inexact Newton-
Raphson algorithm for the non-linearities. Within each Newton step, a linear system of
equations has to be solved. Here, the Bi-CGSTAB (BiConjugate Gradient Stabilized) solver
is applied with a preconditioner based on a multigrid method (Hackbusch [26], Bastian and
Wittum [9]). Within the multigrid method, the smoothing iterations are carried out with the
help of ILU (incomplete LU-decomposition). So in order to solve the discretized problem
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for one time step, a certain number of non-linear steps, which each include its own number
of linear steps, have to be solved. This will be returned to in Chapter 6.

Based on the convergence behavior of the Newton method, an automatic time-step adaption
is included: If no solution can be found within a certain number of line-searches (here: 6),
the time-step ∆t is automatically halved. If, however, a solution can be found within the
first line-search, ∆t is doubled. The lowest and highest bounds for the time-step were set
individually for each of the following problems.

A detailed description of the methods and solvers incorporated in MUFTE-UG is given in, for
example, Bastian [7], Bastian et al. [5], Helmig and Bastian [27] and Lang [44].

As the implemented data-structure of MUFTE-UG supports the multigrid method, the
meshes for all numerical examples in this work are constructed in a hierarchical way: At
first, a coarse base mesh is generated. This is then consecutively refined (uniformly or adap-
tively) up to the desired level, and each new level is stored in a separate grid. The compu-
tation is then carried out for all leaf elements. Leaf elements denote the ’topmost’ elements,
when the meshes are put in a hierarchy, where the mesh with the largest elements is at
the bottom (BOTTOMLEVEL) and the mesh with the smallest elements resides at the top
(TOPLEVEL) (see also Chapter 5). In the following, the maximum number of refinements
will be indicated by MAXLEVEL (ML). This number does not represent the absolute value
of the element size, as it depends on the structure of the bottom mesh. It gives, however, an
indication when the solutions of two different mesh sizes are compared: if ML increases by
one, the length of the element edges is (usually) halved. For a more detailed description of
the multigrid structured included in MUFTE-UG refer to e.g. Lang [44].



3 Two-phase flow in a homogeneous medium

As already pointed out in the introduction, two-phase flow phenomena in porous media
have a vast range of applications. Due to the properties of the partial differential equations
and the non-linear coupled balance equations (see Chapter 2), the simulation of two-phase
flow is by no means trivial.

With the help of the numerical simulation program MUFTE-UG, it is possible, to obtain so-
lutions to a large number of two-phase flow problems. An overview of the modules of
MUFTE currently implemented is given in Class [17]. In this chapter, the focus is flow in a
homogeneous medium. Here, the aim is to point out the difficulties of simulating two-phase
flow and to introduce examples which will later be simulated with the help of adaptive
methods.

As general two-phase flow combines hyperbolic (advective) as well as parabolic (dif-
fusive) properties, three different test cases are introduced: first, a purely advection-
dominated problem (Buckley-Leverett problem), then a purely diffusion-dominated prob-
lem (McWhorter problem) and the last case represents a typical two-phase flow situation
where advective as well as diffusive effects are present.

These cases were chosen in order to show that MUFTE-UG and the adaptive methods are
not only capable of handling complex two-phase flow, but also the extremes ’advection-
dominant’ and ’diffusion-dominant’.

3.1 Test case 1: an advection-dominated problem ( Buckley-Leverett
problem)

3.1.1 Problem description

As a fist step for testing the capabilities of MUFTE-UG, the Buckley-Leverett (BL) problem
is considered. It represents a special case of the two-phase flow equations where advective
effects are dominant (see also Section 2.3).

It describes the case of a transient flow in a quasi-one-dimensional, horizontal domain,
where the wetting fluid (water) displaces the non-wetting fluid (oil) (see Figure 3.1).



3.1 Test case 1: an advection-dominated problem (Buckley-Leverett problem) 35

wQ = A vw nQ = A vn
( water ) ( oil )

w + vn= vtvx

wetting front

Figure 3.1: Set-up of the Buckley-Leverett problem

On the assumptions that we have

• two immiscible and incompressible fluids • no gravitational effects
• no capillary effects • no sources / sinks

the saturation formulation of the two-phase flow equations (Eqs. (2.34)) yields (compare Eq.
(2.35)):

φ
∂Sw

∂t
+vt

d fw
d Sw︸︷︷︸

fw′

∂Sw

∂x︸︷︷︸
gradSw

= 0 (3.1)

This equation, however, is not implemented explicitly, but the above-mentioned assump-
tions are inserted into the equations for the pw−Sn formulation (Eq. (2.40)).

The Buckley-Leverett problem is chosen for two reasons: On the one hand, some of the
effects that have a deep impact on two-phase flows are excluded, so that only a restricted
number of processes remains which are thus better to overlook. This makes it easier to as-
sociate the results with the changes in parameters. On the other hand, Eq. (3.1) represents a
quasi-linear hyperbolic differential equation (no diffusive, but only advective effects). Gen-
erally, the main discretization problem of two-phase flow equations lies in the correct de-
scription of the advective term. Therefore, as an analytical solution to the Buckley-Leverett
problem exists (Buckley and Leverett [15]), it portrays a convenient method of verifying the
numerical simulations.

If only advective effects are present, the interface between the wetting and the non-wetting
phases represents a sharp front, where the saturations of the phases experience a jump.
Mathematically, this represents a discontinuity in the primary variable S. The front moves
with a constant velocity, which depends on the derivative of the fractional flow function.
For the linear and the relative permeability function after Brooks and Corey the course of fw
and its derivative can be seen in Figure 3.2.

In the case of a linear relative permeability, the derivative of the fractional flow function is
constant. Consequently, the (analytical) saturation profile resembles a ’step’.
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Figure 3.2: Relative permeability - saturation functions (kr, fractional flow function ( fw) and
derivative of the fractional flow function (d fw) for linear and Brooks-Corey rela-
tionships

In the case of a non-linear relative permeability, the shape of the derivative of the fractional
flow function is non-convex. Therefore, more than one value of the saturation can be asso-
ciated with a certain value of fw (see Figure 3.2 bottom). As already explained in Section
2.3, the Rankine-Hugenoit condition as well as the entropy condition have to be satisfied,
which results in an (analytical) front profile comprising a rarefaction wave and a shock front
(LeVeque [47]).

For the numerical simulation of the Buckley-Leverett problem, the system and the boundary
conditions depicted in Figure 3.3 are chosen. The assigned fluid and soil properties are given
in Table 3.1. The time discretization is realized with an implicit Euler scheme with a step size
of ∆t = 5 days.

In order to comply with the above-mentioned constraints of the Rankine-Hugenoit condi-
tion and the entropy condition, the fully upwinding technique (αup = 1.0, see Section 2.4) is
applied (Aziz and Settari [1]).

It has to be remarked that, although the fully upwinding technique is used, still numerical
diffusion is introduced in the system due to the first order implicit time discretization (see
e.g. Helmig [30]).
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Figure 3.3: Boundary and initial conditions for the Buckley-Leverett problem

Table 3.1: Fluid and soil properties (Buckley-Leverett problem)

Fluid properties:
water density ρw = 1000 [kg/m3]
oil density ρn = 1000 [kg/m3]
dyn. viscosity water µw = 0.001 [kg/(m s)]
dyn. viscosity oil µn = 0.001 [kg/(m s)]

Soil properties:
abs. permeability K = 10−7 [m2]
porosity φ = 0.20 [ - ]
res. saturation water Swr = 0.20 [ - ]
res. saturation oil Snr = 0.20 [ - ]

Table 3.2: Simulation parameters (Buckley-Leverett problem)

Initial conditions:
water pressure pw = 2 x 105 [Pa]
oil saturation Sn = 0.8 [ - ]

Discretization:
step size (space) ∆x = 9.375 [m]
step size (time) ∆t = 5 [d]
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3.1.2 Investigations with a uniform mesh

Influence of the discretization length

As a first step, simulations are carried out for different element sizes (Figure 3.4). Two of the
meshes used are shown exemplarily in Figure 3.5. The elements are divided sequentially, so
that the aspect ratio of 1:1 is kept at all times. It can be observed that, for decreasing element
size, the solutions converge towards the analytical solution.

The following table shows the evolution of the number of elements and the computational
time needed exemplarily for the case of the constitutive relations after Brooks-Corey (BC)
for different refinement levels:

Level 2 Level 3 Level 4
execution time [s] 12 46 (3.9) 226 (19)
elements 64 256 (4) 1024 (16)
nodes 85 297 (3.5) 1105 (13)

The number in brackets represent the ratio between each individual level and level 2. Here,
it can be noted that the needed time increases approximately linearly with the number of
elements. Using h-adaptive methods reduces the node number and therefore the CPU-time
while the size of the smallest element remains the same (see Chapter 6).

For the following investigations concerning the introduction of artificial diffusion (artificial
capillary pressure), a mesh with 256 elements (∆x = 9.375 m (ML 3)) is used, if not otherwise
stated.
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Figure 3.4: Comparison of the numerical solution for different element sizes (Left: linear;
right: BC)
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Figure 3.5: Two different meshes for the Buckley-Leverett problem

Influence of artificial diffusion

As described in Section 2.4, a hyperbolic partial differential equation can be handled by
using a fully upwinding scheme. Another possibility is to introduce an artificial diffusion
term by selecting an artificial capillary pressure gradient.

In order to test this influence, a linear pc(Sw)-relationship is used and upwinding is omitted.
To realize different capillary pressure gradients, pcmax is varied. The chosen values are

pcmax [Pa] 3.0 0.6 0.06 0
d pc
d Sw

5 1 0.1 0

The results for the linear kr(S)-relationship and the one after Brooks-Corey can be seen in
Figure 3.6. The results obtained are compared to a simulation using fully upwinding.

All simulations are carried out on a uniform mesh with a refinement level of ML 3. It is
shown that the selection of a suitable diffusion term is problem-dependent and demanding
(Helmig [31]): If the capillary-pressure gradients are too small, oscillations can appear
and the front shape may be wrong. To reduce these oscillations, the diffusive effects and
therefore the capillary-pressure gradients can be increased. Yet if the capillary pressure
gradient is chosen too large, the front velocities increase significantly and the numerical
simulation produces wrong results - which may not always be obvious if no analytical
solution exists.

Concluding, one can say that for an advection-dominated problem a fully upwinding
scheme should be preferred to an introduction of artificial diffusion - which is a well known
fact and discussed in many papers in the recent years (e.g. Kröner [41]).
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3.2 Test case 2: a diffusion-dominated problem ( McWhorter problem)

The McWhorter problem describes an instationary displacement process of oil by water (see
Figure 3.7), which is driven only by capillary forces and hence resembles a parabolic system.

On the assumption that we have

• two immiscible and incompressible fluids • no gravitational effects
• no sources / sinks

the saturation formulation of the two-phase flow equations (Eq. (2.34)) yields:

φ
∂Sw

∂t
+vt

d fw
dSw

∂Sw

∂x
+

∂
∂x

(
D

∂Sw

∂x

)
= 0 (3.2)

where vt represents the total flow velocity, fw the fractional flow function and D the so-called
dispersion tensor

D(Sw) =
krn

µn
fwK

dpc

dSw
(3.3)

Again, this is not the equation that is implemented, but the assumptions mentioned above
are inserted into the general two-phase flow equations. For the McWhorter problem, a pn−
Sw formulation is used (see Section 2.3). As the McWhorter problem is a purely diffusion-
dominated problem, a central weighted mobility (αup = 0.0, see Section 2.4) is used.

The system and boundary conditions for the numerical investigation are presented in Fig-
ure 3.8, the applied fluid and soil parameters are shown in Table 3.3, and the simulation
parameters are given in Table 3.4.
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For the case of a uniform refinement, the simulation results of the water saturation distribu-
tion for different element sizes are shown in Figure 3.9. As this problem represents a quasi-
one-dimensional problem, a blue refinement rule (anisotropic refinement, here: only in x-
direction) for the consecutive uniform refinement is chosen (see Section 4.2). McWhorter
and Sunada [48] have developed a quasi-analytical solution for this problem, which makes
it possible to verify the numerical simulations. As can be seen, the error becomes smaller
for smaller element sizes - a behavior which is expected, due to the convergence properties
of the Box Method (see Section 2.4.2).
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Figure 3.7: Set-up of the McWhorter problem
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Figure 3.8: Boundary conditions of the McWhorter problem
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Table 3.3: Fluid and soil properties (McWhorter problem)

Fluid properties:
water density ρw = 1000 [kg/m3]
oil density ρn = 1000 [kg/m3]
dyn. viscosity water µw = 0.001 [kg/(m s)]
dyn. viscosity oil µn = 0.001 [kg/(m s)]

Soil properties:
abs. permeability K = 10−10 [m2]
porosity φ = 0.3 [ - ]
res. saturation water Swr = 0.0 [ - ]
res. saturation oil Snr = 0.0 [ - ]
entry pressure pd = 5000.0 [ Pa ]
pore size distr. index λ = 2.0 [ - ]

Table 3.4: Simulation parameters (McWhorter problem)

Initial conditions:
oil pressure pn = 2 x 105 [Pa]
water saturation Sw = 0.0 [ - ]

Discretization:
step size (space) ∆x = 0.05 [m]
step size (time) ∆t = 100 [s]
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Figure 3.9: McWhorter problem: Water saturation Sw (thick lines) and error distribution
(thin lines) for three different discretization lengths (left) and representative mesh
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3.3 Homogeneous model problem (Sandbox)

A numerical simulation tool has to be capable of dealing not only with the extreme sides
of the two-phase flow equations, but also with the case that both behaviors - advection-
dominant and diffusion-dominant - occur in one system in different places. In order to
represent this problem, the model set-up for a homogeneous medium as depicted in Figure
3.10 is chosen.

It represents a common problem in environmental engineering: over a small area, a contam-
inant (e.g. oil) infiltrates into the (fully water-saturated) subsurface and the question arises
how and over which time period will the contaminant spread throughout the system. Al-
though this example represents a relatively simple case of two-phase flow, it also combines
many of the properties a two-phase system reacts sensitively to: difference in densities and
viscosities, different capillary pressure - saturation relationships and time dependence.

Also, different zones can be distinguished: along the oil front moving into the system, ad-
vection dominates, whereas in the area behind the front, diffusion is more dominant.

The infiltration is simulated over a time period of 24 h, with the fluid and soil properties of
the system given in Table 3.5 and the simulation parameters in Table 3.6. In order to ensure
stability along the infiltration front, the upwinding value αup is set to 1.0. The result is shown
in Figure 3.11. As expected, the oil distribution is symmetric. The reason for the isolines not
being perfectly rounded is the discretization scheme used: As the Box Method only regards
the flows over the side of a box, it resembles a finite difference 5-point stencil. Therefore,
flow vectors which run diagonally across an element can be reproduced only moderately
well. A better result would be obtained by applying the CVFE-method, for example (see
e.g. Helmig [31], Class [17]).This is, however, not realized in this work.

As explained in Section 2.4.2, the accuracy of a numerical method improves with decreasing
element size. Therefore, a comparative solution is simulated with a finer mesh (twice re-
fined). The results are compared in Figure 3.12. It can be seen that there is a difference in the
propagation of the oil saturation: the result for the larger mesh size is much more smeared.

When the element number is increased, the computational time increases as well. It is ob-
vious, however, that the smaller elements are not needed throughout the whole domain,
as there exist regions where no relevant flow takes place. So again the need for adaptive
methods is shown: they combine the advantages of small element sizes and low computa-
tional time. As the elements are only refined where required, the overall element number
and therefore the computational effort stays low.
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Table 3.5: Fluid and soil properties (homogeneous model problem)

Fluid properties:
water density ρw = 1000 [kg/m3]
oil density ρn = 1460 [kg/m3]
dyn. viscosity water µw = 0.001 [kg/(m s)]
dyn. viscosity oil µn = 0.0057 [kg/(m s)]

Soil properties:
abs. permeability K = 8 x 10−12 [m2]
porosity φ = 0.4 [ - ]
res. saturation water Swr = 0.05 [ - ]
res. saturation oil Snr = 0.0 [ - ]
entry pressure pd = 700.0 [Pa]
pore size distr. index λ = 2.0 [ - ]

Table 3.6: Simulation parameters (homogeneous model problem)

Initial conditions:
water pressure pw = hydrostatic [Pa]
oil saturation Sn = 0.0 [ - ]

Discretization:
step size (space) ∆x = 0.25 [m]
step size (time) ∆t = 3600 [s]

X [ m ]

Y
[m

]

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
0.0

1.0

2.0

3.0

4.0
1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Oil-Saturationt = 24 h

Figure 3.11: Oil saturation after 24 h

Y
[m

]

0.0 1.0 2.0 3.0 4.0
0.0

1.0

2.0

3.0

4.0

∆ x = 0.25 mt = 24 h

5.0 6.0 7.0 8.0 9.0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0X [ m ]

Oil-

Saturation
∆ x = 0.0625 m

Figure 3.12: Comparison of the simulations
with different mesh widths



4 Adaptive methods

As stated in Section 2.4, for the Box Method the complete problem domain has to be de-
scribed by a mesh. This mesh can be structured or unstructured and certain areas of inter-
est, for example lenses or contamination sources, can be discretized with smaller elements
than the surrounding domain. Yet one disadvantage remains: all these meshes remain static
throughout the computation. As, however, mostly transient problems have to be solved in
which the behavior of the solution over the simulated time is usually not known, the mesh
created originally may not be appropriate after various time steps. Therefore it is desirable
for the efficiency of the numerical method to adjust the space discretization according to the
current solution. This can be achieved with adaptive methods.

Generally, one can distinguish between space and time adaptive methods. Whereas in space
adaptive methods for example the mesh or order of the weighting functions are changed,
time adaptive methods adjust the time step.

In the course of this work, only a space adaptive method is applied. On the one hand, as
in this work not only a space adaptive method is expanded, but an adaptive choice of a
suitable numerical scheme is developed and investigated also, an additional consideration
of time adaptive methods would exceed the scope of this work. On the other hand, space
adaptive methods can be considered ’more urgent’ for (large) engineering problems due to
the limitation of storage capacity and computational time.

However, MUFTE-UG already includes an automatic time step control based on the conver-
gence behavior of the Newton method, as it is explained in Section 2.4.3.

In the following sections, first an overview over different (space) adaptive methods is given.
Then, the adaptive method applied in this work is presented.

4.1 Overview

Numerical solutions are always only an approximation of the accurate solution. In the
course of arriving at the numerical solution, we may encouter many possible error sources.
For example, the solution algorithm may be developed incorrectly, there may be bugs in the
program or the boundary conditions are not chosen properly. Additionally, there are always
three kinds of systematic errors involved (Ferziger and Perić [24]):
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1. Modeling errors: The exact solution of a mathematical model does not represent the ac-
tual flow exactly, as generalizations and assumptions are made to arrive at the mathe-
matical model.

2. Iteration errors: They describe the difference between the exact solution of the discreti-
zed algebraic equation system and the iterative solution.

3. Discretization errors: They comprise the difference between the exact (analytical) solu-
tion of the conservation equations and the exact solution of the algebraic system of the
discretized equations.

The effect of modeling errors is that the model equations may be fulfilled exactly, the solu-
tion, however, is qualitatively wrong. Modeling errors can only be discovered when solu-
tions, where the iteration and discretization errors are very small, are compared with accu-
rate experimental data. Errors due to the rounding-off of the iterative schemes are easier
to control (and usually not very problematic), but nonetheless impossible to avoid, as one
always has to deal with the ’limited’ number representation of computers. And last but not
least, discretization errors are also always present due to the nature of this scheme. They
decrease, however, as the grid is refined. This implies that discretization errors only give
a rate at which the error decreases for smaller element sizes - they do not give information
about the error on a single grid.

Adaptive methods can help to minimize the discretization errors. Generally, the following
adaptive methods can be distinguished (e.g. Ellsiepen [23], Hinkelmann [33]):

• h-adaptive methods
Single elements are refined or coarsened (change of the element radius h). This results
in a change of the node and element densities at certain locations. For refinement, the
element is divided at the midpoint of a side or at the center of gravity; for coarsening,
this process is reversed. The initial elements serve as a reference for the geometry as
well as for the associated material properties and must therefore not be coarsened.

In the h-adaptive method, the quality of the starting mesh is of high importance, as
the angles and aspect ratios of the side lengths of the elements are kept throughout the
computation. In some cases, this may be regarded as a disadvantage of this method.

Another requirement of the h-adaptive method is a dynamic data structure, as the
number of elements is constantly changing.

• p-adaptive methods
The order p of the polynomial testing functions is changed for selected elements. As
a consequence, the formulations for an element get more elaborate, which may - es-
pecially for 3D - lead to a state where the solving expenses reach a dramatic height.
Futhermore, this method requires a very high regularity of the solution, which may
not be given for all problems (e.g. mixed hyperbolic / parabolic problems).

• h-p-adaptive methods
As a combination of the two above-mentioned methods, the element size h as well as
the order of the polynomial p are adapted to the local behavior of the solution.
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• r-adaptive methods
This method is also called the moving mesh method. The aim is to achieve the best orien-
tation of the mesh with a pre-defined number of degrees of freedom for a user-defined
criterion. The nodes of the mesh are moved e.g. to the location of the maximum error
or in alignment to the streamlines, which results automatically in a reduction of nodes
in other parts of the domain. An advantage of this method is the simple data storage
(the number of nodes and elements stays constant) and a preservation of the (stored)
structure of the original grid.

On the other hand, however, the r-adaptive method is less flexible than the other meth-
ods mentioned above, as the movement of the nodes can only take place up to a certain
extent (the angle- and side-ratio criteria still have to be fulfilled). A further disadvan-
tage is the fact that the element matrices have to be computed again for every iteration
step, which means that the r-adaptive method is not useful for complex domains and
should only be used for simple problems.

• subgrid methods
Arbitrarily orientated quadrilateral grids (”subgrids”) are superimposed over the orig-
inal grids. These subgrids can have a smaller element size than the underlying basic
grid. As the time step is coupled with the element size, the subgrids are computed
with a smaller time step. A great disadvantage of this method is the restriction to
geometrically simple domains.

• In addition to these methods, which aim at an efficient numerical solution of a given
problem, the following methods can also be counted among the adaptive methods:

– d-adaptive methods
In some applications, the appropriate space-dimension is chosen automatically
(switch between 1D, 2D, and 3D).

– m-adaptive methods
According to a given variable, the suited model concept is chosen (for example,
for large Reynolds numbers, switch from Darcy velocity to Forchheimer velocity).
Another application is the switching of the primary variables according to certain
criteria (see e.g. Class [17], Class et al. [18]).

Generally, the h- and p-adaptive methods are commonly used in engineering applications.
For the two-phase flow problems considered in this work, the h-adaptive method is chosen
(see Section 4.2). On the one hand, the data structure provided by MUFTE-UG supports this
method very well, on the other hand the dramatic increase in computational effort which
results from the p-adaptive method would outweigh the possible improvement of the nu-
merical results.

In order to refine or coarsen the mesh, error criteria are applied. The error evaluation can be
divided into two classes:

1. a priori error evaluation:
These estimates are evaluated before the calculation is started. They use exclusively
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known data, as for example initial and boundary conditions, as well as material pa-
rameters. A priori estimators are only rarely used for practical purposes.

2. a posteriori error evaluation:
Here, the error is given in terms of the starting data and computed solution (for exam-
ple after each time step).

In the following, only a posteriori error evaluators will be regarded.

Another distinction which can be made is between

• error estimators, which are mathematically based,
and

• error indicators, which are usually physically motivated and obtained by heuristic
methods.

Basically, a posteriori error estimators and indicators can be roughly divided into the fol-
lowing classes, which will be explained here briefly. A detailed description can be found in
e.g. Ellsiepen [23] and Verfürth [60].

1. Residual-based error estimator
With the help of the residuum appertaining to the strong form of the partial differential
equation, the error of the numerical simulation is measured. This can be regarded as
an elementwise controlling of whether the partial differential equations are fulfilled or
not.

The basis of this approach, which was first presented by Babuška and Rhein-
boldt [2], [3], is the estimation of the error in the energy or L2 norm via the residual of
the finite element solution in the domain and at the boundary. Various others scien-
tists, for example Johnson and his co-workers (e.g. Johnson and Hansbo [39]) took up
and extended this approach.

2. Error estimation by solving local problems
For small areas (for example single elements or element patches), higher-order solu-
tions are calculated. In these areas, however, not the given problem, but a similar,
simpler one is solved. The solution is then taken as a reference solution for the error
estimation.

3. Hierarchical error estimators
The residuum of the numerical solution is compared with a solution that was calcu-
lated in a higher finite element space (higher order of test functions or finer meshes).
The idea behind this is that the solution in a higher FE-space is expected to be more
accurate than on a lower FE space (convergence of the p-method). For further details,
see e.g. Ellsiepen [23].
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4. Gradient-based error indicators
This kind of indicator, which was originally developed for structural mechanics, is
often referred to as the Z2-error indicator, after the initials of the authors that first
introduced this idea in 1987 (Zienkiewicz and Zhu [61]).

The gradients of FE solutions with linear shape functions are usually not continuous
over the element edges. For certain gradients (for example the tension σ in the case of
the Z2 indicator or the velocity v in the case of groundwater flow), a locally ’improved’
solution is calculated by computing a ’smoothed’ course of the gradients. With the
help of the norm of the difference between the gradients of the original and the gradi-
ents of the ’improved’ solution, the value of the error estimator is calculated.

Error estimators which are based on the energy or L2 norm are widespread for
parabolic and elliptic problems (e.g. Johnson [40], Papastavrou [55]). They cannot,
however, generally be applied for mixed hyperbolic-parabolic equations.

5. Empirical error indicators
Here, the error criterion is empirically or heuristically derived. As a criterion can serve,
for example, steep gradients or large curvatures of the solution.

Bürkle and Ohlberger [16] developed an error estimator for convection-diffusion equations.
They also show results for two-phase flow in porous media, however, they concentrate on
convection dominated flow only (Ohlberger [53] [54]). Additionally, an IMPES-formulation
(implicit pressure - explicit saturation) is applied – a method in which the flow equations are
decoupled. This approach cannot be taken when, for example, two-phase, two-component
flows are considered.

As it is the aim of this work to present an indicator suitable for engineering practice (that is,
relatively easy to implement and operate), empirical error indicators will be applied. These
are discussed in further detail in Section 4.2.

After each element has been assigned an ’error value’ η by an estimator or indicator, the
elements are marked for refinement or coarsening. Generally, the error of the element is
compared to tolerances for refinement (tolrefine) and coarsening (tolcoarsen):

η > tolrefine −→ refine
η < tolcoarsen −→ coarsen

(4.1)

For the choice of tolerances, different possibilities exist (e.g. Barlag [4]). For example:

• Absolute value
The tolerances are set to fixed values which do not change throughout the simulation.
As the magnitude of the errors in the course of the simulation is not known and may
vary significantly, this method is not advisable.
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• Mean value
The tolerance is given in connection with the arithmetic mean of the errors of all ele-
ments. With this method, not only the size of the error, but also the amount of ’erro-
neous elements’ is considered:

tolrefine = refmean1
N ∑

j

η j

tolcoarsen = cormean1
N ∑

j

η j

(4.2)

Here, N is the amount of elements while η j represents the error for element j . refmean

should be chosen to be larger and cormeanto be smaller than 1. This method is disad-
vantageous for small absolute errors.

• Maximum value
The refinement and coarsening criteria represent the percentage of the maximum error
in the domain:

tolrefine = refmax max η j

tolcoarsen = cormax max η j
(4.3)

A value of refmax = 0.8 means that all elements with an indicator value larger than 80%
of the maximum indicator value (in this time step) are refined.

Figure 4.1 illustrates the principle of refinement and coarsening for the maximum-value
method used in this work. It can be observed that the appropriate choice of refinement and
coarsening bounds is very important: if a large peak of the indicator values exists in the
domain, other areas with a relatively large indicator value may not be identified. Generally
speaking, the choice of the values for the refinement and coarsening criteria always depends
on the error estimator or indicator as well as on the problem itself.

Beside the values for e.g. refmax and cormax, the number of refinement (to ) and coarsening
(from ) levels has to be given. A refinement level of two, for example, means for the h-
adaptive method that an element will be divided twice. For a quadratic element, this results
in 16 elements with an edge length of 1

4 lorg.element. Figure 4.2 shows an h-adapted mesh for
a refinement level 3 and a coarsening level 1. In the course of this work, these levels will be

no refinement

max ind

tol refine

x

refinement

indicator
max ind

no coarsening

tol coarse

coarsening

x

indicator

Figure 4.1: Refinement and coarsening bounds for the ’maximum-value’ method
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indicated by ’fntn’, where f stands for level the coarsest grid (from ), t represents the level for
the finest grid (to ) and n indicates the level number in the hierarchy. For a better overview,
hanging nodes still exist in this figure (for an explanation, see Figure 4.3); in MUFTE-UG these
are eliminated by introducing irregularly refined elements (see Section 4.2 and Lang [44]).

If the difference between the coarsening and refinement level is too large, the difference
between the largest and smallest element sizes in the domain will become very large, too.
This in turn leads to bad condition numbers of the stiffness matrices, so that the problem
may become unsolvable. Here, it is the task of the user to find the appropriate balance.

4.2 Error indicators in MUFTE-UG

In the course of this work, the h-adaptive method is applied. It has the advantage that a
visual control of whether the refinement and coarsening identify the desired regions is pos-
sible by simply looking at the resulting mesh. And last but not least, the applied numerical
simulator MUFTE-UG supports this method very well, as it provides a powerful dynamic
data structure and a multigrid environment. For an overview of the implemented struc-
tures, refer to e.g. Bastian [7] and Lang [44].

refine up to level 3
coarsen up to level 1

(here still with ‘‘hanging nodes‘‘)

start the computation on level 2

domain is created on level 0

Figure 4.2: Result of a refinement for from:1 and to:3

element
marked for
refinement

hanging node

regularly closed grid irregularly closed grid

Figure 4.3: Refinement without and with hanging nodes
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An h-adapted mesh consists of different types of elements, as can be seen in Figure 4.4. In
the case of a multigrid environment, elements which are created by refinement (so-called
son elements) are inserted in a multigrid level ’above’ the previously marked elements (so-
called father elements). In a straightforward extension, all sons of an element are called
brothers.

element
marked for
refinement

red (regular) elements

green (irregular) elements

yellow (copied) elements

representation in the

multigrid structure

leaf elements

"red" refinement (isotropic) "blue" refinement (anisotropic)

a) b)

Figure 4.4: Different refinement strategies (refinement depth: one level). View of the leaf
elements and the multigrid structure.

If an element is marked for refinement, it will be divided according to the refinement rule
(regular (red) or irregular (blue)) and the refinement depth into regular elements, which are
also called red elements. A regular refinement here denotes a bisection of every element
edge, whereas an irregular refinement implies a preferential refinement direction. The angle
ratios of red elements are not (seriously) impaired. In order to avoid hanging nodes, the
neighboring elements of the marked element usually have to be subdivided, too. These
new elements are called green elements or irregular elements, as they are only needed for
a closure of the grid. According to the closure rules (see e.g. Lang [44] and Figure 4.5),
green elements usually differ in shape from red elements, comprise acute angles and are
never refined themselves. They will be discarded and replaced by elements forming a red
pattern when further refinement is required. In addition to red and green elements, yellow
elements also exist; these are elements copied to the higher grid levels in order to improve
the convergence properties of the local multigrid. Yellow elements keep the same angle ratio
as the original elements.

Another special kind of element is the leaf element. As shown in Figure 4.4, these represent
the topmost elements. Leaf elements can lie on different grid levels.

The process of obtaining a numerical solution with an adapted mesh in MUFTE-UG can be
represented by the sequence of steps presented in Figure 4.6. First, the problem is solved
on all grids in the multigrid hierarchy stemming from the previous time step. Then, for the
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green refinement

yellow refinement

red refinement

base element

Figure 4.5: Refinement rules for quadrilateral and triangular elements implemented in
MUFTE-UG

grid on the toplevel, the error indicator values are computed and the respective elements
are marked for coarsening or refinement. After that the mesh is adapted and in the next step
the unknowns are transferred to the new mesh structure. Here, also the required new node
values are computed. If the corresponding option is set, the cycle for the mesh adaption
is repeated for the same time step. If either this option is not set or the chosen number of
cycles is reached, the problem is again solved on the finest grid only, which completes the
computation for the current time step.

As already stated in Section 4.1, only heuristic indicators are used in this work. On the one
hand, as explained before, the author is currently not aware of the existence of estimators for
the here attended equations and discretization schemes. On the other hand, the aim of this
work is to introduce methods for engineering practice. In this context, a simple handling
of the parameters and an easy interpretation of the effects of parameter variation plays a
more important role than mathematical accuracy of the indicator. Furthermore, for prac-
tical purposes, the results obtained by the use of heuristic indicators are accurate enough
(John [38]).

It has been shown, for example in Barlag [4], that indicators are usually not only easier to
implement in the code, but are also easier to compute. Additionally, the computational as
well as the storage effort is much less than for estimators. Therefore, simulations controlled
by indicators will require much less CPU-time - an important fact for engineering practice.

The basic idea for error indicators in this work is to locate the regions with a sharp inter-
face between the two phases, as this region usually leads to numerical difficulties. A sharp
interface can be identified by regarding the gradient of the saturations (Braun [11]). As the
constraint Sw+Sn = 1 holds, it does not matter which saturation is considered; consequently,
it is always the primary variable that is taken into account.

The concept is as follows: For the local midpoint of an element, the gradient of the satu-
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ration S in x- and in y-direction is calculated. Afterwards, the norm of these two values is
computed:

grad S =

√(
gradx(S)

)2
+

(
grady(S)

)2
(4.4)

In the following, this indicator will be called the gradient indicator grad S.

In addition to this indicator, a hierarchical indicator grad HS was also investigated. Here,
the gradients on the father element are also considered when the indicator is calculated:

grad HS =

√(
gradx,son(S)−gradx, f ather(S)

)2
+

(
grady,son(S)−grady, f ather(S)

)2
(4.5)

For a comparison, a third indicator (grad HpS) is investigated as well, where not only the
gradient of the saturation, but also the gradient of the pressure is taken into account:

diffS =

√(
gradx,son(S)−gradx, f ather(S)

)2
+

(
grady,son(S)−grady, f ather(S)

)2

diffp =

√(
gradx,son(p)−gradx, f ather(p)

)2
+

(
grady,son(p)−grady, f ather(p)

)2
(4.6)

grad HpS = diffS+diffp

For the last indicator, a problem-dependent weighting scheme could be advisory. As the
magnitudes of pressures can range in the thousands, but the saturation ranges only between
zero and one, both differences need to be scaled accordingly. This approach, however, was
not further pursued in this work.

All indicator values are scaled with the area of the concerning element. The refinement and
coarsening criteria are chosen as percentages of the maximum error value in the domain, as
explained in Section 4.1.

begin of
time step

level min
...

level max

mesh
adaption

transfer of
unknowns to

new mesh

solving of
non−linear
problem

end of
time step

solving of

problem
non−linear

computation of
error indicator,

elements
marking of

level max

(if chosen)

Figure 4.6: Program steps for calculating one time step with mesh adaption



5 The aspect of mass conservation

For all (numerical) simulations, it is important to conserve the mass in the system and
to balance it correctly with inflow and outflow conditions. This is done by using mass-
conservative discretization schemes, as for example the Box Method (see Section 2.4.2). This
method is locally mass conservative: the inflow and outflow over the boundary of a control
volume are in equilibrium.

However, when solutions obtained on different meshes are compared, the mass of the fluids
in the system can still be different. This is due to the choice of initial conditions for the
system, which have a large influence on the solution. Additionally, it also has to be ensured
that the mass inside the system stays the same for grid manipulations, as is the case for
adaptive methods. These aspects will be discussed in the following sections.

5.1 Mass conservation in the uniformly refined case

In the case of a simulation with a uniformly refined mesh, no grid manipulations and there-
fore no data manipulations are carried out. However, if comparing different realizations
with different grid sizes, one has to pay attention to the choice of initial conditions. This will
be explained with the help of the Buckley-Leverett problem.

The set-up and initial conditions are shown in Figure 5.1. In Fig. 5.1(a), the initial oil satura-
tion in the whole domain is chosen as Sn = 0.8. As the unknowns are assigned to the nodes
and the nodal values are interpolated linearly, this results in the saturation distribution that
is shown in the lower part of Figure 5.1(a). As can clearly be seen, the initial mass in the
system is not the same in the two cases shown: the more finely the mesh is refined (here:
level 2 compared to level 1), the larger the initial mass of oil in the system. This means that
two different problems are solved and should therefore not be compared. If one wants to
compare the solutions of different mesh sizes, the approach shown in Figure 5.1(b) has to be
followed. For a region comprising the area of the largest element considered, the initial con-
dition is chosen in such a way that the saturation increases linearly from the boundary into
the domain. Here, it is ensured that the initial mass in the system (and the initial pressure
gradients at the boundary) is the same in both cases.

The influence on the solution of the Buckley-Leverett problem can be seen in Figure 5.2. For
the different realizations of the initial conditions, the solutions of the different mesh sizes
meet at one point, but only in the right picture, the area and therefore mass left and right of
the intersection point is the same (equal-area rule, see Section 2.3).
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Figure 5.1: Initial conditions and their representation on different meshes

For Figure 5.2.b, the initial conditions are chosen as follows:

Sninit =
{ 0.6

18.75 x+0.2 if 0 m≤ x≤ 18.75m
0.8 if x > 18.75m

This represents the initial conditions for a uniform refinement level of 2, where the initial oil
saturation is set constant in the domain.

If the solutions with the modified initial conditions are compared to the analytical result,
as shown in Figure 5.3(a), the outcome may at first be surprising: the solution with the
modified initial condition does not agree with the analytical result. This behavior, however,
can be explained with Figure 5.3(b):

For the analytical solution, the domain is initially completely filled with oil, as no segmen-
tation into elements is made. Here, Sn experiences a jump at the boundary from 0.2 to 0.8.
The mass distribution of the numerical solution with ’standard’ initial conditions converges
towards the analytical solution with decreasing element size - the influence of the linear
interpolation of the saturation becomes smaller. The mass distribution of the numerical
simulation with the ’fixed’ initial conditions, however, stays the same for all element sizes,
as was anticipated.

Therefore, if one wants to compare the solution to an analytical result, the ’standard’ initial
conditions can be applied. However, one has to be aware that, in this case, the mass in the
system is not the same at the same point in time for different discretization lengths. If one
wants to compare the masses for simulation with different mesh widths, one has to adjust
the initial conditions accordingly.
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5.2 Mass conservation in the adaptively refined case

When h-adaptive methods are used, two basic cases can occur (either alone or simultane-
ously):

• new elements/nodes are created

• elements/nodes are omitted

In both cases, the relevant elements are marked by the indicator on the current grid, which
is then changed in the next step (see Figure 4.6).

In MUFTE UG, the grid adaption is a purely geometrical process. This means that no node
values are considered when the mesh is adapted. At first, all nodes that are not needed any
longer are removed (and with them the information of the solution on these nodes), then the
new nodes are inserted. After the grid adaption is completed, new values are interpolated
for the newly created nodes.

The solution for the current time step is then calculated again on the now adapted grid. This
means that if the transfer of the solution to the new grid results in a small difference of the
mass in the system, this is only a different starting point for the Newton algorithm which
will then find the correct solution again.

However, in order to compute the solution for a given time step with the backward Euler
difference scheme, the information of the previous time step is also needed (see Section
2.4.1). This means that the grid has to be adapted for this ’old’ solution as well. If the ’old’
solution undergoes a small change due to data manipulations, it has an influence on the
current time step, as this now finds a solution corresponding to a different problem.
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Figure 5.4: Sw (Buckley Leverett problem).
Uniform and adaptive mesh,
without and with correction

Therefore, it is very important to preserve
the mass distribution on a given grid for
each point in time. This is illustrated in
Figure 5.4. The saturation distribution for
the Buckley-Leverett problem at t = 500 d is
shown for a uniformly refined mesh up to
ML 4 and two adaptively refined meshes. In
all cases, the smallest element sizes are the
same and the initial conditions are chosen
appropriately. One can see that, for the case
without a correction, the saturation front
shows a significant difference to the uniform
solution, whereas the curve for the adaptive
case with correction basically resembles the
uniform case. The reason for the difference of
the curves at the foot of the saturation front
is caused by the fact that, for the adaptive
solutions, the elements in this region already
start to become larger again (see Section 6.1).
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In the following, the different cases of creating and omitting nodes and the aspect of mass
conservation that is developed in this work will be discussed in further detail.

5.2.1 Insertion of new nodes

Figure 5.5 shows the representation of a mesh in the multigrid structure on which four ele-
ments on level 2 are marked for refinement and a new level is created. After the grid adap-
tion, red, green, and yellow refined elements exist on both levels 2 and 3. Note that only red
elements can be refined further - the green elements on level 2 first have to be transformed
into a red pattern, before sons (here: green and yellow) can be created. Note also that yellow
elements are copy elements - this means, that also green elements on level 2 can be copied
to level 3.

Figure 5.5 also shows that new nodes not only are created on level 3, but also on level 2. For
all new nodes, values are needed. These are obtained by using the (linear) basis functions.

The mass of the non-wetting phase for an element is computed by

n nodes

∑
i =0

Sni scvi φi ρni with n nodes : number of nodes per element (5.1)

The node value is assumed constant over the subcontrol volume, in compliance with the
weighting functions. This implies that not only the value of the saturation, but also the area
of the subcontrol volumes plays an important role (see also Figure 5.6).

If node values are now computed for a green refined element, the problem as depicted in
Figure 5.7 may occur: Due to the irregular shapes of the subcontrol volumes, the mass in a
green refined element is not only different to the mass of the father element - it also depends
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old nodes

elements marked for refinement
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Figure 5.5: Multigrid structure of a refined grid
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on the distribution of ’small’ and ’large’ node values inside the element. (Here, for illustra-
tion purposes, the node values were chosen as 4 and 16; the shaded square represents the
area of one subcontrol volume of the father element.)

saturation values

nodes

subcontrol volume of node i

of node i

subcontrol volume

i

mass associated with

Figure 5.6: Computation of the mass inside
an element via the subcontrol
volumes

A different problem occurs when green re-
fined brother elements are converted to red
refined brother elements, as shown in Figure
5.8. One thing one can note is the difference
of mass between an element and all its sons
after a time step (left). This is due to the fact
that the solution only lives on the topmost
elements (leaf elements), where also more
nodes are available for information distribu-
tion. After the grid adaption, the only infor-
mation that is left is that of the old nodes.
Therefore, it is not possible to retrieve the
mass that was stored for the now lost sons.
The new node values are then interpolated
from the father element. However, as some
nodes (here: one) already existed before the grid adaption, their information is also kept.
This may lead to an unsymmetric value distribution, as is shown in the right part of the
picture. As a result, neither the mass of the ’old’ sons nor the mass of the father is now
represented by the ’new’ sons.
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Figure 5.7: Different masses resulting from green refinement
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Figure 5.8: Interpolation of new node values from the father element

5.2.2 Coarsening of elements

When elements are coarsened, nodes or whole elements are omitted and thus the solution
living on them. The problem of mass conservation for the transition of a red refined element
to a yellow element is shown in Figure 5.9. As the corner nodes of the element already
existed before the grid adaption, their values are kept. The control volumes (cv’s) belonging
to the nodes on the adapted grid are larger than on the previous grid. This, however, cannot
compensate for the loss of the mass of the middle node, as is shown by comparing the x’s
on the left and right side of Figure 5.9.

Another aspect can be seen by a look at Figure 5.5 from right to left (all elements on the
toplevel are coarsened): Here, it is clearly shown that the whole solution living on level 3 is
lost. This results in a mass error that can not be compensated by just solving the non-linear
problem again.



62 The aspect of mass conservation

o o o o
o o o o
o o o o
o o o o
o o o o
o o o o
o o o o
o o o o

o o o o
o o o o

o o o o
o o o o
o o o o
o o o o
o o o o
o o o o
o o o o
o o o o

o o o o
o o o oX

X
X
X
X
X

X X X X

X
X
X
X
X
X

X
X
X
X
X
X

X
X
X
X
X
X

X
X
X
X
X
X cv’s and

masses

X X
X X

X

X
X
X
X
X
X

X
X X

i j k i k

elements

Figure 5.9: Coarsening of an element by omitting nodes

5.2.3 An algorithm ensuring mass conservation

In order to improve the mass conservation for the h-adaptive simulations, different func-
tions were included or changed in the code of UG . The new algorithm for the computation
of a time step looks as follows:

BDFTimeStep:

for each level from lowlevel to toplevel
{

solve non-linear problem on current level
}

if toplevel has been reached
{

compute error indicators

save current mass distribution

adapt multigrid

interpolate new node values

correct mass in elements

solve non-linear problem again
}

where the bold lines indicate a change. These functions will be explained in the following.

1. Saving the current mass distribution

For each element, a mass associated with it is stored. From the topmost level downward,
for every element the decision is made whether it is a leaf element or not. If it is, the mass
is stored for this element and added to the entry for its father. If it is not a leaf element, the
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stored mass for this element is only added to the entry for its father. This method ensures
that, even if all sons are omitted by coarsening, the sum of the mass which corresponds to the
projected area of the grandfather element is kept. (Grandfather elements are the elements
on the bottom level which cannot be coarsened any further). This is also illustrated in Figure
5.10.

2. Interpolation of new node values

New node values are interpolated using the linear basis functions. For the center node in an
element, however, an exception is made (see Figure 5.11). Again, the node values are cho-
sen as 4 and 16 for illustration purposes. Here, the difference between the mass associated
with the father element (in this case: 45) and the mass associated with all son nodes except
the center node is calculated. This value divided by the area of the control volume of the
center node then yields the new node value. In order to keep the corresponding problem
physically correct and to avoid complications with the Newton solver, in should be ensured
that the new node saturation values do not exceed 1. This constraint, however, is not yet
implemented.

level 2

level 1
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(leaf element)

mass of all son elements

+ +

++

Figure 5.10: Projection of the masses to the father elements
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Figure 5.11: Calculation of the node value for the center node (cn)
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3. Correction of the mass in an element

For all elements with a new center node, the mass is now correct. For elements with no cen-
ter node, however, the mass still has to be corrected in some cases. So for all these elements,
the current mass of all brother elements is compared with the reference value kept by the
father. The difference is then put into proportion to the sum of the control volumes of all
son nodes (see Figure 5.12) and a share for each node is computed. After this has been done
for all elements and all the shares for the nodes have been summed, they are then added to
the respective nodes in a final loop.

The effect of the implemented mass correction can be seen in Figures 5.13 and 5.14. Fig.
5.13 shows the evolution of the mass of the non-wetting phase over time for the Buckley-
Leverett problem (see also Figure 5.4). In Fig. 5.14 the difference of mass in comparison to
the analytical solution is shown. At the start of the simulation, the masses for all numeri-
cal simulations are the same. They differ, however, from the initial mass for the analytical
solution, as was explained in Section 5.1.

As the applied discretization scheme is mass conservative, the difference to the analytical
solution stays the same for the simulation with the uniformly refined mesh (represented by
the dotted line). For the ’standard’ adaptive solution (solid line), however, the mass decrease
over time is larger than the mass decrease due to the outflow condition. Figure 5.14 shows
nicely, that the process of mass decrease happens in ’jumps’: every time the mesh is adapted
(refined or coarsened), a change in mass occurs. In contrast to this behavior, the mass content
of the adaptive simulation with correction (dashed line) resembles the mass content of the
uniform simulation: the difference to the analytical result stays constant.

Figure 5.12: Control volumes for all nodes in an element. The solid lines indicate element
edges, the dashed lines represent subcontrol volume faces.



5.2 Mass conservation in the adaptively refined case 65

700.0 725.0 750.0 775.0

2.0E+06

2.1E+06

2.2E+06

2.2E+06

0.0 25.0 50.0 75.0

3.4E+06

3.5E+06

3.6E+06

3.6E+06

Time [d]
0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0

2.1E+06

2.2E+06

2.3E+06

2.4E+06

2.5E+06

2.6E+06

2.7E+06

2.8E+06

2.9E+06

3.0E+06

3.1E+06

3.2E+06

3.3E+06

3.4E+06

3.5E+06

Mass N [ kg ] uniform (ML 4)

adaptive

adaptive, w.corr.

analytical
A

A

B

B

Figure 5.13: Evolution of the mass over time for the Buckley-Leverett problem

Time [d]
0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0

-50000

-40000

-30000

-20000

-10000

0

∆ Mass N

uniform (ML 4)

adaptive

adaptive, w. corr

analytical

Buckley-Leverett problem,

BC rel. perm.

- 21093.8

- 21084.0

Figure 5.14: Difference of mass over time for the Buckley-Leverett problem



6 Adaptive simulation of the homogeneous test
cases

In the following sections, the test cases introduced in Chapter 3 are simulated with the adap-
tive methods described in the previous chapters. The aim is to identify a suitable error
indicator for advection-dominant and diffusion-dominant flows as well as for a typical two-
phase flow problem, where both effects mentioned are present simultaneously. The chosen
error indicator will then be applied to a heterogeneous system in Chapter 8. For the ho-
mogenous test cases, the performace of the adaptive simulation is compared to the uniform
simulation w.r.t. execution time, number of elements and nodes needed and the amount of
non-linear and linear iterations required for each time step.

6.1 Buckley-Leverett problem

As already pointed out in Chapter 4, in order to use adaptive methods, one has not only to
choose an appropriate indicator (or estimator), but also to give the margins for refinement
and coarsening.

For the basic test case of the Buckley-Leverett problem with a (uniform) discretization length
of ∆x = 9.375 m and a time-step of 5 days, the values of several indicators are calculated.
Figure 6.1 shows the values for the indicators grad HpS, grad HS, and grad S (see Section
4.2).

Figure 6.1 shows that

• different problems (e.g. linear - non-linear relative permeability) demand different
refinement and coarsening criteria, and

• different indicators require different refinement and coarsening criteria.

In most engineering applications, however, it is not feasible to invest a large amount of time
in finding the best indicator and the best range of tolerances for each individual problem.
The goal of this work is to find an indicator which works reasonably well for a large number
of problems.
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Figure 6.1: Comparison of the values of three different gradient indicators (grad HpS,
grad HS, and grad S), computed on a uniform mesh (ML 3) (Left: linear; right:
BC)

6.1.1 Preliminary investigations

In order to choose a suitable indicator as well as refinement and coarsening bounds (rc-
criteria), preliminary investigations are carried out. This is done for an adaptive mesh,
where the elements, starting with ∆x = 9.375 m (ML 3), are allowed to be refined or
coarsened once. Therefore, the element sizes range from ∆x = 4.8675 m (ML 2) up to
∆x = 18.75 m (ML 4).

At first, three different combinations of regions of rc-criteria are chosen according to the
indicator distribution for the relative permeability after Brooks-Corey (see Figure 6.2). In the
following, a rc-criterium will be indicated by ’rncn’, where r stands for refinement bound, c
for coarsening bound and n denotes the percentage related to the maximum error value (e.g.
’c005’ stands for ’coarsening bound: max. error value times 0.05’ → 5 %).

The results of the adaptive simulations are exemplarily shown for the grad S-indicator in
Figure 6.3 with the corresponding meshes depicted in Figure 6.4. As can be seen, the results
for the three different rc-criteria are very similar. This behavior is also observed for the
grad HS- and grad HpS-indicators (not shown here).

For a numerical simulation, it is desirable to mediate between a sufficient large number of
elements to resolve critical regions and a sufficient small number of elements to minimize
the computational cost. Therefore (if not otherwise stated), the rc-criterion r08c005 is chosen
in the the further investigations.
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6.1.2 Comparison uniform - adaptive simulation

In Figure 6.5, the results for three different indicators are shown in comparison to the analyt-
ical solution and the solutions for ML 4. As anticipated, the adaptive results tend towards
the analytical solution and show hardly any difference compared to the uniform result. Also,
the difference between the results for the three indicators is marginal. The corresponding
meshes are depicted in Figure 6.6. In the further investigations, only the grad S indicator is
considered.
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Figure 6.6: Comparison of the meshes for three different indicators (Left: linear; right: BC)

The following table shows a comparison of the execution time and the number of elements
and nodes for the uniform and adaptive case (relative permeabilities after Brooks-Corey) for
meshes with the same smallest element size (ML 4 and an adaptive refinement from level 2
to level 4). For the adaptive cases, the averaged element number over the whole simulation
time is given. As the number of elements changes throughout the simulation, no absolute
number can be given. The values in brackets represent the ratio between the adaptive and
the uniform requirements.

Linear Brooks-Corey
uniform adaptive uniform adaptive

execution time [s] 49.5 25.8 (0.52) 275.1 101.9 (0.37)
elements 1024 349.5 (0.34) 1024 265.5 (0.26)
nodes 1105 415.4 (0.38) 1105 309.7 (0.28)

In order to reach the same precision for the relative permeability after Brooks-Corey as a
mesh with a uniform refinement (level 4), the adaptive algorithms require approximately
one third of the number of elements and computational time for this example. A similar
behavior can be observed for the linear relative permeability. One has to note, that the here
presented problem with approx. 1000 elements is still comparatively small.

In Figure 6.7, some comparisons between the uniform and adaptive simulation are shown.
Here, the number of non-linear iterations (Newton iterations, see Section 2.4.3) for each
time step and the averaged number of linear iterations per time step are depicted. The latter
represents the mean value of linear iterations per one Newton step in one time step. For the
uniform case, the number of non-linear iterations ranges between 3 and 4 in the non-linear
case and even stays constant in the linear case. If, however, the grid is adaptively changed,
the number of non-linear iterations rises significantly.
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An interpretation of these results is that, due to the presence of different element sizes, more
non-linearities are introduced into the system, which then lead to a significant increase of
the numerical effort. Only due to the smaller element number does the overall execution
time (in most cases) stay below the time for the uniform simulation.
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6.2 McWhorter problem

For an adaptive refinement, an appropriate error indicator first has to be chosen. The values
for different indicators already described in Section 4.2 together with the water saturation
and the error are shown in Figure 6.8. As can be seen, the gradient indicator for the satu-
ration (grad S) locates the areas with a large error very well. It is therefore chosen for the
following simulations. In Figure 6.9, the chosen bounds for this indicator for the refinement
and coarsening are shown: ’refinement bound = 0.2’ and ’coarsening bound = 0.1’.

The result of the adaptive computation is compared to the uniform solution in Figure
6.10. The mesh is adaptively refined using a ’blue’ strategy. This is possible, because the
McWhorter problem resembles a quasi-one-dimensional case. The two results are shown
for different points in time - this is due to the fact that the time step is automatically re-
duced in the course of the adaptive computation (see Section 2.4.3). Therefore, the exact
location of the saturation front cannot be compared. However, as can be seen, another effect
can be observed: the error for the adaptive simulation becomes larger than for the uniform
computation. This is clearly an effect which is not desired.

The following table compares the execution time and the elements and nodes of a uniform
and an adaptive simulation. For all cases, the size of the smallest element is the same (ML
4 for uniform computation, refinement from level 2 to level 4 for the adaptive case). As
already stated in Section 6.1.2, no fixed value for the number of elements for the adaptive
simulation is given, but an average over the simulation time. The numbers in brackets show
the relationship between uniform and adaptive results. As can be seen, although the number
of degrees of freedom (represented by the nodes) is approximately halved, the decrease in
execution time is only minimal.
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Linear Brooks-Corey
uniform adaptive uniform adaptive

execution time [s] 21.9 19.2 (0.88) 36.8 32.7 (0.89)
elements 256 124.6 (0.49) 256 115.1 (0.45)
nodes 325 167.7 (0.52) 325 164.6 (0.51)

Further effects of the adaptivity can be observed in Figures 6.11 to 6.13:

First, the course of the execution time over the simulated time is shown in Figure 6.11. Here,
the curves for the adaptive simulations are much more uneven than for the uniform cases.
This behavior can be explained by Figure 6.12: Whereas the time step ∆t stays constant for
the uniform simulation, it is automatically changed (decreased) for the adaptive simulations.
This effect is greater if more non-linearities are present, as is the case for the Brooks-Corey
constitutive relationships.

The influence of the non-linearities can be seen clearly in Figure 6.13. Here, the number of
non-linear iterations for each time step is shown. Also, the averaged number of linear steps
for each non-linear step is depicted. For the case with a uniform mesh and linear constitutive
relations, both these numbers stay constant over the whole simulation. If, however, the mesh
is adapted, the course of the numbers of non-linear iterations shows some peaks, whereas
the number of linear iterations stays nearly the same. This shows that the linearized system
of equations is ’good natured’ and the problems (and the decrease of the time step) stem
from the non-linearities. This becomes even clearer when looking at the case of non-linear
(Brooks-Corey) constitutive relationships: for the uniform case, the number of iterations
fluctuates slightly more than for the linear case, and for the adaptive case this effect is even
worse.
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6.3 Homogeneous model problem (Sandbox)

In order to choose suitable bounds for the refinement and coarsening criteria, a simulation
is first carried out on a uniform mesh and the indicator value for the grad S indicator com-
puted. The result can be seen in Figure 6.14. The distribution will be quantitatively different
when an adaptive mesh is turned to, but the qualitative distribution of the high indicator
values will remain the same. It can be observed that the indicator locates the front of the
non-wetting phase very well. One difficulty, however, arises: the indicator values show a
peak for two locations along the north boundary. As the refinement and coarsening bounds
are computed relative to this maximum value, the bounds have to be chosen carefully in
order to still localize the front.

For the adaptive simulation, the refinement bound is chosen as 0.6 and the coarsening bound
as 0.2. The mesh is allowed to coarsen down to level 1 (∆x = 0.5 m) and is refined up to level
3 (∆x = 0.125 m). Figure 6.15 shows the oil saturation distribution and the mesh after 24
hours. The adaptive refinement follows the proceeding front very nicely. Behind the front,
the elements are coarsened again. A comparison of the execution time for the adaptive
and the uniform case is given in Figure 6.16. Here, the adaptive simulation clearly shows
an improvement. As for the two previous test cases, again the relations between number
on non-linear iterations and averaged linear iterations are shown in Figure 6.17. Again, the
adapted problem seems to introduce more non-linearities and therefore more computational
effort is needed. The performance of the Newton algorithm, however, is still good enough:
the time step is not reduced (not shown here).
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6.4 Conclusion

In this chapter, the homogeneous test cases introduced in Chapter 3 were simulated with
adaptive methods. Of the three error indicators described in Section 4.2, the grad S indicator
was chosen for all three test cases, as it located the error between the numerical simulation
and the analytical solution for the Buckley Leverett and McWhorter problem very well.

A general recommendation for suitable refinement and coarsening criteria cannot be given
for the reasons stated in Section 6.1: each problem requires a unique set of refinement and
coarsening criteria. For the Buckley Leverett problem, a comparison between three different
criteria is shown.

For all three test cases, the non-linear and linear iterations per time step were compared
for the uniform and the adaptive simulation. Here, the clear statement can be given that
h-adaptive methods increase the numerical complexity of the problems because of different
element sizes in the domain. However, h-adaptive methods remain a powerful tool for ob-
taining an accuracy of solutions which would hardly be attainable for uniform refinement
because of the sheer amount of computational storage needed for the otherwise huge num-
ber of elements and nodes.

The aim of the adaptive methods presented here is on the one hand to provide a tool for
an efficient solution technique. On the other hand, the focus lies on the representation and
tracking of sharp fronts in the system. As these always pose numerical difficulties, a spe-
cial treatment is needed. This is accounted for in this work by applying the fully upwind
method for advection-dominated problems. The fully upwind strategy is of first order and
introduces artificial diffusion into the system (see e.g. Helmig [31]). However, it is generally
desirable to use methods of higher order. This could be achieved with small effort by us-
ing a centrally weighted mobility, resulting in a method of second order, as was explained
in Section 2.4.2.1 - yet, this procedure is not stable and shows a non-monotonous behavior
when confronted with sharp fronts.

Also, fully upwinding introduces a dependence on the flow direction due to its nature. This,
however, is not favorable when regarding diffusive processes. Therefore, the physical be-
havior can be represented better when a centrally weighted mobility is used in these cases.

Therefore, in the following chapter, a criterion is to be developed which identifies regions
where advection or diffusion is dominant. The aim is then to utilize fully upwinding only
in the regions where the hyperbolic part of the two-phase flow equations has a strong influ-
ence.

When the diffusion-dominated regions are identified in the system and regarded with a
second-order scheme, the affected elements can be increased in size again. This has the
advantage that the physical process is still well enough represented by an overall smaller
number of degrees of freedom in the system.



7 Simulation of the homogeneous test cases with
the Peclet criterion

7.1 Derivation of the two-phase Peclet number

As explained in the previous section, a criterion which identifies regions of advective of
diffusive dominance is the aim. A measure for the relation of these properties is the dimen-
sionless Peclet number (Pe).

Originally derived for the classical transport equations, the Peclet number is defined in gen-
eral as follows:

Pe =
v ·∆l

D

(
=

advection
diffusion

) |Pe| ¿ 1→ diffusion dominates
|Pe| À 1→ advection dominates

(7.1)

In this classical definition, v represents the velocity in the system and D is a general repre-
sentation of the diffusion effects. If Pe is regarded with respect to a discretization mesh, the
characteristic length ∆l represents the element length (Helmig [31]).

For the pressure - saturation formulation of the two-phase flow equations applied here, it is
not possible to distinguish exactly between an advective and a diffusive term. Therefore, a
different approach is chosen:

The advective and diffusive properties of the pw−Sn-formulation (Eq. (2.40)) are combined
in the flux term Fα = ρα vα (see Eq. (2.45)).

As explained in Section 2.3, the influence of the advective (hyperbolic) and diffusive
(parabolic) effects are steered by the saturation (low saturation: diffusion dominates, high
saturation: advection dominates). Therefore, a variation of the flux term (and the veloc-
ity in particular, as the density of the fluids is assumed to be constant) with respect to the
saturation should result in an expression which describes the influence on diffusion and
advection.

Since a pw−Sn-formulation is considered in this work, the following investigations are car-
ried out for the velocity of the non-wetting phase vn. As the applied discretization scheme is
the Box Method (see Section 2.4.2), the points of interest for the variation are the integration
points (IPs): The computation of the stiffness matrix is done for each element via a loop
over the integration points in an element. Therefore, the Peclet number for an element is
also considered at the IPs.
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vn is evaluated at the integration points in the following way:

vIP
n = − λIP

n K (grad pIP
n −ρIP

n g) (7.2)

It represents the flow from a node i to a node j across a subcontrol volume face into a box
(see Fig. 7.1). In the following, all variations are done with respect to the upstream node i.

Formulating the derivative of the flow velocity with respect to the saturation at node i (Sn|i)
yields the following expression:

∂vIP
n

∂Sn|i
= −∂λIP

n

∂Sn|i
K

(
grad pIP

n −ρIP
n g

) − λIP
n K

∂
(

grad pIP
n −ρIP

n g
)

∂Sn|i
(7.3)

The gradient of pn can be expressed as grad pn = grad pw + grad pc. As grad pw as well as
ρng are independent of Sn, Eq. (7.3) can also be written as follows:

∂vIP
n

∂Sn|i
= −∂λIP

n

∂Sn|i
K

(
grad pIP

n −ρIP
n g

) − λIP
n K

∂ grad pIP
c

∂Sn|i
(7.4)

In Eq. (7.4), the first term can be judged as the advective part and the second term as the
diffusive part. If we put these terms in relation to each other, the two-phase Peclet number
can be obtained.

But first, some further remarks have to be made:

• In 2D and 3D, the gradient represents a vector. For the discretization used here, only
the flow normal to the subcontrol volume face is considered. This can be obtained by
multiplying all the vector-type variables by the (unit) normal vector of the subcontrol
volume face.

• grad pc and λn are interpolated to the integration point by the shape functions in the
element. In this way, the mobility is always weighted centrally, whether upwinding is
used or not. This ensures that the conditions for all elements are the same.

x∆

pn j

pn i
vn

IP

subcontrol
volume face (scvf)

vn
IP

vn
IP scvf

i jIPupstream
i

j downstream

element

upstream

downstream

b) 2Da) 1D

Figure 7.1: Definition of flow direction between nodes i and j



7.1 Derivation of the two-phase Peclet number 81

• The diffusive part of the two-phase flow (∂grad pIP
c /∂Sn|i) is indirectly a function of

the discretization length ∆x. This is illustrated with the help of Figure 7.2, which also
shows how the variation of Sn was realized in the program.

The first picture in Figure 7.2 shows the capillary-pressure function pc(Sn). Here, the
different values of pc at the nodes i and j are shown. Also, the capillary pressure
pc(Sni +∆Sn), corresponding to the ’varied’ saturation, is plotted.

The middle part of Figure 7.2 shows the representation of these values for two different
mesh widths. If the saturations at the nodes are the same for two different meshes,
the capillary pressures as well as the capillary pressure corresponding to the varied
saturation are also the same. grad pc is estimated at the integration point between the
nodes i and j . The gradient which is present in the system is represented by the line
marked with a black dot (1 and 3), the gradient which results from the variation is
indicated by a line marked with a grey dot (2 and 4). If these values are transfered to
the graph plotted in the lower left corner of Figure 7.2, the derivative of grad pc with
respect to Sn can now be calculated. The result is given in the lower right graph of
Figure 7.2: the value for a smaller discretization length (∆x1, square) is larger than the
value for a larger discretization length (∆x2, triangle).

If we assume homogeneous isotropic soil conditions between the nodes i and j , the two-
phase Peclet number at an integration point can be written as:

Pe =

∂λIP
n

∂Sn|i

(
(grad pIP

n )⊥scvf−ρIP
n g⊥scvf

)

λIP
n

∂(grad pIP
c )⊥scvf

∂Sn|i

(7.5)

In this representation, the Peclet number is again a scalar value. Now the two-phase Peclet
number is derived, two things can be achieved:

On the one hand, it is now possible to switch locally between a fully upwinding or centrally
weighted scheme. As was explained in Section 2.4.2, an upwinding scheme is required
for advection-dominated problems in order to obtain stability. However, it also introduces
artificial diffusion and is only of first order, as opposed to a scheme using central weighting
of the mobilities. Therefore, it is desirable to introduce upwinding only, where it is necessary,
i.e. where advection dominates.

For transport problems, the issue of an upwind control via the Peclet number is not new.
Some criteria are given in, for example, Noorishad et al. [52], Thiele [59], Neunhäuserer [51].
As no findings are known for the application to the strongly coupled two-phase flow equa-
tions introduced in Section 2.3, the following relationship is utilized in a first approach:

αup(Pe) =
{

0.0 if |Pe|< 1.0
1.0 else

(7.6)

This may seem rather strict, but is nonetheless on the safe side.
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On the other hand, it is now also possible with additional means to control the adaptive
method. Here, the idea is to increase the element size in regions where diffusion effects are
predominant. From the point of view of a physical interpretation of a diffusive process, the
information at one point spreads out in all directions immediately throughout the system.
Therefore, one is not restricted to small elements which reproduce the stepwise progression
of the information in the hyperbolic case, but one can choose large elements. As an error
indicator, however, may still point to diffusion dominant regions to refine the elements here,
an additional criterion has to be introduced. This is now realized with the Peclet criterion,
which overrides the refinement marks set by the error indicator.

For the upwinding control as well as for the adaptive indicator, an element Peclet number
is computed by

Peelem = max
j∈IP(k)

|Pej | (7.7)

where IP(k) is the set of integration points for element k. This ensures for the upwinding
control that the same upwind value is taken for one element. A variation from IP to IP
would be possible, too. Considering, for example, the Buckley-Leverett problem, one can
see that, for the integration points at subcontrol volume faces perpendicular to the flow,
Pe becomes very large due to the large pressure gradient. For the integration points on
subcontrol volume faces parallel to the flow, however, the value for Pebecomes very small,
as for the quasi one-dimensional problem the pressure is constant over the height of the
domain.

For the adaptivity control, only an element value makes sense, as only a whole element can
be marked for refinement or coarsening.

Remark:
The two-phase Peclet number as it is shown here depends on the solution of the numerical
simulation in each time step. This means, that for the Newton solver, where the node values
are infinitesimally varied, also the Peclet number changes, which in turn would affect the
solution. In order to circumvent this problem, in the simulation the Peclet number is once
computed in the beginning of a time-step and then held constant.

7.2 Buckley-Leverett problem

At first, the Peclet criterion is applied to the uniform simulation, where only the up-
wind value is chosen adaptively. As the Buckley-Leverett problem is a purely advection-
dominated problem, the Peclet number is always above 1 and thus no change in the dis-
cretization scheme takes place. The result is therefore identical to the results shown in Sec-
tion 3.1 and are not shown here.

Then, the upwinding as well as the adaption criterion are employed. The distribution of
the Peclet number in the domain for t = 500 days is shown in Figure 7.3. The output for
Pe is for each element midpoint; the contour of the Peclet number therefore follows the line
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connecting those midpoints. As can be seen, the values are all well above 1, as anticipated
for this advection-dominated problem.

One remark has to be made: For the Buckley-Leverett problem, the capillary pressure is
set to zero. This implies that (∂ grad pc)/(∂Sn) is not defined. Mathematically, this would
lead to Pe= ∞. For the numerical simulation, (∂ grad pc)/(∂Sn) was set to max (ε = 1.0e−
20,(∂ grad pc)/(∂Sn)). The same was done for λn(Sn = 0).

The result in Figure 7.3 shows that, for the Buckley-Leverett problem, no changes occurs
due to the Pe-criterion: as Pe> 1.0 is valid everywhere, fully upwinding is applied and the
mesh is changed due to the chosen indicator only.

7.3 McWhorter problem

7.3.1 Uniform simulation

At first, a computation was carried out with a uniform mesh and the Pe-criterion applied to
the upwind value. The resulting saturation (thick lines) and error (thin lines) distribution is
shown in Figure 7.4. It can be observed that the deviation towards the analytical solution is
marginally larger when the upwind value is chosen automatically. The reason for this can
be found in Figure 7.5: Although the McWhorter problem is a purely parabolic (diffusion-
dominated) problem, the Peclet number becomes larger than 1 in the region around the
front. Therefore, the upwind value is changed from αup = 0.0, which is the default case for
this problem, to αup = 1.0.
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This phenomenon can be explained as follows:

The two-phase Peclet number for the pn−Sw-formulation which is used for this problem is
given as:

Pe =

∂λIP
w

∂Sw|i

(
(grad pIP

w )⊥scvf−ρIP
w g⊥scvf

)

λIP
w

∂(grad pIP
c )⊥scvf

∂Sw|i

(7.8)

Figure 7.6 shows the water saturation and the phase and capillary pressures for t = 4000 s.
The values of the components of Peare given in Figure 7.7.

For the region between the inflow boundary and the saturation front, the gradient of the
water pressure is very low, which leads to a small Peclet number. As, however, the water
saturation decreases, pc increases strongly for the Brooks-Corey function applied here (com-
pare Figure 2.3). As the water pressure is computed via pw = pn− pc (see Eq. (2.9)), this
results in a large decrease in pw, which again leads to a large (absolute) value for grad pw.
If Pe is now computed, a value larger than 1 is obtained. On the downstream side of the
saturation front, grad pw and thus Peare again small.

7.3.2 Adaptive simulation

In a next step, the Peclet-upwinding criterion was applied to an adaptive simulation. The
resulting saturation and error distribution is depicted in Figure 7.8. Here, the result is even
worse than for the uniform case. Not only is the error larger, the execution time also in-
creases dramatically when αup is chosen according to the Peclet number (Figure 7.9).

X [m]

S
w

[-
]

E
rr

or
[-

]

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

Brooks-Corey const. rel.

t = 4000 s

no upw.

Pe-upw.

uniform

Figure 7.4: Water saturation and error dis-
tribution for the McWhorter
problem, comparison between
’no upwinding’ and ’Peclet up-
winding’

X [m]

Y
[m

]

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

95

90

80

70

60

50

40

30

20

10

0

uniform, Pe-upwinding
Brooks-Corey const. rel.

t = 4000 s Peclet-
Number

Figure 7.5: Peclet number distribution for
the McWhorter problem, simu-
lation with ’Peclet upwinding’



86 Simulation of the homogeneous test cases with the Peclet criterion

X
0.0 0.5 1.0 1.5

0.0

0.2

0.4

0.6

0.8

1.0

-9.0E+05

-8.0E+05

-7.0E+05

-6.0E+05

-5.0E+05

-4.0E+05

-3.0E+05

-2.0E+05

-1.0E+05

0.0E+00

1.0E+05

2.0E+05

200000

200200

200400

200600

200800

201000

201200

201400

201600

201800

202000

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1E+06

1.1E+06

Sw

pw

pn

pc

Sw [ - ] pw [Pa] pn [Pa] pc [Pa]
t = 4000 s, Pe-upwinding

Figure 7.6: Water saturation, phase pres-
sures and capillary pressure

0.9 1.0 1.0 1.1 1.1

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

0

2

4

6

8

10

12

14

16

18

20

-4E+07

-3.5E+07

-3E+07

-2.5E+07

-2E+07

-1.5E+07

-1E+07

-5E+06

0

-3E+11

-2E+11

-1E+11

0

1E+11

2E+11

3E+11

0

10

20

30

40

50

60

70

80

90

100

values at integration points ( y = 0.9 m )

X [ m ]

d λw

d Sw

grad pw

d grad pc

d Sn
PeSw, krw

Figure 7.7: Distribution of the Peclet num-
ber and its components

X [m]

S
w

[-
]

E
rr

or
[-

]

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

Brooks-Corey const. rel. ML 4 (no upwinding )

ad. ref. (no upwinding)

ad. ref. (Peclet upwinding) t = 4000 s

t = 4075 s

t = 4000 s

Figure 7.8: Water saturation and error dis-
tribution for the McWhorter
problem, comparison between
’no upwinding’ and ’Peclet up-
winding’ for an adaptive simu-
lation (thick lines: Sw, thin lines:
error)

simulated time [ s ]

ex
ec

u
tio

n
tim

e
[s

]

0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0
0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

110.0
BC uniform

BC uniform, upPe

BC adaptive

BC adaptive, upPe

McWhorter problem

Figure 7.9: Execution time over simulated
time for Brooks-Corey consti-
tutive relationships. Uniform
and adaptive case with ’no up-
winding’ and ’Peclet upwind-
ing’(upPe).



7.4 Homogeneous model problem (Sandbox) 87

As explained in the introduction to this chapter, another application of the Pe-criterion is
possible: a controlling of the adaptive refinement. Here, the idea is to coarsen regularly
refined (red) elements when Pe< 1.

This method was applied to the adaptive simulation of the McWhorter problem. However, a
result cannot be shown: within the first few time steps, the refinement of the first column of
elements alternates between level 3 and 4 for each consequent time step and no convergence
is reached.

A reason for this can be found when it is recalled that the derivative of the gradient of the
capillary pressure after the saturation depends on the element size (compare Figure 7.2).
If the element size ∆x is increased, (∂ grad pc)/(∂Sw) decreases, which results again in an
increase of the Peclet number. So for the elements near the boundary, the following loop is
passed through:

• The element size is small: Pe< 1.

• As Pe< 1, the element is marked for coarsening.

• The element size is large: Pe> 1.

• As Pe> 1, a marking due to the error indicator is valid. The element gets marked for
refinement.

• The element size is again small.

One way of avoiding this behavior and excluding the boundary influence from disturb-
ing the adaptive refinement would be to apply a secondary criterion which applies the Pe-
criterion for interior elements only.

7.4 Homogeneous model problem (Sandbox)

7.4.1 Uniform simulation

Again, the first step was to apply the Pe-criterion to the upwind value for a uniform case.
The result is shown in Figures 7.10 and 7.11. In the left picture, the Peclet number and the
resulting upwind value distribution can be seen. The value of Pe is around one behind the
front and then increases very steeply. The right picture compares the saturation distribution
of the standard case with the solution for the adaptively chosen upwind switch. It can be
observed that the application of the Pe-criterion leads to saturation isolines which are not as
smooth as for the fully upwind case. If we take a closer look at the location of the dents, we
see that they are placed near the borderline between αup = 0.0 and αup = 1.0.

So far, the upwind value was chosen only between these two values. For the flow velocity,
this means a hard transition from a centrally averaged mobility to a value due to the upwind
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node. Therefore, in a second step, a ’blending’ function for the upwind value was introduced
(Bastian [6]):

αup(Pe) =





0.0 if Pe< Pelow

2 b2 if Pelow ≤ Pe≤ Pemid

1−2(1−b)2 if Pemid < Pe≤ Pehigh

1.0 if Pehigh < Pe

with b =
Pe−Pelow

Pehigh−Pelow
(7.9)

Here, Pemid represents the arithmetic mean between Pelow and Pehigh. Figure 7.12 shows the
result for Pelow = 1.0 and Pehigh = 10.0. Here, all diffusion dominated areas (Pe< 1) are calcu-
lated with a centrally weighted mobility. As can be observed, this choice of lower and upper
bounds does not lead to a correct solution. It seems that the advection clearly dominates the
system as soon as Pe= 1 is reached and not using fully upwinding in these regions does not
reproduce the physical behavior.

For the result shown in Figure 7.13, the bounds were chosen as Pelow = 0.5 and
Pehigh = 2.0. Here, the saturation distribution looks much smoother. Near the inflow, how-
ever, some sharp bends can still be observed. An explanation for this behavior is shown
in Figure 7.10: when looking at the distribution of the upwind values, we notice that, for
the top row of the mesh, fewer elements are marked with a value of αup = 0.0 than for the
row immediately below. This means that, along the boundary, the velocity is higher and
therefore the front propagates faster.

In order to compensate for this effect, all boundary elements were excluded from the Pe-
criterion, leading to αup = 1.0 for these elements. The results are shown in Figure 7.14 with-
out and with blending. It shows that, with this method, the isolines are relatively smooth
again.
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7.4.2 Adaptive simulation

In a second step, the Pe-criterion was applied to an adaptive case. At first, only the upwind-
ing was adapted. The result (without blending) can be seen in Figure 7.15. The results are
even worse than for the uniform case. It can be observed that the number of elements with
Pe< 1 increased.

Next, the upwinding value was again set to fully upwinding in the whole domain and the
grid adaptivity was controlled. Figure 7.16 shows the results: the mesh was coarsened in
some regions due to a Peclet number below one. The saturation distribution looks very
similar to the ’standard adaptive’ case.

Finally, both aspects of the Pe-criterion were combined. However, there is a discrepancy
between the resulting saturation distribution and the reference solution - the effects of the
Peclet upwinding (Figure 7.15) are even worsened. (see Figure 7.17).
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8 Two-phase flow in a heterogeneous medium:
the test case

8.1 Heterogeneous model problem (Sandbox with lense)

In addition to the homogeneous test case as introduced in Section 3.3, a heterogeneous case
was also investigated. As outlined in the introduction, heterogeneities have an important
impact on the behavior of subsurface flow. As they influence the flow paths strongly, they
may, for example, decelerate the spreading of contaminants or direct them to different re-
gions.

Heterogeneities are important for the flow processes, yet their numerical consideration is
difficult. The two-phase flow equations and constitutive relationships themselves are al-
ready highly non-linear. When domains with different properties, such as, for example,
different permeabilities, are introduced as well, the coefficients in the coefficient matrices
vary to a larger extent, which makes the numerical computation even more challenging.

The set-up of the chosen test case can be found in Figure 8.1. It resembles the homoge-
neous test case introduced in Section 3.3 and is leaned on cases in the literature (see e.g.
Helmig [31]). However, the soil and fluid properties are changed so that they are now based
on the values used by Kueper et al. [42]. The applied values are given in Tables 8.1 and 8.2.

The simulation is carried over a time period of 240 min with the parameters presented in
Table 8.3.

Sn = 0.0 [−]

= hydrostaticp w

q n = 0.048 [kg/m²]

= no flowp w

Sn = 0.0 [−]
wp = hydrostatic

I
nS

p w = hydrostatic

= 0.0 [ − ]

II

2 m

1 m

1 m

3 m 3 m 3 m
no flow

( water )

( oil )no flow no flow

Figure 8.1: System, initial and boundary conditions of the heterogeneous system
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Table 8.1: Fluid properties (heterogeneous model problem)
water density ρw = 998 [kg/m3] dyn. visc. water µw = 0.001 [kg/(m s)]
oil density ρn = 1631 [kg/m3] dyn. visc. oil µn = 0.0009 [kg/(m s)]

Table 8.2: Soil properties (heterogeneous model problem)
Domain 1 Domain 2 (Lense)

abs. perm. K1 = 5.04 x 10−10 [m2] abs. perm. K2 = 5.26 x 10−11 [m2]
porosity φ1 = 0.4 [ - ] porosity φ2 = 0.4 [ - ]
res. sat. water Swr,1 = 0.078 [ - ] res. sat. water Swr,2 = 0.098 [ - ]
res. sat. oil Snr,1 = 0.0 [ - ] res. sat. oil Snr,2 = 0.0 [ - ]
entry pres. pd,1 = 370.0 [Pa] entry pres. pd,2 = 1324.0 [Pa]
distr. ind. λ1 = 3.86 [ - ] distr. ind. λ2 = 2.49 [ - ]

Table 8.3: Simulation parameters (heterogeneous model problem)

Initial conditions:
water pressure pw = hydrostatic [Pa]
oil saturation Sn = 0.0 [ - ]

Discretization:
step size (space) ∆x = 0.125 [m]
step size (time) ∆t = 120 [s]

8.2 Uniform simulation of the heterogeneous test case

The results obtained with the Box Method and with the Box-Trans Method are shown in
Figure 8.2. Here, two distinct differences can be observed:

1. The oil infiltrates into the lense when the Box Method is applied whereas, for the Box-
Trans Method, a pool is formed on top of the lense and no infiltration takes place.

This behavior is due to the phenomenon explained in Section 2.4.2.2 and Figure 2.12
therein: for the Box Method an infiltration can take place before S∗w is reached. We will
return to this problem in the next section.
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2. The boundary of the lense seems to be located differently for the two discretization
schemes.

The reason for this can be found when Figures 2.8 and 2.13 are referred to again.
Whereas the interface of the two subdomains is located along the subcontrol vol-
ume faces for the Box Method, it is located along the element edges for the Box-Trans
Method. This results in a positioning of the oil pool one element length above the
interface for the Box Method (for the visualization, node values are chosen and inter-
polated).

In a next step, the upwinding was chosen according to the Peclet criterion. The results for
t = 60 min are shown in Figure 8.3. The points in time for the results with ’Peclet upwinding’
differ from the reference solution, as the time step was adaptively reduced due to numerical
difficulties. The elements for which Pe< 1 is valid are marked by black squares. It can be
noted that they are all positioned around the interface of the lense. For all these elements,
αup was set to zero.

It can be observed that the oil saturation becomes negative. This phenomenon was described
in Section 2.4.2.2 (Figure 2.11).

The subfigures 8.3.a through d represent the saturation distribution at two cuts across the
domain. Figures a) and b) show the saturation at t = 2722 sec. Here, the oil has just reached
the lense and has not yet spread to the sides. Due to the centrally weighted mobility, oil
starts flowing out of the lense, which leads to negative saturations. Figures c) and d) show
the saturation state before the simulation was aborted. Note that the peaks of the negative
values are now located above the interface. Here, it has to be recalled that the position of
the interface for the simulation is half an element length above the dotted line.
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Figure 8.2: Oil saturation distribution after 240 minutes. Left: Box Method; right: Box-Trans
Method. The applied mesh size is indicated by the clippings in the corners.
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The results show that, for the case of a pooling of the oil on the lense, the flow takes on a
diffusive character in this region. This would lead to a choice of an arithmetically weighted
mobility according to the Peclet criterion. As explained before, this choice is not acceptable
when interfaces between domains with different properties are considered. Therefore, the
use of the Peclet criterion is not advisory when simulating heterogeneous domains with the
Box Method.

8.3 Adaptive simulation of the heterogeneous test case

Before the adaptive simulation can be carried out, some preliminary investigations have to
be made. The central question concerns the appropriate choice of the values for the refine-
ment and coarsening criterion. As already shown for the homogeneous case, the size of
the indicator values varies throughout the domain. Therefore, at first, a uniform simulation
was carried out for the Box Method and the indicator values in the domain were calculated.
Figure 8.4 shows the result for t = 240 min.

Here, the complex distribution of the values is clearly visible. It can be seen that the indi-
cator takes on very large values for the elements located above the lense. For the adaptive
simulation, not only this region needs to be located, but also the regions where the oil flows
down from the lense. In these areas, however, the indicator values are relatively small. The
task which has to be solved is to find values which locate the crucial regions, but exclude
those parts where a refinement is not necessary. In order to do this, several cuts were taken
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Figure 8.3: Left: Comparison of the saturation distribution with ’fully upwinding’ and
’Peclet upwinding’ for the uniform case (detail). Right: Saturation distribution
at cuts through the system for the case ’Peclet upwinding’ for different points in
time.
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throughout the domain. These are shown in Figure 8.5. Based on these results, the criteria
’refinement bound = 0.25’ and ’coarsening bound = 0.05’ were chosen.

The corresponding results of the adaptive simulation carried out with these parameters are
shown in Figure 8.6. Here, one can see that the refinement is located only around the critical
regions.

As mentioned in Section 8.2, an infiltration takes place for the simulation with the Box
Method, in contrast to the behavior exhibited by the Box-Trans Method. With the help of
adaptive methods, it is now conveniently possible to reproduce the correct infiltration per-
formance for the Box Method by choosing appropriately small elements along the subdo-
main interface. The result for a refinement up to level 6 is shown in Figure 8.6 (right). Here,
it becomes clearly visible to which extent the discretization length influences the entering of
oil into the lense.

A comparison of the required number of elements and nodes for the case presented here is
given in the following table:

uniform adaptive
ML 3 ML 6 ML 3 ML 6

elements 2304 147456 698 (0.3) 10322 (0.07)
nodes 2409 148289 718 (0.3) 10834 (0.07)
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It shows that the number of nodes needed by the adaptive algorithm in order to obtain
the same resolution as the uniform case is by 30 % for a maximum refinement level of 3
(∆x = 0.125m) and even only 7 % for a maximum refinement level of 6 (∆x = 0.015625m)!

At this point, the aspect of mass conservation is again brought up. The following ta-
ble shows the masses of the wetting and non-wetting phases present in the system at
t = 240 min for adaptive refinement up to level 3.

with without
mass correction mass correction

water [kg] 13 948.3 13 968.7
oil [kg] 691.1 657.8

The values for the case with mass correction equal the values when the infiltration rate is
summed up over time. The difference for the simulations with and without mass correction
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Figure 8.6: Comparison of the adaptive simulation with different refinement levels for the
Box Method. Left: refinement up to level 3; right: refinement up to level 6
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is visible. Although the percentage of the deviation may not be large in the present case, it
does represent an error which accumulates over time. Especially when one is interested in
the exact point in time for the infiltration, the existing mass in the system plays an important
role. As the elements located above a lense have first to be filled with oil to a certain extent
in order to overcome the entry pressure, more oil in the system, for example, will lead to a
faster increase in the pressure and therefore to an infiltration time which is smaller than the
time obtained by the uniform reference simulation.

Following the same procedure as for the homogeneous case in Section 7.4.2, the Peclet crite-
rion was applied to the adaptive simulation of the heterogeneous case.

At first, only the upwinding was controlled. The result can be found in Figure 8.7. Here,
the same non-physical saturation distribution is obtained as in the uniform case. Due to the
Peclet criterion, the upwinding is switched off for the elements along the lense and with
central weighting, negative saturations occur.

Then, the Pe-criterion was applied to the adaptive refinement. Figure 8.8 shows the satu-
ration distribution for the Box Method (left) and the Box-Trans Method (right). With the
help of these results, it becomes visible to which extent the mesh geometry influences the
solution. Although the upwind value αup is set to 1.0 for the whole domain, oil saturations
up to -2.0 develop at nodes located above the lense when the Pe-criterion is applied. (Note
that the colors of the contour legend were reversed for this case.) An explanation for this
behavior can be given as follows:

As the elements with Pe< 1.0 are located on top of the lense, these elements are marked for
coarsening, as explained before. However, the same rules as for regular coarsening have to
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be obeyed: an element can only be coarsened if all brother elements are marked for coars-
ening, too. This leads to the fact that, in some areas, larger elements exist along the interface
than in other areas. This is marked by a white circle on the left of Figure 8.8. As the interface
between two subdomains runs in the middle between two nodes for the Box Method, its
course experiences a peak in the indicated area. This behavior together with an unfortunate
element geometry for this case then leads to oil saturations below zero.

Another effect can be observed when looking at the results for the Box-Trans Method in the
right part of Figure 8.8. Here, the trail of small elements accompanying the flow of the oil
down from the lense is broken in the middle. Due to the larger elements now present, the
saturation distribution is now spread to the sides much more.

To complete this chapter, the results are shown for combining the ’Peclet upwinding’ with
the ’Peclet refinement’ in Figure 8.9. It can be seen that the negative effects - saturations
below zero, irregular boundary of the lense due to different element geometries, smearing
of the saturation due to large elements - influence each other and lead to a very non-physical
result.
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Figure 8.8: Mesh and oil saturation distribution for the adaptive simulation with ’standard
adaptivity’ and ’Peclet adaptivity’. Left: Box Method; right: Box-Trans Method
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9 Applications

9.1 Simulation of experimental results

As a conclusion of the preceding chapters, the h-adaptive method introduced is now utilized
to reproduce an experiment which was carried out by the author of this thesis at the Institut
für Hydromechanik, ETH Zürich, Switzerland (Paul et al. [56]).

The use of the developed Peclet criterion is abandoned for this case, as the results pre-
sented in this work show that further investigations concerning the specific application of
this method are needed.

The chosen experiment reproduces the flow of water through a dike with a slanted core.
This situation is idealized by a Hele-Shaw cell (see Figure 9.1). For the case of no capillary-
pressure effects, the laminar flow through a thin slot between a model and the glass front of
the container is a valid approximation of the flows occurring in nature. In the experiment,
different permeabilities inside the model are realized by applying different slot widths. The
underlying relation is given by

k1

k2
=

d1
3

d2
3 (9.1)

where ki are the different conductivities and di represent the slot widths of the zones i
(Bear [10]).

Figure 9.2 shows the geometry of the dike model used. It consists of two zones with the
same permeability (zones 1 and 3) and a zone with a lower permeability (zone 2). Zone 4 is
added for the numerical simulation, which is described below.

slot between
model and
glass front

model

glass front

infiltration 
of oil

Figure 9.1: Schematic sketch of a Hele-Shaw cell
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Figure 9.2: Geometry of the dike model

The course of the experiment is as follows: the oil level on the left side of the air-filled dike
was gradually raised to a height of 20.6 cm. The oil table is then held constant, until a steady-
flow state inside the dike has been reached. The resulting oil distribution is shown in Figure
9.3. Here, the white dashed line indicates the oil table serving as an inflow condition for the
system.

The figure shows that the oil level stays nearly constant in the first zone it encounters. Inside
the core (zone 2), the free surface shows a small decline. In zone 3, the phreatic surface
is significantly lower than in the other two zones and proceeds in a curve downwards to
the exit point located in the right part of the domain. In this picture, the influence of a
heterogeneity can clearly be observed: the oil is held back and can flow only gradually into
zone 3. The transition zone between the core and the rightmost part of the system is covered
by a veil of oil. Here, oil was running down the front plate in the experiment and the slot
was not completely filled by oil.

This is an effect which can be modelled well by a two-phase flow simulation tool. As op-
posed to a classical groundwater-flow model, it has the advantage that even complex forms
of the surface between water and oil (or air) can be modelled. Another advantage is that the
dropping zone of the oil that developed here, where the saturation of each phase is less than
one, can also be accounted for.

Figure 9.3: Experiment in the Hele-Shaw cell, steady state (after Paul et al. [56])
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Table 9.1: Soil properties (dike-experiment)
Zone 1 Zone 2 Zone 3 Zone 4

K [m2] 9.8 x 10−10 3.6 x 10−11 9.8 x 10−10 9.8 x 10−8

Porosity [−] 0.37 0.35 0.37 0.20
Swr [−] 0.05 0.10 0.05 0.15

The numerical simulation was carried out with the soil properties given in Table 9.1. The
constraint which had to be obeyed was the ratio of the permeabilities, which was chosen
as k1/k2 = 1 : 27.3 in the experiment. The values applied here are based on real sands
(Sheta [58]). The residual saturation of the non-wetting phase was set to zero in all zones.

When capillary effects are excluded, as in the present case, the difference between the vis-
cosities of the fluids utilized in the experiment does not influence the steady state shown
here. Therefore, in order to reproduce the infiltration into a real dike more accurately, water
was chosen as the infiltrating fluid for the numerical simulation.

The results of the numerical simulation are shown in Figures 9.4 through 9.6. At first, the
results of a uniform simulation are shown (mesh and water-saturation distribution, Figure
9.4). It can be observed that the agreement of the numerical and experimental results are
very good: even the dropping zone mentioned above was correctly represented. However,
due to the numerical interpolation of the saturation values for the elements located at the
interface between water and air, the phreatic surface does not resemble a smooth curve as
in the experiment.

Figures 9.5 and 9.6 show the mesh and water saturation for the adaptive simulation at two
different points in time. The pictures illustrate nicely, that the adaptive algorithm correctly
identified the sharp interface between water and air. Also, due to the smaller element size
near the interface, the free surface resembles more the results obtained from the experiment.

The following table shows a comparison of the number of nodes and elements for the uni-
form and adaptive simulations.

number number smallest element
of nodes of elements edge (approx.)

uniform 1393 2592 0.0125 [m]
adaptive 1518 2553 0.0041 [m]

It can be seen that, for approximately the same number of elements, the adaptive simulation
shows a much better resolution with elements of the water-air interface.
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Figure 9.4: Mesh (top) and saturation distribution (bottom) resulting from the uniform sim-
ulation (t = 149 s)
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Figure 9.5: Mesh (top) and saturation distribution (bottom) resulting from the adaptive sim-
ulation (t = 53 s)
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Figure 9.6: Mesh (top) and saturation distribution (bottom) resulting from the adaptive sim-
ulation (t = 149 s)

9.2 Simulation of a real-life dam

In this section, the h-adaptive method is applied to a real-life dam. The domain is shown
in Figure 9.7. As it can be seen, the structure is very heterogeneous. The dam was built up
continuously over time, which can also be seen by the location of the different subdomains:
At first, a base dam (domain 2 in the lower right) was erected and the void space was filled
up. As the filling material increased, further support was necessary, so the domains 14, 13,
and 15 were added.

The surface of the composite dam very gently slopes upwards from left to right. On top of
the dam, a lake is situated. It ranges from the left side to the point marked with ’a’ in Figure
9.7. As this water level has been constant over a long time, the saturation distribution in
the domain has reached a quasi steady-state. Due to higher inflow in the lake, the surface
spreads further out over the dam. The spreading is not continuously, but given in different
steps: After an initial period of one day, the water spreads to point ’b’. At day 45, the water
increases further to point ’c’ and at day 60 the last position, point ’d’, is reached.

The question is now, how the water will infiltrate into the dam. As the stability of a system,
and especially of a composite sytem as it is the case here, is highly influenced by the water
content in the soil, it is very important to develop an understanding of how the water will
spread out in the system.
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Starting with an initial water distribution in the dam, shown in Figure 9.8, the infiltration
of water into the domain over time is simulated. The soil properties of the different subdo-
mains are given in Table 9.2. As no other data was available, the porosity φ was set to 0.4 for
all subdomains. Also, Swr was set to 0.25 and Snr to 0.0 in the whole domain. The capillary
pressure was set to zero.

Figures 9.9 and 9.10 show the saturation distribution after 205 days and 6 hours for an uni-
form and adaptive refinement, respectively. For these two cases, the size of the smallest
elements were chosen the same. It can be clearly seen that the water infiltrates along the
whole lake length from the top into the domain. As the hydraulic conductivity in subdo-
main 12 is larger than in domain 6, the water infiltrates here faster. This results in a large
air bubble which is entrapped in the system. Over time, this entrapped air will leave the
system, also, but it becomes obvious that a two-phase approach is needed to account for
this behaviour. It can also be observed that the water does not infiltrate into the base dam,
which has a very low hydraulic conductivity.

The following table shows the execution time and amount of elements and nodes needed for
the simulations. For the adaptive simulation, the largest elements were equal in size than
for the case ’ML 0’. The smallest elements resembled the size for the case ’ML 2’. As it can
be seen, the gain in time with the adaptive method is clearly visible.

uniform adaptive
ML 0 ML 2 f0t2

execution time [s] 518 57 079 11 983
elements 5 130 82 080 11 672
nodes 2 746 41 761 6 629

When looking at the execution time, one has to bear in mind that the total number of nonlin-
ear and linear iterations is different for all the three cases. For the uniform simulation with
coarse elements, the total sum is 612, for the fine mesh 24450 and for the adaptively refined
mesh 28766.

Figure 9.11 shows a detail of the adaptive mesh. It can clearly be observed that the applied
(gradient) indicator detects the saturation front very well, even in the case of a heteroge-
neous medium.

Table 9.2: Soil properties of the different subdomains
Subdomain K [m2] Subdomain K [m2] Subdomain K [m2]

1 1 x 10−15 6 1 x 10−13 11 1 x 10−14

2 1 x 10−15 7 5 x 10−15 12 5 x 10−13

3 5 x 10−14 8 1 x 10−13 13 4 x 10−12

4 1 x 10−15 9 1 x 10−15 14 1 x 10−13

5 5 x 10−14 10 5 x 10−13 15 1 x 10−12



9.2 Simulation of a real-life dam 105

352.5 m

58.75 m
2

1

3

4
5 8 10

7 9

6 12

11
2 14

13

15

a b c d

Figure 9.7: Domain and subdomains of the dam
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Figure 9.9: Water saturation after 205 days 6 hours for the uniform refinement (ML 2)
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Figure 9.10: Water saturation after 205 days 6 hours for the adaptive refinement
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Figure 9.11: Zoom into the refined mesh. Left: saturation distribution; right: adapted mesh
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When encountering engineering problems of two-phase flow processes in porous media,
one often has to deal with large and complex systems. As the specific points of interest
located in the domain may have comparatively small extensions, for example shafts and
roads located in a large mine system (Breiting [12]), a sufficiently fine element resolution is
required in order to be able to account for the relevant processes. This, however, leads to
huge computational efforts and storage requirements.

Basically it is possible to choose the initial mesh in such a way that some regions are covered
by a fine and other regions by a coarse element resolution. The resulting meshes, however,
have the disadvantage of being static throughout the course of the simulations. This means
that it is not possible react to transient processes as, for example, the proceeding of a satura-
tion front. For this problem, h-adaptive methods represent an efficient solution technique.
While reducing the number of degrees of freedom calculated for one time step, they still
ensure a high accuracy of the solution in the vital areas.

In this work, the h-adaptive methods incorporated into the numerical simulation tool
MUFTE-UG are applied to various test cases. Here, the aim is to develop an understand-
ing of the relevant processes and parameters with the help of well-known basic problems
of two-phase flow. These basic problems are extended to a simple problem without and
with a heterogeneity. Then, with the experience gathered in these applications, the adaptive
algorithm is finally employed for the simulation of an experiment.

Before the homogeneous test cases are introduced in Chapter 3, the governing equations
and the used discretization schemes are explained in Chapter 2. Afterwards, an overview of
adaptive methods in general and the methods particularly applied in this work is given in
Chapter 4.

As the aspect of mass conservation plays an important role in engineering problems (for ex-
ample when considering nuclear-waste deposition sites (Helmig et al. [32])) a whole chapter
(Chapter 5) was devoted to this topic. Here, the different aspects which are important when
uniform and adaptive refinements are considered are stated. Especially when h-adaptive
methods are used, care has to be taken, as nodes, and thus the mass represented by them,
may be omitted due to the manipulation of the mesh. Therefore, an algorithm ensuring
mass conservation for these cases is introduced, which is developed during this work.

In Chapter 6, the adaptive simulation of the introduced homogeneous test cases is presented.
Here, the influence of different refinement and coarsening criteria as well as of different
indicators is shown. Whereas no specific recommendation for the choice of refinement and
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coarsening bounds can be made, as each problem requires its own carefully chosen set,
the grad S indicator is chosen for all subsequent simulations. This indicator identifies large
gradients of the saturation, which usually occur in regions where a sharp front proceeds
through the system and therefore a fine element resolution is required. This indicator is also
easy to implement and to compute, which means that no (large) additional computational
effort has to be made in order to calculate the indicator values. Otherwise, if the computation
of error indicators or mainly estimators becomes very tedious, the advantage of a smaller
number of degrees of freedom melts under the supplementary computational load.

Beside the simulation results, the number of non-linear iterations and averaged number
of linear iterations per Newton step are also compared over the simulation time for the
homogeneous test cases. Here, it becomes noticeable that the numerical challenge posed
by the problems to the solvers increases not only with the choice of non-linear constitutive
relationships as opposed to linear ones, but also with the introduction of differently sized
elements in the domain.

After the adaptive simulation of the homogeneous test cases, the two-phase Peclet number
is derived as a criterion indicating diffusion- or advection-dominant regions (Section 7.1).
The background for this is to be found in the fact that advection- and diffusion-dominated
processes each require different discretization techniques (e.g. upwinding). As in the case
of the two-phase flow equations, these processes are strongly coupled and each extremum
may occur in a problem domain at the same point in time. Therefore, the Peclet criterion is
introduced in order to control the individual upwinding parameter. In addition to the up-
winding, the coarsening of elements can also be controlled by the Peclet criterion. Here, the
aim is to coarsen domains where diffusion is dominant, as these regions do not necessarily
require a fine resolution.

Both aspects of the Peclet criterion are applied to the homogenous test cases in Chapter 7.
For the Buckley Leverett problem, the Peclet number is always larger than 1, so both criteria
are not enabled. For the McWhorter and the sandbox problem, however, the numerical
solution with Peclet criteria differs from the uniform reference solution. For the McWhorter
problem, the reason can be found in the singularity of the Peclet number located directly
at the interface. For the sandbox problem, the explanation is not that obvious. It is shown
that the numerical simulation is very sensitive to a change in the upwind values. Here, the
developed criteria can only be understood as a step towards a better understanding of the
predominant processes.

Subsequently, a heterogenous test case is introduced in Chapter 8. Here, the difficulties
that arise when encountering domains with different properties are explained. Beside the
Box Method, the Box-Trans Method is also applied, which explicitly consideres the entry
conditions at an interface.

For a medium-refined mesh, an infiltration of oil into the fine sand lense of the test domain
takes place for the Box Method, whereas the oil forms a pool on top of the lense for the
Box-Trans Method. For this example, also the influence of the discretization length when
heterogeneities are regarded can be clearly noted: If the refinement is increased, the Box
Method shows the same pooling behavior for the oil as the Box-Trans Method. This under-
lines again the need for h-adaptive methods.
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When the Peclet-upwind criterion is applied, it can be noted that the quality of the per-
formance of the Box Method decreases dramatically: physically wrong solutions (oil satura-
tions below zero) are obtained. The reason for this is that the Peclet number becomes smaller
than 1 in the vicinity of the interface between the two media. This would lead to an upwind
value of αup = 0.0 (centrally weighted mobility). However, especially in the crucial region
around the interface, a fully upwinding technique has to be utilized for the Box Method.

For the Box Method as well as for the Box-Trans Method, the h-adaptive algorithms intro-
duced show good results. However, special care has to be taken when the refinement and
coarsening bounds are chosen, as the heterogeneity has a considerate influence on the indi-
cator distribution. Due to the pooling of the oil on the top of the lense, the gradient of the
saturations in this region becomes very large.

The use of the Peclet coarsening criterion for the heterogeneous case shows only moderate
results. Here, the reason lies in the fact that, with this criterion, some elements are coarsened
along the subdomain boundary, which leads to a shifting of the interface. This, again, results
in numerical difficulties and unphysical results.

In Chapter 9 of this thesis, the adaptive method is applied on the one hand to the numerical
simulation of an experiment and on the other hand to the simulation of a real-life dam.

The experimental example shown is based upon a common engineering problem: the flow
of water through a dike. Although the experimental set-up was kept small and capillary
pressure effects were excluded, the resulting problem shows most of the effects which are
crucial for a numerical simulation: regions with different soil parameters and a sharp front
as well as a region where the saturation is more smeared, are present. A comparison between
experimental and numerical results shows that the adaptive component of MUFTE-UG han-
dles this problem very well.

The application to the dam-problem clearly shows the advantage of the adaptive method.
As the domain is very large, usually a large number of elements would be necessary to
resolve the moving saturation front for a static mesh. With the adaptive method it is possible
to keep a small element size in the front region while coarsening elements in regions where
no relevant flow takes place. With this method, the execution time needed can clearly be
decreased. Here again it is shown that the applied indicator is suitable for heterogeneous
media also.
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Outlook
As the investigations for transport equations show (Neunhäuserer [51]), upwind-control is
a sensible and useful measure. However, great care has to be taken when choosing the
appropriate values for two-phase flow processes, as the examples in this thesis show. The
investigations carried out here may serve as a basis for further studies concerning suitable
transition functions from αup = 0.0 to αup = 1.0 for the applications shown here.

Especially for the additional criterion shown here regarding the coarsening of elements, a
better adjustment between element size and the Peclet number required needs to be made.
The strong non-linear components of the two-phase Peclet number introduced here makes
this no easy task.

The investigations undertaken to find a suitable error indicator are carried out with an
extension to multiphase-multicomponent flows in mind. Especially for the case of non-
isothermal multicomponent systems, where a switch of primary variables may take place
(e.g. Class [17]), adjustments have to be made. This will also be required for the mass-
conservation algorithm.

A further expansion of the adaptive algorithm could be to include the calculation of the
gradient indicator and mass-conservation for the Box-Trans-Method. As in this method the
stored node values need not necessarily be the relevant values when looking at the node
from different elements, it has to be made sure to take the ’correct’ value for the indicator
and mass calculation.

And last but not least, a further task would be to expand this algorithm to parallel simula-
tions and problems in three dimensions.



Bibliography

[1] Aziz, K. and Settari, A. Petroleum Reservoir Simulation. Elsevier, London, New York,
1979.
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Zusammenfassung

Einleitung

Ingenieurfragestellungen, die sich mit Zwei-Phasen-Strömungsprozessen in porösen Me-
dien beschäftigen, beinhalten oft große und komplexe Systeme und werden zunehmend
mit Hilfe von numerischen Simulationsmethoden bearbeitet. Da ein speziell interessieren-
der Bereich im Untersuchungsgebiet vergleichsweise kleine Abmessungen aufweisen kann,
wie zum Beispiel Schächte und Strecken in einer Kohlengrube, ist eine ausreichend feine
Auflösung mit Elementen notwending, um die relevanten Prozesse numerisch erfassen zu
können. Diese Bedingung führt jedoch zu großem rechnerischen Aufwand und Speicher-
platzbedarf.

Grundsätzlich ist es möglich, das Berechnungsnetz am Anfang so zu wählen, dass einige
Bereiche fein und andere Bereiche grob mit Elementen aufgelöst sind. Diese Netze haben
jedoch den Nachteil, dass sie im Verlauf der Rechnung statisch sind, d.h. sich nicht an die
jeweiligen Prozesse, zum Beispiel das Fortschreiten einer Sättigungsfront, anpassen können.
Für diese Problematik liefern adaptive Methoden eine effiziente Lösungsmöglichkeit.

Auf der einen Seite werden durch eine automatische Anpassung der Elementgrößen im Ge-
biet über die Zeit die Freiheitsgrade und damit der Rechenaufwand und Speicherplatzbe-
darf reduziert, auf der anderen Seite können die wesentlichen Bereiche weiterhin fein genug
aufgelöst werden.

Eine weitere Schwierigkeit bei der Simulation von Zwei-Phasen-Strömungsprozessen in
porösen Medien besteht darin, dass sowohl die advektiven als auch die diffusiven Effek-
te, die zur gleichen Zeit im Untersuchungsgebiet auftreten können, wiedergegeben werden
müssen. Da das jeweilige Verhalten eine spezielle Behandlung durch die Diskretisierungs-
methode erfordert, wird in dieser Arbeit eine weitere adaptive Methode entwickelt. Hierbei
geht es um das Erfassen des jeweiligen vorherrschenden Zustandes mit Hilfe der Zwei-
Phasen-Peclet-Zahl, die das Verhältnis zwischen Advektion und Diffusion beschreibt.

Grundgleichungen

Den Berechnungen zugrunde liegen die Zwei-Phasen-Strömungsgleichungen, die in der
Druck-Sättigungsformulierung verwendet werden:

benetzende Phase (z.B. Wasser) w

Lw(pw,Sn) := −φ
∂(Sn ρw)

∂t
− div (ρw λw K (grad pw − ρw g))

− ρw Qw = 0 (1)
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nicht-benetzende Phase (z.B. Öl) n

Ln(pw,Sn) := φ
∂(Sn ρn)

∂t
− div (ρn λn K (grad pc + grad pw − ρn g))

− ρn Qn = 0 (2)

Hierbei bezeichnen die Variablen die folgenden Größen (α ∈ w,n): pα Druck der jeweiligen
Phase α, Sα Sättigung der Phase α, φ Porosität, ρα Dichte der Phase α, t Zeit, λα Mobilität der
Phase α, K Permeabilität, pc Kapillardruck, g Vektor der Erdbeschleunigung und Qα einen
Quellen- oder Senkterm für Phase α.

Diskretisierungsmethoden

Die Gleichungen (1) und (2) werden mit Hilfe der Box-Methode diskretisiert. Für den hete-
rogenen Fall wird des Weiteren die Box-Trans-Methode (PPSIC-Methode) eingesetzt. Diese
Methoden unterscheiden sich zum einen darin, dass die Lage einer Grenzfläche Γ zweier
Gebiete mit unterschiedlichen Materialeigenschaften jeweils anders behandelt wird (siehe
Abb. 1). Zum anderen stellt die Box-Trans-Methode sicher, dass ein Eindringen von z.B. ei-
ner Öl-Sättigung in ein Gebiet erst stattfinden kann, wenn die Schwellensättigung (threshold
saturation) S∗w erreicht wird. Diese Sättigung beschreibt den Punkt auf der Kapillardruck-
Sättigungskurve, in dem der Kapillardruck p1

c eines höher durchlässigen Gebietes gleich
dem Eindringdruck p2

d eines weniger durchlässigen Gebietes ist (siehe auch Abb. 2).

Adaptive Methoden

Es wird eine orts-adaptive Methode, die sogenannte h-adaptive Methode, angewendet, bei
der eine Anpassung der Elementgröße durch Verfeinern (Seitenhalbierung) und Vergröbern
(Umkehr des Verfeinerungsprozesses) der vorhandenen Elemente erreicht wird. Für die Ent-

G

G

Finite Volumen Netz

Finite Elemente Netz

Finite Volumen Netz

Finite Elemente Netz

Box−Methode (Patch−orientiert) Box−Trans−Methode (Element−orientiert)

1

2
e7

B i
iK

e6

e1

Γ

G1

G2
e7 e6

iK
e2

iB
Γ

Abb. 1: Box-Methode (Patch-orientiert) und Box-Trans-Methode (Element-orientiert) (nach
Jakobs et al. [37])
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p c
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(2)

SwSw
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pd
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pd

(1)

wS*

1

2

Grenzfläche

1G 2G
1G

Grenzfläche Γ

Grobsand GrobsandFeinsand

Abb. 2: Sprung der Sättigung an der Grenze zweier unterschiedlicher Medien aufgrund der
Kontinuität im Kapillardruck und Erläuterung der Schwellensättigung S∗w

scheidung, ob verfeinert oder vergröbert werden muss, kommt ein Gradienten-Indikator
(grad S) zum Einsatz, der den Gradienten der Sättigung im Element erfasst:

grad S =

√(
gradx(S)

)2
+

(
grady(S)

)2
(3)

Mit Hilfe dieses Indikators werden diejenigen Elemente verfeinert, in denen ein großer
Sättigungsgradient vorliegt. Die Untersuchungen zeigen, dass dieser Indikator sowohl für
advektions-dominante und diffusions-dominante Probleme als auch für Fragestellungen,
bei denen beide Effekte auftreten, geeignet ist.

Massenkonservativität

Bei der h-adaptiven Methode kommen bei der Verfeinerung neue Knoten hinzu, für die Wer-
te ausgehend von der vorhandene Lösung interpoliert werden müssen. Bei der Vergröbe-
rung fallen Knoten weg; dies bedeutet, dass die Lösungswerte, die für diese Knoten vorhan-
den waren, nun nicht mehr verfügbar sind. Aufgrund dieser Netzmanipulationen kann es
zum Verschwinden oder Hinzukommen von (künstlicher) Masse kommen. Da für die Zeit-
diskretisierung auch die Netze der Lösungen zum vorherigen Zeitschritt angepasst werden
müssen, kann es zu einem Massenfehler kommen, der mit der Zeit akkumuliert. Massen-
konservativität ist ein zentraler Punkt von Diskretisierungsverfahren. Um diese wichtige
Eigenschaft nicht durch die Netzanpassung zu untergraben, wird ein Massenkorrektur-
Algorithmus entwickelt, der den Erhalt der Masse im System sicherstellt. Ein repräsenta-
tives Ergebnis ist in Abb. 3 dargestellt. Hier wird der Unterschied der Massen im System
zur Masse der analytischen Lösung für das Buckley-Leverett Problem für Rechnungen mit
und ohne Massenkorrektur gegenübergestellt. Für eine Rechnung mit einem gleichbleiben-
den Netz (uniformer Fall) ist die Massendifferenz konstant. Für eine adaptive Rechnung
mit Massenkorrektur zeigt sich der gleiche Verlauf, während die Massendifferenz für einen
adaptiven Fall ohne Korrektur im Laufe der Rechnung zunimmt. An den Sprüngen der
Funktion kann abgelesen werden, dass die Rechnung selbst massenkonservativ ist (hori-
zontaler Verlauf), während eine Änderung der Masse nur dann stattfindet, wenn auch das
Netz angepasst wird.
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Time [d]
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Abb. 3: Verlauf des Massenunterschiedes über die Zeit (Buckley-Leverett Problem)

Herleitung der Zwei-Phasen-Peclet-Zahl

Zusätzlich zu der beschriebenen orts-adaptiven Methode wird ein adaptives Verfahren an-
gewendet, bei dem das Diskretisierungsschema angepasst wird. Da advektions-dominante
Prozesse einer anderen Behandlung bedürfen wie diffusions-dominante Prozesse (’fully
upwinding’ (vollständiges Gewichten des oberstromigen Knotens) im Gegensatz zu einer
’zentral wichtenden’ Methode), wird ein Kriterium hergeleitet, das es ermöglicht, zwischen
diesen Prozessen zu unterscheiden. Hierfür wird die Zwei-Phasen-Peclet-Zahl Pehergelei-
tet, die das Verhältnis von Advektion zu Diffusion beschreibt. Sie lautet für die pw−Sn-
Formulierung:

Pe =

∂λIP
n

∂Sn|i

(
(grad pIP

n )⊥scvf−ρIP
n g⊥scvf

)

λIP
n

∂(grad pIP
c )⊥scvf

∂Sn|i

(4)

Diese Formulierung gilt für einen Integrationspunkt (IP). Im Laufe der Berechnung wird ei-
ne Element-Peclet-Zahl verwendet, die sich aus dem maximalen Absoluwert aller IP-Peclet-
Zahlen je Element ergibt. Bei dem Einsatz des Peclet-Kriteriums wird eine ’fully upwinding’
Methode gewählt, wenn gilt Peelem ≥ 1.0, ansonsten wird die Methode der zentralen Ge-
wichtung angewendet.

Homogener Testfall

Beispielhaft für die untersuchten Testfälle werden hier die Ergebnisse für ein Sandbox-
Problem vorgestellt, das sowohl Advektion als auch Diffusion im Gebiet enthält. Das Ge-
biet sowie die Anfangs- und Randbedingungen können Abb. 4 entnommen werden. Die
Fluid- und Bodenparameter sind in Tab. 1 zusammengestellt. Für die Berechnung wird die
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’fully upwinding’ Methode eingesetzt. Abb. 5 zeigt das angepasste Netz und die Verteilung
der Öl-Sättigung im Gebiet nach 24 Stunden. Wie zu sehen ist, löst das hier eingesetzte h-
adaptive Verfahren den Bereich der Front sehr gut auf.

Anschließend wird das Peclet-Kriterium angewendet. Abb. 6 zeigt die Öl-Sättigungsvertei-
lung und die Verteilung der Peclet-Zahl für eine Berechnung mit einem uniformen Netz.
Wie zu erkennen ist, liegen die Werte für Pe im Bereich hinter der Front bei eins, während
sie an der Front selbst stark zunehmen. In dieser Abbildung sind die Elemente, für die ein
zentral-gewichtetes Schema angewendet wurde (αup = 0.0) durch ein schwarzes Quadrat
gekennzeichnet. Das Ergebnis dieser Simulation ist in Abb. 7 dem Ergebnis mit ’fully up-
winding’ gegenüber gestellt. Man kann sehen, dass die Wahl des Gewichtungsfaktors den
Sättigungsverlauf beeinflusst.

Sn = 0.0 [−]

= hydrostaticp w

q n = 0.048 [kg/m²]

= no flowp w

Sn = 0.0 [−]
wp = hydrostatic

nS

p w = hydrostatic

= 0.0 [ − ]

no flow

( oil )no flow no flow

( water )

1 m 4 m4 m

4 m

Abb. 4: System, Anfangs- und Randbe-
dingungen des Sandbox-Problems
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Abb. 5: Netz und Öl-Sättigungsverteilung
nach 24 Stunden

Tab. 1: Fluid- und Bodeneigenschaften (homogener Testfall)

Fluideigenschaften:
Dichte Wasser ρw = 1000 [kg/m3]
Dichte Öl ρn = 1460 [kg/m3]
dyn. Viskosität Wasser µw = 0.001 [kg/(m s)]
dyn. Viskosität Öl µn = 0.0057 [kg/(m s)]

Bodeneigenschaften:
abs. Permeabilität K =8 x 10−12[m2]
Porosität φ =0.4 [ - ]
Residualsättigung Wasser Swr=0.05 [ - ]
Residualsättigung Öl Snr =0.0 [ - ]
Eindringdruck pd =700.0 [Pa]
Porengrößenverteilungsindex λ =2.0 [ - ]
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Abb. 6: Verteilung der Peclet-Zahl und Öl-
Sättigung für den uniformen Fall.
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Abb. 7: Vergleich der Ergebnisse ’fully up-
winding’ und ’Peclet-upwinding’
für den uniformen Fall
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Heterogener Testfall

Zusätzlich zu dem homogenen Testfall wird auch ein heterogener Testfall untersucht. Hier-
bei handelt es sich in der Geometrie um das oben beschriebene Sandbox-Problem, in das
eine Linse mit einer anderen Durchlässigkeit als das umgebende Medium eingefügt ist. Die
Abmessungen der Linse betragen 3 x 1 Meter und sie liegt zentriert einer Meter unterhalb
des oberen Randes. Des Weiteren werden die Fluid- und Bodenparameter verändert (s. Ta-
bellen 2 und 3). Die Ergebnisse der Rechnungen mit der Box-Methode und der Box-Trans-
Methode sind in Abb. 8 gegenübergestellt. Der Unterschied wird deutlich: während das
von oben einströmende Öl im Falle der Box-Methode in die Linse eindringen kann, staut
sich das Öl im Falle der Box-Trans-Methode auf der Linse auf. Wenn jedoch für die Box-
Methode der Bereich der Linse adaptiv verfeinert wird, kann das selbe Eindringverhalten
wie mit der Box-Trans-Methode erreicht werden.

Auch für den heterogenen Fall wird eine Simulation mit dem Peclet-Kriterium durchgeführt
(nur Box-Methode). Das Ergebnis für die h-adaptive Berechnung ist in Abb. 9 gezeigt. Wie
deutlich zu erkennen ist, führt die Anwendung des Kriteriums zu negativen Sättigungen
über der Linse, welches einen klar nicht-physikalischen Effekt darstellt. Hieraus lässt sich
die Aussage ableiten, dass bei der Verwendung der Box-Methode sichergestellt sein muss,
dass im Bereich von Heterogenitäten ein ’fully upwinding’ Schema verwendet wird.

Tab. 2: Fluideigenschaften (heterogener Testfall)
Dichte Wasser ρw = 998 [kg/m3] dyn. Visk. Wasser µw = 0.001 [kg/(m s)]
Dichte Öl ρn = 1631 [kg/m3] dyn. Visk. Öl µn = 0.0009 [kg/(m s)]

Tab. 3: Bodeneigenschaften (heterogener Testfall)
Gebiet 1 Gebiet 2 (Linse)

abs. Permeabilität K1 = 5.04 x 10−10 [m2] abs. Permeabilität K2 = 5.26 x 10−11 [m2]
Porosität φ1 = 0.4 [ - ] Porosität φ2 = 0.4 [ - ]
Res.-Sätt. Wasser Swr,1 = 0.078 [ - ] Res.-Sätt. Wasser Swr,2 = 0.098 [ - ]
Res.-Sätt. Öl Snr,1 = 0.0 [ - ] Res.-Sätt. Öl Snr,2 = 0.0 [ - ]
Eindringdruck pd,1 = 370.0 [Pa] Eindringdruck pd,2 = 1324.0 [Pa]
Vert.-Index λ1 = 3.86 [ - ] Vert.-Index λ2 = 2.49 [ - ]
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Abb. 8: Links: Vergleich zwischen Box- und Box-Trans-Methode. Rechts: Netz und Öl-Sätti-
gungsverteilung für die adaptive Simulation (Box-Methode)
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Abb. 9: Links: Vergleich der Öl-Sättigungsverteilung für die adaptive Methode mit ’fully
upwinding’ und ’Peclet-upwinding’ (Ausschnitt). Rechts: Detail der Öl-Sättigung
über der Linse für den Fall ’Peclet-upwinding’.

Anwendungsbeispiel

Im Folgenden wird die h-adaptive Methode für die Simulation eines Experimentes verwen-
det, das von der Autorin an der ETH Zürich, Institut für Hydromechanik, durchgeführt
wurde. Auf die Anwendung des entwickelten Peclet-Kriteriums wird an dieser Stelle ver-
zichtet, da die im Rahmen der Arbeit erarbeiteten Ergebnisse zeigen, dass noch weitere Un-
tersuchungen über den genauen Einsatz dieses Kriteriums notwending sind.

Bei dem Experiment wird das Modell eines Deiches mit einem geneigten Kern in einen Hele-
Shaw-Aufbau eingebaut. Der Ölstand auf der einen Seite des Modells wird erhöht und so-
mit der Durchfluss durch den Deich nachgebildet. Das Ergebnis des Experimentes (stati-
onärer Zustand) ist in Abb. 10 gezeigt. Das Netz und die Sättigungsverteilung der numeri-
schen Simulation sind in Abb. 11 dargestellt. Es lässt sich erkennen, dass die Simulation das
Experiment-Ergebnis sehr gut nachbildet. Die scharfe Front (Trennlinie zwischen Öl und
Luft) sowie der Bereich, in dem das Öl aus dem Kern austritt, sind deutlich zu erkennen.
Die Darstellung des Netzes zeigt, dass die Sättigungsfront sehr gut mit feinen Elementen
aufgelöst wird.

Abb. 10: Experiment im Hele-Shaw-Aufbau, stationärer Zustand (nach Paul et al. [56])
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Abb. 11: Netz (oben) und Sättigungsverteilung (unten) der adaptiven Simulation

Zusammenfassung

Für die Zwei-Phasen-Strömung in porösen Medien werden adaptive Methoden hergelei-
tet und vorgestellt. Diese Methoden beinhalten zum einen eine automatische Anpassung
der Elementgröße des Berechnungsnetzes in Bereichen, in denen der Gradient der Sätti-
gung sehr steil ist (h-adaptive Methode mit Gradienten-Indikator). Zum anderen wird eine
Methode erarbeitet, mit der es möglich ist, in Bereichen, in denen Advektion dominiert (ge-
kennzeichnet durch eine Zwei-Phasen-Peclet-Zahl größer eins), ein ’fully upwinding’ Dis-
kretisierungsschema zu verwenden, während in Bereichen, in denen Diffusion vorherrscht
(Pekleiner eins) ein ’zentral gewichtetes’ Schema zum Einsatz kommt.

Eine Anwendung der erarbeiteten Methoden findet für homogene und heterogene Testfälle
statt. Hierbei ist festzustellen, dass die vorgestellte h-adaptive Methode sehr gut die gestell-
ten Anforderungen erfüllt. Es muss sich jedoch bewusst gemacht werden, dass durch (stark)
unterschiedliche Elementgrößen im Gebiet die Schwierigkeit der Behandlung der nicht-
linearen Effekte der Zwei-Phasen-Gleichungen unter Umständen noch vergrößert wird.

Zu der Anwendung des Peclet-Kriteriums auf die Wahl der Diskretisierungsmethode ist zu
bemerken, dass noch weitere Untersuchungen notwendig sind, um die vorgestellte Metho-
de effizient einsetzen zu können.


