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Horizontal mixing in Upper Lake Constance was investigated analysing the devel-
opment of the tracer distribution of conservative tracers simulated using the model
ELCOM [3]. In four simulations each including ten different tracer experiments in
depths around 3 metres, 30 metres and 60 metres the three-dimensional concentration
distributions were calculated for a period of two weeks after release. The method of
spatial moments according to Peeters et al. [1] was used to analyse the temporal de-
velopment of the tracer distribution. Therefore mainly the advetive motion of a tracer
cloud and the temporal development of the spreading along the principal axes and of the
cloud size was considered. In addition, theoretical models for horizontal mixing were
tested. It was shown that especially the upper layers - the epilimnion - are important
considering horizontal mixing. For tracers injected close to the surface in a distance
lager than two kilometres to the shore the method of spatial moments approximated
the tracer cloud in a satisfying way during the first week after release. Afterwards and
for tracers released close to the shore the approximation was not reliable. After two
weeks the cloud sizes ranged in a magnitude between 10 and 32 km2. Only for tracers
released in a central position of Lake Constance a similar behaviour of the growth of
the cloud size could be observed during the first week of the experiments. Afterwards
and for other release points boundary influences became to strong. Also effects of large
scale advective motion showed up after one week. Application of theoretical approaches
for horizontal mixing according to Peeters et al. [1] showed that a shear diffusion model
is able to provide a satisfying description of the behaviour of the cloud for 60% of the
tracers injected in central position until day seven after release. This model also ac-
counts for the fact that the tracer clouds were not radially symmetric. The hypothesis
that the cloud size grows with elapsed time to the power of 3 according to the inertial
subrange model could not be approved. Considering the peak concentration as mea-
sure for dilution a concentration of around 0.1% of the initial concentration could be
observed for tracers injected into the near-surface layers after two weeks.
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1 Introduction

In lakes the distribution of dissolved and suspended compounds is strongly influenced
by the movement of the water [1]. In density-stratified lakes small-scale-turbulence
is essential for energy and mass transfer because it brings different water masses in
close enough contact to cause mixing by viscosity and diffusivity. The energy however
is brought into the system at much larger scales. Relevant mixing processes for any
given lake depend on external forcing as well as on lake morphometry. External forces
can be river inflow and outflow, turbidity currents, underwater springs, wind, surface
heat flux, etc [2]. For Lake Constance especially the wind is important. Mixing has
to be differed into horizontal and vertical mixing. Usually, the horizontal mixing is
fast compared to the vertical mixing. In large water bodies additionally the effect of
large-scale currents occur. Thus the horizontal mixing is a consequence of both the
fluctuations of the velocity field and the shear of the mean advective currents ([1],[2]).

Lake Constance is one of the largest alpine lakes in the world and the largest lake
in Germany. The basin has a length of 63 kilometres and a maximum width of 14
kilometres and it divides into Upper Lake Constance with a mean water depth of
around 100 metres and the much smaller Lower Lake Constance (fig. 1.1). The two
parts are hydraulically separated by a channel near the city of Constance. The smaller
sub-basin in the north west of Lake Constance is named Lake Überlingen. In this
study only Upper Lake Constance is considered, but some attention is also paid to the
exchange between the main basin and Lake Überlingen. This is important as one of the
big drinking water suppliers in Baden-Württemberg, the ”Bodenseewasserversorgung”,
extracts drinking water for big parts of Baden-Württemberg from Lake Überlingen. To
minimise the potential of danger for all kinds of stakeholders by substances that might
be released into Lake Constance it is extremely important to know about the behaviour
of the transport of such substances.

In this study the horizontal mixing in Upper Lake Constance is investigated. Nu-
merical tracer simulations using the ELCOM model [3] are done and analysed. To
simplify and characterise the complex tracer distributions the method of spatial mo-
ments is used. Additionally the applicability of theoretical horizontal diffusion models
is tested.
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1 Introduction

Figure 1.1: Lake constance consisting of Upper Lake Constance, Lower Lake Constance
and Lake Überlingen.
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2 Used methods and models

2.1 The method of spatial moments

In a lake the movement of a tracer cloud is mainly affected by large scale advection, for
example by eddies which are significantly larger than the size of the tracer patch. Eddies
that are smaller than the tracer cloud lead to turbulent diffusion and eddies with a size
comparable to the tracer cloud cause distortion and stretching of the cloud due to the
shear of the velocity field. To describe the behaviour of a tracer cloud its transport can
be separated into advective and diffusive transport, where the movement of its centre
of mass (xs, ys, zs) is the advective part and the change of the cloud shape relative to
the centre of mass the diffusive part. The distribution can then be characterised by
quantities such as the total Mass M0, the coordinates of the centre of mass xi, and
variance and covariance σxixj :

M0(t) = m(t) =
∫∫∫

c(x, y, z, t) dxdy dz, (2.1)

M1i(t) = xis(t) =
1

M0

∫∫∫
xic(x, y, z, t) dxdy dz, (2.2)

M2ij (t) = σxixj (t) =
1

M0

∫∫∫
(xi − xis)(xj − xjs)c(x, y, z, t) dxdy dz. (2.3)

Herein i, j = 1, 2, 3, xi are the Cartesian coordinates (x1 = x, x2 = y, x3 = z) and
c(x, y, z, t) is the spatial time dependent concentration field. Moments of higher or-
der are not considered here, which means that the information of the concentration
distribution is reduced to that of a three-dimensional normal distribution. As neither
the total mass - for conservative tracers - nor the movement of the centre of mass is
influenced by mixing processes the only variables that are left describing the mixing
are the variances and covariances. In consequence the mixing process is then solely de-
scribed by the temporal change of σxixj . If a lake is stratified, the vertical mixing can
be assumed to be small compared to the horizontal mixing. Thus, the vertical mixing
can be neglected. The validity of this assumption will be looked at later in chapter
4. To analyse horizontal mixing the concentration distribution is integrated vertically.
This leads to a two-dimensional distribution for which the following 2nd order moments
are relevant:

M2(t) =
(

σxx(t) σxy(t)
σyx(t) σyy(t)

)
. (2.4)

The spreading of a tracer cloud is often highly anisotropic. After rotating the coordinate
system in a way that the x and y axes coincide with the major and minor principal
axes of the distribution, the corresponding variances are σ2

ma and σ2
mi, whereas the

covariances become zero. In practice this means that the variances along the principal
axes σ2

ma and σ2
mi are the eigenvalues of the matrix M2(t) (eq. 2.4) and the directions of

the principal axes are the directions of the eigenvectors of M2(t). Thus, the horizontal
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2 Used methods and models

extent of the vertically integrated concentration distribution (in other words the size
of a tracer cloud) can be defined as

σ2 = 2σmaσmi. (2.5)

Eq. 2.5 can then be used for example to estimate the horizontal diffusivity like

dσ2

dt
= 4Kapp, (2.6)

as the instantaneous rate of mixing can be characterised by an apparent horizontal
diffusion coefficient Kapp that is related to the temporal evolution of σ2([1],[2]).

2.1.1 Application to discrete data

The numerical experiments which will be described later (chapter 3.2) yield to three-
dimensional concentration distributions for the single tracers for a large domain and
for many time steps. This represents a huge amount of discrete data from which it is
not so easy to appraise the movement and spreading of the tracer distributions. One
possibility of a simplification of these data for analysis is the use of spatial moments.
Therefore, the method of spatial moments described above (section 2.1) is adapted for
discrete distributions as follows:

M0(t) = m(t) =
ncellsk∑
k=1

ncellsj∑
j=1

ncellsi∑
i=1

[cijk(t) ∆xi ∆yj ∆zk], (2.7)

M1m(t) = xms(t) =
1

M0

ncellsk∑
k=1

ncellsj∑
j=1

ncellsi∑
i=1

[xmijk
cijk(t) ∆xi ∆yj ∆zk], (2.8)

M2ml
(t) = σxmxl

(t) =
1

M0

ncellsk∑
k=1

ncellsj∑
j=1

ncellsi∑
i=1

[(xmijk
− xms(t))

(xlijk
− xls(t))cijk(t) ∆xi ∆yj ∆zk], (2.9)

where i, j, k are the indices of the cells in x-, y-, and z-direction, ncells is the number
of cells in each direction and xm and xl are the cartesian coordinates for x (l, m = 1),
y (l, m = 2) and z (l, m = 3). If horizontal mixing is assumed to be the main mixing
process and vertical mixing can be neglected, then l, m = 1, 2 in equation (2.9).

2.2 Models for horizontal diffusion

Theoretical models which describe horizontal diffusion in lakes are almost all of empiri-
cal origin. They model the temporal change of statistical properties (e. g. the variance)
of a concentration distribution as a descriptive value for the cloud size. The basis of
the different approaches are the properties of the velocity field that are assumed to be
important for the horizontal mixing process. In the following, a brief review based on
[1] and [2] will be given.

One possible approach for turbulence in an ocean or lake is the inertial subrange
model. If the assumption is made that the cloud size ranges within the scales of the

7



2 Used methods and models

inertial subrange of the turbulence spectrum, similarity theory predicts that the cloud
size will grow proportional to t3. The spreading of the cloud size should also depend
on the intensity of the turbulence, which can be measured by the rate of dissipation ε.
Together that leads to the equation

σ2 = const εt3. (2.10)

In this model the velocity field is assumed to be three dimensional and therefore the
statistical properties to be spherical symmetrical. It is clear that turbulence as the most
important process for mixing is always three-dimensional. However, vertical turbulence
is often limited by vertical density stratification or limited vertical size of a water body.
Therefore, it is important that equation (2.10) also remains valid for two-dimensional
isotropic turbulence if the cloud size is within the inertial subrange. Using the inertial
subrange approach (eq. 2.10) together with equation (2.6), a horizontal diffusivity can
be calculated as

Kapp = const ε1/3σ4/3. (2.11)

The mathematical form of equation (2.10) suggests using the power law

σ2 = const tm, (2.12)

as a more general approach, leading, together with equations (2.6) and (2.12), to the
corresponding horizontal diffusion coefficient

Kapp(σ) = constσ2(1−1/m). (2.13)

It has to be mentioned that in these models the size of the tracer cloud is equal to zero
(σ2 = 0) for t = 0. This means that if the initial tracer cloud has a finite size, t = 0
is the hypothetical time when the cloud size could have been zero. Therefore, a more
general form would be expressed by

σ2 = const (t + t0)m (2.14)

where t0 is a function of the initial cloud size at t = 0 and σ2
0 = const tm0 .

The empirical approach of the inertial subrange model (eq. 2.10) has also been in-
vestigated in several series of experiments, Peeters et al. [1] refer to Okubo [1971] for
instance.

As further development Peeters et al. [1] mention the modification by Joseph and
Sendner. Their assumption was that the distance between an individual water parcel
and the centre of mass of a tracer distribution increases on average with a constant
velocity which leads to an exponent in equation (2.12) of m = 2. The effective diffusivity
then increases linearly in time.

Finally, for exponent m = 1 in equation (2.12) the diffusivity would become constant
according to the Fickian law. Thus all together the mentioned models cover a general
power law (eq. 2.12) with a range for m lying between 1 and 3.

One restriction of all these models is the radial symmetric behaviour. To describe
non-radial distributions as they appear in most experimental results, shear diffusion
models were developed. Especially Carter and Okubo is referred to for this situation
by Peeters et al. [1]. The underlying assumption of shear diffusion models is that
the velocity field can be separated into two parts. One part contains the turbulent
fluctuations and the other the large-scale advective flow. The small-scale turbulence
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2 Used methods and models

is assumed to follow the Fickian law. It is expressed by the small-scale horizontal
diffusivity Kh that is further assumed to be homogeneous (Kx = Ky = Kh) and by the
diapycnal diffusivity Kd. With the further assumption that the non-turbulent velocity
field is along the x axis with the simple form u = ay + bz, the variances in major and
minor directions of a tracer cloud can be expressed as

σ2
ma =2Kht +

1
3
(a2Kh + b2Kd)t3+√

K2
ha2t4 + [

1
3
(a2Kh + b2Kd)t3]2,

σ2
mi =2Kht +

1
3
(a2Kh + b2Kd)t3−√

K2
ha2t4 + [

1
3
(a2Kh + b2Kd)t3]2,

(2.15)

and the tracer cloud size σ2 according to equation (2.5) as

σ2 = 2

√
4K2

ht2 +
1
3
Kh(a2Kh + 4b2Kd)t4. (2.16)

For the case of zero velocity shear (a = 0, b = 0) the development of the cloud size
behaves like σ2 = 4Kht which is the solution of equation (2.6) for constant diffusivity
(Fickian diffusion). For larger time scales the increase of σ2 is proportional to t2

comparable to the Joseph and Sendner model whereas the model of Carter and Okubo is
able to describe non-radially symmetric distributions by σ2

ma and σ2
mi which are usually

different. Actually, this model predicts that σma ∼ t3 and σmi ∼ t for long diffusion
times. The major principal axis of the tracer cloud then turns into the direction of
the current ([1],[2]). There are also other shear-diffusion models, but they will not be
further considered in this study.
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3 Simulation

3.1 The computational model - ELCOM

The Estuary, Lake and Coastal Ocean Model – ELCOM – that is used for this study
is a three-dimensional hydrodynamics model for lakes and reservoirs. It can be used to
predict the variation of water temperature, salinity or transport of tracer or drifters in
space and time [3].
It computes a model time step in a staged approach consisting of

1. Introduction of surface heating/cooling in the surface layer,

2. Mixing of scalar concentration and momentum using a mixed-layer model,

3. Introduction of wind energy as a momentum source in the wind-mixed layer,

4. Solution of the free-surface evolution and velocity field,

5. Horizontal diffusion of momentum,

6. Advection of scalars, and

7. Horizontal diffusion of scalars.

As fundamental numerical scheme the ELCOM-Manual [3] names the TRIM approach
of Casulli and Cheng [1992], which was adapted with some modifications.
For transport of momentum an unsteady Raynolds-averaged Navier-Stokes (RANS)
equation is used. The transport equations for both scalars and momentum use the
Boussinesq approximation and neglect the non-hydrostatic pressure terms. The free
surface evolution is governed by a vertical integration of the continuity equation applied
to the Reynolds-averaged kinematic boundary condition [3].

3.2 Setting and conditions

In this study ELCOM is applied to Lake Constance. As Lake Constance is large, the
effects of the Coriolis force have to be considered for the modelling as well as density
effects due to temperature differences. As closure scheme for the turbulence modelling
the wind-mixed layer model is used [3]. Influences of surface thermodynamics and inflow
or outflow – here especially the river Rhine – are neglected to save computational time.
As main driving force a uniform wind-field with the wind coming from a north east
direction with a speed of 3 metres per second is used. The lake is assumed to be
stratified like in late summer and an according initial vertical temperature profile is
set (fig. 3.2). As can be seen for example in figure 3.1 Lower Lake Constance (the
south west part) is not considered. That is because Lower Lake Constance is not
hydrodynamically coupled to Upper Lake Constance and can therefore be ignored for
the simulation of Upper Lake Constance to save computational time. In each run ten
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3 Simulation
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Figure 3.1: Locations of tracer releases into Lake Constance in the different numerical
experiments with the numbers of tracers from 1 to 10.
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Figure 3.2: Vertical initial temperature profile for the simulations
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3 Simulation

Depth [m] Simulation Tracer

2.5 - 5

1 1-10
2 1, 4, 7, 10
3 1, 4, 7, 10
4 1-10

30-35

1 -
2 2, 5, 8
3 2, 5, 8
4 -

60

1 -
2 3, 6, 9
3 3, 6, 9
4 -

Table 3.1: Depth of the tracer release points.

conservative tracers are released simultaneously at different positions (fig. 3.1). The
release positions differ not only in x- and y- direction, but for some points also in the
z-direction. For most of the tracers the release depth lies close to the surface between
2.5 and 5 meters, for some at around 30 meters which is approximately at the deeper
end of the metalimnion and for some at around 60 meters, within the hypolimnion
(table 3.1). Although a point-like instantaneous injection is aimed for, it has to be kept
in mind that for reasons of discretisation the tracer is always released in a whole cell,
which means in a volume of 400 m x 400 m x 2.5 m and over 1.92 hours which are
36 time steps. Ideally the tracer would be released in one time step which means for
240 seconds but for numerical reasons no shorter time interval could be chosen. The
simulated time is 28 days. Because the simulations start form rest (u = 0) the velocity
field takes some time to develop. After two weeks of simulated time it is assumed to
be well developed and so the tracer is released at day 15 of the simulation. However,
comparing the velocity fields shown in figures 3.3 and 3.4 it can be realized that there is
still a lot of development between day 15 and day 28 both in direction and magnitude
of the single velocity vectors. This has to be considered for the interpretation of the
results (chapter 4).
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Figure 3.3: The velocity field after two weeks and after four weeks of simulated time
where the Box shows the area of detail in figure 3.4

12



3 Simulation
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Figure 3.4: The velocity fields after zooming into the marked area of fig. 3.3.
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4 Results and discussion

Several simulations for Lake Constance as described in the previous chapter yielded
to three-dimensional concentration distributions for the single tracers for the whole
lake and for every time step. To analyse this huge amount of data the method of
spatial moments as described in chapter 2.1 is used. For the application of the moment
analysis a matlab program was written using equations 2.7, 2.8, 2.9, 2.4 and 2.5. In
this chapter the results of the different simulations are at first analysed concerning
the movement of the centre of mass and the spreading of the tracer clouds aiming at
finding a characteristic behaviour. Afterwards, the behaviour of the cloud size over
time is analysed especially concerning boundary influences. Furthermore, the validity
of horizontal diffusion models as described in chapter 2.2 is investigated and finally the
relevance of dilution is considered.

4.1 Movement of the centre of mass

In chapter 2.1 it was explained that the movement of the centre of mass can be inter-
preted as the advective part of the tracer transport. Therefore, it seems reasonable to
have a closer look at the velocity field before analysing the first moment. As already
mentioned in chapter 3.2, the velocity field is assumed to be fully developed after day
15 when the tracer is injected. Furthermore, it was seen that there is a considerable
change in the horizontal velocity field between day 15 and day 28. No attention is paid
to the vertical velocity component as it is assumed to be small compared to the hor-
izontal component in a well stratified lake and does not influence the mixing process.
Figure 4.1 shows the horizontal velocity field of layer 43 of the computational mesh,
which lies in a depth of approximately 2.5 to 5 metres, after 15 days. As can be seen up
to that point larger scale motions – scale of the lake – just begin to develop. Smaller
scale eddies up to a size of 1 to 5 kilometres are already generated. After 19 days
(fig. 4.2) larger scale flow becomes more noticeable and the magnitude of the velocities
gets higher. On day 28, motions of the scale of half the lake can be seen (fig. 4.3)
composed by smaller eddies building some kind of circulation. There are two possible
explanations for the described changes in the velocity field. One is that the flow field
is not fully developed after two weeks of simulated time. The second possibility is a
change due to internal waves as investigated for Lake Constance by Appt [4]. In this
work it is also reported that after 8 days of simulated time the initial conditions are
not relevant any longer.
Another difference can be seen by comparing figure 4.3 to figure 4.4. At some locations
the main flow direction from a depth of around five metres and downwards seems to be
reverse to the flow direction in a depth smaller than five metres. This effect becomes
even stronger comparing the flow in a depth of between 7.5 and 10 metres to the flow
at the surface. Altogether it can be noticed that the flow situation in Lake Constance
is very complex.

Figure 4.5 shows the vertical movement of the centres of mass of simulation 1. The

14



4 Results and discussion
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Figure 4.1: The horizontal velocity field after 15 days in between 2.5 and 5 metres
depth.
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Figure 4.2: The horizontal velocity field after 19 days in between 2.5 and 5 metres
depth.
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Figure 4.3: The horizontal velocity field after 27 days in between 2.5 and 5 metres
depth.
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Figure 4.4: The horizontal velocity field after 27 days in between 5 and 7.5 metres
depth.
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Figure 4.5: The vertical movement of the centre of mass of the tracers distribution of
simulation 1.
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Figure 4.6: The vertical movement of the centre of mass of the tracers distribution of
simulation 4.
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Figure 4.7: The horizontal movement of the centre of mass of a tracer released in three
different depths (simulation 1).

tracer is injected into the lake at three different depths here (table 3.1). As can be
seen there is almost no vertical movement in the two deeper areas, where no vertical
exchange should take place. Close to the lake surface only little vertical movement is
visible. The behaviour at the surface can be demonstrated better in figure 4.6 where
all the tracers are released into an upper layer. The centre of mass ranges from a depth
of 3 metres to a depth of 8 metres, which is approximately the same as in the other
simulations. These results show that the vertical exchange in a well-stratified lake is
small compared to horizontal movement which can be on the order of several kilometres
(fig. 4.9). Thus the assumption of horizontal advection is justified and from now on
only the horizontal change of the centre of mass will be analysed considering the mixing
process.

As mentioned above, n deeper areas the centre of mass undergoes little to no vertical
motion. But usually there should be almost no flow and only little transport in the
deeper layers at all. Figures 4.7 and 4.8 show that in a depth of around 60 metres
there is no recognisable change in the horizontal position of the centre of mass, whereas
close to the surface, movement on the order of kilometres occurs. At a depth of around
30 metres a change of the position of the centre of mass is visible depending on the
location in the lake but it is still small compared to the movement in the upper layers.
So for an investigation of the horizontal mixing processes in Lake Constance especially
the near surface layers of the epilimnion are important. The movement of the centres
of mass of a series of tracers released in the near surface layers are shown in figures
4.9 and 4.10. As can be seen the main direction of the movement appears to be from
the south east to the north west which is reasonable as it is the direction of the main
driving force, namely the wind.

After having taken a look at the flow field at the beginning of this chapter, the
question comes up now if the movement of the centre of mass can be directly linked to
the flow around it. To answer this, one of the transported tracers will be described in
more detail as an example. Figure 4.11 shows an enlarged section of fig. 4.10, figures
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Figure 4.8: The horizontal movement of the centre of mass of a tracer released in three
different depths (simulation 3).
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simulation 2.
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Figure 4.10: The horizontal movement of the centres of mass of the tracers released in
simulation 4.

4.12, 4.13 and 4.14 show the corresponding section of the horizontal velocity fields.
From figure 4.6 it arises that after approximately 5 days all the centres of mass are
below a depth of 5 metres. For most of the tracers the centres of mass stay in a depth
between 5 and 7.5 metres till the end of the simulation, a few even go deeper than 7.5
metres. So for the first days the centre of mass shown in figure 4.11 has to be related
to the velocity field of figure 4.12, afterwards to the velocity fields of figure 4.13 and
figure 4.14, respectively. As can be seen easily there is no obvious relationship between
the movement of the centre of mass and its directly surrounding flow if the situation is
as complex as in Lake Constance. It always has to be kept in mind that the centre of
mass is a quantity resulting from a spatial averaging process. Thus, an evaluation of the
change of the centre of mass in connection with the flow situation of Lake Constance
can only be done considering the whole area of a tracer cloud. The movement of the
centre of mass can then be interpreted as the average advective motion of the whole
tracer cloud according to the theory of spatial moments (ch. 2.1) but it is not the
path along which a tracer particle would be transported advectively directly due to the
local flow. For Lake Constance this implies also that one can not just look at the local
velocity field to estimate the movement of a tracer cloud.

4.2 Spreading

The diffusive-dispersive part of the tracer transport can be represented by the second
moment (eq. 2.9, 2.3) as described in chapter 2.1. The complex flow situation of
Lake Constance as discussed in section 4.1 is expressed more clearly by the process of
spreading (ch. 4.2) than by the movement of the centre of mass, although changes in
the position of the centre of mass are certainly always influenced by the spreading of a
tracer cloud (ch. 2.1).
Figure 4.15 shows the results of the calculation of the second moment for a chosen

tracer. Using the method of spatial moments a Gaussian shape of the tracer cloud is
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Figure 4.11: The horizontal movement
of the centres of mass of
tracer 5 of simulation 4.
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Figure 4.12: Enlarged section of the ve-
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Figure 4.15: Horizontal spreading of tracer 5 of simulation 4 in major and minor direc-
tion around the centre of mass.

assumed. The horizontal spreading in the major and minor axis around the centre of
mass is symbolised by a cross. As can be seen, after 14 days of simulated time the
horizontal spreading ranges between 10 and 15 kilometres in the major direction and
around five kilometres in the minor direction. In contrast, the vertical spreading that
can be seen in figure 4.16 is on the order of few metres (here around ten metres). Thus
the vertical spreading can be neglected considering the mixing process as it is very small
compared to the horizontal mixing. A different case can be seen in figure 4.17. Tracer
4 is released close to the surface, tracer 5 in a depth of around 30 metres and tracer
6 at around 60 metres. The figure shows that not only the movement of the centre
of mass of tracers released in deeper layers is very small compared to tracers released
next to the surface but also the spreading. So again it can be pointed out that for an
investigation of the horizontal mixing processes in Lake Constance especially the near
surface layers of the epilimnion are important. Usually the method of spatial moments
shows the best results if there are no or minimal influences of boundaries which are
represented by the lake shore here. Therefore, the next section (4.3) will deal with the
applicability of the method of spatial moments for Lake Constance.

4.3 Applicability of the moment analysis

For the application of the method of spatial moments some assumptions have to be
looked at again at first. It is assumed that in a well stratified lake the vertical mix-
ing is negligible small compared to the horizontal mixing. This was shown to apply
for the results of the computational experiments for Lake Constance in the previous
sections (chs. 4.1 and 4.2). Another assumption concerning especially the results of
the computation using ELCOM is that the velocity field starting from u = 0 is suffi-
ciently developed when the tracer is injected. Here two weeks of simulated time are
used for start-up. But as already described in section 4.1 there is still a lot of change
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Figure 4.16: Spreading of tracer 5 of simulation 4 in major and minor direction around
the centre of mass in the x-z-plane.
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Figure 4.17: Spreading of tracer 4,5 and 6 of simulation 1 in major and minor direction
around the centre of mass after 14 days.

23



4 Results and discussion

x [m]

y 
[m

]

tracer 5,  t = 0.5 [d]

 

 

3 4 5

x 10
4

5000

10000

15000

x [m]

y 
[m

]

tracer 5, t = 3.5 [d]

 

 

3 4 5

x 10
4

5000

10000

15000

x [m]

y 
[m

]

tracer 5, t = 7 [d]

 

 

3 4 5

x 10
4

5000

10000

15000

x [m]

y 
[m

]

tracer 5, t = 14 [d]

 

 

3 4 5

x 10
4

5000

10000

15000

0

0.2

2
4
6
8
x 10

−3

0.5
1
1.5
2
2.5

x 10
−3

0

2

4

6
x 10

−4

Figure 4.18: Spreading of tracer 5 of simulation 4 in major and minor direction around
the centre of mass and concentration field for different time steps.

in the velocity field from the time the tracer is released until the end of the simulation.
This could be due to a too short start-up time or due to internal waves (ch. 4.1).
But referring to Appt [4] the flow field including the internal wave motion should be
sufficiently well developed after 8 days. The internal waves are then the main reason
for the fluctuations of the velocity field. Therefore, the results can be used for further
analysis of the situation of Lake Constance.

Concerning the movement of the centre of mass it has been shown above that it cannot
be directly linked to the flow field in Lake Constance as this is much too complex. It
now has to be determined whether the moment analysis represents a sufficiently good
approximation of a tracer distribution in Lake Constance including the movement of
the centre of mass as an averaged advective motion and the stretching and spreading
of the cloud expressed by the second moment. Therefore, the spreading around the
centre of mass as calculated from the spatial moments is plotted together with the
concentration distribution resulting from the simulation. Several tracers resulting from
different simulations each representing a characteristic situation in the lake are chosen
for the comparison.

Figures 4.18 to 4.20 show tracer experiments with the release points located in a cen-
tral position to obtain a maximum distance to the shore. At first it has to be mentioned
that all three tracer clouds reach the shore within the simulated time. Especially in
figure 4.18 the development of the cloud seems to be noticeably influenced by the shore.
From the shape of the concentration distribution also the complex flow situation can be
derived. In figure 4.19 the cloud after 14 days is stretched forming some kind of circle.
This might be due to a large scale eddy. In figure 4.20 the tracer distribution even
becomes separated into two parts. This seems to be due to large scale currents flowing
in opposite directions. All the effects mentioned before produce problems for the use
of spatial moments. The elliptic shape of the cloud around the centre of mass that is
assumed here is not able to reproduce the complicated patterns of the concentration
distributions and partly not even able to catch the area of the highest concentrations
(figs. 4.19 and 4.20, day 14). One week after the tracer release the described effects
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Figure 4.19: Spreading of tracer 6 of simulation 4 in major and minor direction around
the centre of mass and concentration field for different time steps.

x [m]

y 
[m

]

tracer 4,  t = 0.5 [d]

 

 

1 2 3 4 5

x 10
4

5000

10000

15000

x [m]

y 
[m

]

tracer 4, t = 3.5 [d]

 

 

1 2 3 4 5

x 10
4

5000

10000

15000

x [m]

y 
[m

]

tracer 4, t = 7 [d]

 

 

1 2 3 4 5

x 10
4

5000

10000

15000

x [m]

y 
[m

]

tracer 4, t = 14 [d]

 

 

1 2 3 4 5

x 10
4

5000

10000

15000

0

0.1

0.2

2
4
6
8
x 10

−3

0
1
2
3
x 10

−3

0

0.5

1
x 10

−3

Figure 4.20: Spreading of tracer 4 of simulation 2 in major and minor direction around
the centre of mass and concentration field for different time steps.
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Figure 4.21: Spreading of tracer 1 of simulation 4 in major and minor direction around
the centre of mass and concentration field for different time steps.

are not strongly developed yet. So the characterisation of the tracer cloud using the
spatial moment analysis matches quite good up to that point. Afterwards it depends
on the special situation for each tracer.

In figures 4.21 to 4.23 tracer experiments with release points with a distance between
2 and 3.5 kilometres to one shore are shown. As expected the tracer clouds reach the
shore in a shorter time than the clouds of tracers released in a central position in the
lake, in most experiments already after 3 or 4 days (here fig. 4.22 and 4.23). A special
situation can be seen in figure 4.21 where the cloud is transported away from the shore
and towards the centre of the lake by the flow. In that case it can be seen that with
increasing distance from the coast the approximation using the moment analysis as
explained before fits better. Usually, the effects of the lake boundaries are stronger if
the tracer is released closer to the shore. In figure 4.22 and 4.23 it can be seen that
the approximation fits quite well until the tracer cloud reaches the coast after 4 days.
Afterwards it is getting more difficult because in most cases the tracer distribution is
stretched along the shore by the flow. This effect can be seen even more clearly in figures
4.24 and 4.25 where the tracer is released directly at the lake boundary. For those cases
it is almost impossible to use the spatial moment analysis for the approximation of the
tracer cloud. In figure 4.23 additionally the effect of separation of the tracer cloud as
described in the previous paragraph occurs. In this case the estimation by using the
results of the moment analysis begins to fail after 7 days and totally fails at the latest
after day 14, as can be seen.

Finally, a tracer released close to Lake Überlingen is considered (fig. 4.26). Up to day
7 the cloud resulting from the moment analysis can express the real tracer distribution
in a sufficient way. It can be observed that the cloud moves in a north west direction
and reaches the north west boundary approximately after 7 days. Until day 14 the
tracer moves further north west along the boundary and arrives in Lake Überlingen.
At the border between the main basin of Lake Constance and Lake Überlingen the
width of the cross section is nearly halved. The tracer distribution that follows from
this geometry produces another problem for the approximation using the results of the
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Figure 4.22: Spreading of tracer 3 of simulation 2 in major and minor direction around
the centre of mass and concentration field for different time steps.
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Figure 4.23: Spreading of tracer 5 of simulation 2 in major and minor direction around
the centre of mass and concentration field for different time steps.
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Figure 4.24: Spreading of tracer 9 of simulation 2 in major and minor direction around
the centre of mass and concentration field for different time steps.
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Figure 4.25: Spreading of tracer 1 of simulation 2 in major and minor direction around
the centre of mass and concentration field for different time steps.
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Figure 4.26: Spreading of tracer 9 of simulation 4 in major and minor direction around
the centre of mass and concentration field for different time steps.

moment analysis. Thus as can be seen, the passage to Lake Überlingen is not noticed
by the spatial moments.

Recapitulating, the spatial moments can be a good method to simplify a complex
situation and to analyse complex data. But they have to be used in a careful way. If
the situation is as complex as in Lake Constance the approximation can be quite good
but also quite poor. The applicability strongly depends on the local as well as on the
large scale situation. If the effects of boundaries and of separation of the tracer cloud
are small, good estimations can be achieved by the method of spatial moments. For
Lake Constance that means if a tracer is released in a sufficient distance to the shore
(≈ 2 km) the spatial moments are a good approximation up to 4 days. Up to 7 days
the approximation is still good if a tracer is released far away from the shore in the
centre of the lake and also sufficiently good for a release in a distance between 2 and
3.5 kilometres from the coast. After one week effects of large scale advection become
stronger which could be separation of the tracer cloud or the stretching along large scale
circulating flow and also the influences of the lake boundaries are not negligible any
longer. Tracers which are injected next to the shore can not be approximated by the
method of spatial moments in a sufficient way. A very special situation can be found
when looking at the transport of a tracer from Lake Constance into Lake Überlingen.
Here it is shown that the moment analysis can not be used to get reliable information
whether the tracer is transported from Lake Constance into Lake Überlingen or not.
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Figure 4.27: Growth of the tracer clouds of simulation 3 over time.

4.4 Behaviour of the cloud size

The key point of the moment analysis is the behaviour of the cloud size. As explained
in chapter 2.1 the cloud size can be calculated from the moments using equations 2.4
and 2.5. Once a functional relationship for the behaviour of the cloud size is known
for example a diffusivity can be calculated according to equation 2.6. To establish a
relationship horizontal diffusion models can be used. In the following, the behaviour
of the cloud size of the numerical tracer experiments in Lake Constance is analysed
especially concerning boundary influences. Afterwards the application of the introduced
models for horizontal diffusion (ch. 2.2) will be described.

4.4.1 Boundary influences

At first, this section focuses on the depth dependence of the growth of a tracer cloud.
Figure 4.27 shows the development of the cloud size over time for several tracers.
Tracers 2, 3, 5, 6, 8 and 9 are released in deeper layers of Lake Constance (table 3.1)
whereas tracers 1, 4, 7 and 10 are injected close to the surface. As shown before, the
effect of spreading is very small in the deeper areas of a stratified lake. This can also
be seen in the growth of the tracer cloud over time. For the tracers released in higher
depth the cloud size is almost constant compared to the ones released at the surface.
So it is shown again that no appreciable mixing takes place in the deeper layers of a
stratified lake. Therefore, all following considerations focus on tracers released close to
the surface.

In figure 4.28 tracers of all four simulations are shown. As can be seen the curves of
the growth of the cloud size vary in a wide spectrum. There are three groups: tracers
released in centre of the lake, tracers released at a distance of 2 to 3.5 kilometres to
the shore and tracers released close to the shore. The growth of the clouds released
in the centre is the strongest whereas that of the ones released close to the shore is
the smallest. The growth of the clouds of the tracers released in a distance of 2 to 3.5
kilometres to the shore lies in between. Most of the curves tend to have an inflexion
point which means that the growth is retarded or accelerated from that point in time
on. A reason for acceleration can be spreading due to large scale advection. The main
reason for retardation is influence of the lake boundary. As shown in chapter 4.3 all
tracer clouds reach the shore after one week at the latest. For most clouds this can

30



4 Results and discussion

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.5

1

1.5

2

2.5

3

3.5
x 10

7

timestep [d]

σ 
2  [m

2 ]

 

 

Release in central position
Release in a medium distance (~ 2 − 3.5 km) to the shore
Release close to the shore

Figure 4.28: Growth of the tracer clouds of tracers released in different distances to the
shore over time.
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Figure 4.29: Growth of the tracer clouds of tracers released close to the shore over time.

also be observed looking at the behaviour of the cloud size over time which shows a
retardation of the growth after approximately 7 days.
When looking at the behaviour of the clouds of tracers released close to the shore as

can be seen in figure 4.29 the curves look different. Some show more than one inflexion
point and some show now inflexion point at all. The growth seems to be almost linear
and slow compared to the tracers released in central position (fig. 4.28). After 14 days
the cloud size varies between 1.1 x 107 m2 (11 km2) and 2.4 x 107 m2 (24 km2) which
means a difference of 13 km2. It was already shown above that the moment analysis is
not able to describe tracer clouds of tracers released close to the shore in a sufficient
way (ch. 4.3). The same is true for the consideration of the cloud size over time. It
can be clearly shown that the boundary retards the growth of the tracer cloud, which
is of a factor 3 smaller than a cloud of a tracer released in the centre of the lake, after
14 days.

Considering the growth of the clouds of tracers released at a distance of 2 to 3.5
kilometres to the shore a similar behaviour to the tracer experiments discussed above
can be noticed at first (fig. 4.30). Compared to the previous case however almost
all curves seem to have more than one inflexion point. Another difference is that the
behaviour of the cloud sizes changes between 7 and 8 days. Before this the curves run
rather parallel, afterwards the range is widening. In the time period between day 3
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Figure 4.30: Growth of the tracer clouds of tracers released in a distance of 2 - 3.5 km
to the shore over time.

and day 8 a first inflexion point can be found for almost all the tracers. Combined
with the results of chapter 4.3 it can be interpreted as the period in which the lake
boundaries begin to noticeably affect the growth of the cloud size by retardation. After
7 days the differences between the curves of the cloud size increase as the effects of the
shore are not the same for the different release points. Additionally, the effects of larger
scale advective motion become apparent after approximately one week as described in
chapter 4.3 which also affect the different tracer clouds in different ways. After 7 days
the cloud size varies between 0.7 x 107 m2 (7 km2) and 1.3 x 107 m2 (13 km2) which
means a difference of 6 km2, after 14 days a difference of 14 km2 can be observed, which
is then comparable to the tracers released close to the shore.

Finally, figure 4.31 shows the development of the cloud size over time for tracers
released in the centre of Lake Constance. As can be seen all these tracers show a very
similar behaviour. There is an exponential growth of the cloud size up to day 7 where
an inflexion point can be identified. Afterwards the growth is retarded, which seems
reasonable as the tracer cloud reaches the shore after approximately one week (ch. 4.3).
The cloud size after 7 days varies in a range of 2 106 m2 which corresponds to 2 km2,
after 14 days between 2.7 x 107 m2 (27 km2) and 3.2 x 107 m2 (32 km2) which means
a difference of 5 km2. This shows that the situations for the different tracers released
in central positions of Lake Constance are quite comparable, at least before they reach
the shore after one week. Afterwards, the differences are still relatively small until day
14 compared to the cases discussed above, in which the boundary influences are much
stronger.

4.4.2 Applicability of horizontal diffusion models

In the previous section it was shown that for tracers released into Lake Constance
in a central position a similar behaviour can be observed (fig. 4.31). These tracer
experiments are now compared to the different diffusion models described in chapter
2.2. As the models are valid until a tracer cloud reaches a shore only the first 7 days
of the tracer experiments are considered. The parameters A1 to Ak of a specific model
with the modelled cloud size σ2

mod(ti, A1, . . . , Ak) are adjusted using a least squares fit.
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Figure 4.31: Growth of the tracer clouds of tracers released in the centre of the lake
over time.

Quality of a model fit

A χ2 test according to Peeters et al. [1] is used to check if the modelled cloud size is
compatible to the data of the simulations. Therefore the quantity

χ2 ≡
n∑

i=1

(
σ2

i − σ2
mod(ti, A1, . . . , Ak)

wi

)2

(4.1)

is calculated where wi is the absolute error of the cloud size σ2 and i = 1, . . . , n are the
different output time steps of the simulation. For the calculation of wi a relative error
of σ2 of 20% is assumed for all time steps but t0. In the simulation the tracer is released
into one computational cell at t0 which means into an volume of 0.4 km3 immediately.
So the cloud size is far away from zero at the beginning. Then the growth should
usually start slowly and increase with time. So another problem could show up at the
beginning when the cloud size is in the order of a computational cell. Growing inside
the neighbour cell the size of a tracer cloud could immediately double from one time
step to the next. Therefore for t0 the relative error of the cloud size is assumed to be
100% which damps the effect of the systematical error, done in the models at low time
steps, in the χ2 test. The variable χ2 is supposed to be χ2 distributed with k degrees
of freedom, where k is the difference between the number of fitting parameters and
the number of data points of the simulations. Here 14 points in time are considered
meaning that the degree of freedom for the two-parameter models is 12 and for the
three-parameter models is 11. A model is rejected if the probability of χ2 to be larger
than or equal to χ2

mod is less than 1 %. That means that for k = 11, χ2
mod has to be

compared with χ2 = 24.73 and for k = 12 with χ2 = 26.22.

The inertial subrange model

According to equation 2.12 the power law σ2 = A1t
A2 is fitted yielding to A1 and A2

for the different tracer experiments as can be found in table 4.1. According to the
inertial subrange model (eq. 2.10) the cloud size should grow with time as t3. Though
the fitting gives values for the exponent A2 between 1.2 and 1.7 for the results of the
simulations which is clearly different to the exponent 3 of the inertial subrange model.
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Thus, a model σ2 = const t3 has to be rejected. According to the χ2 test the power law
fit with the parameters of table 4.1 is acceptable for all of the seven tracer experiments.

As in the tracer experiments there is a finite cloud size at t = 0 the above power law
model is extended by a third fitting parameter A3 where t = −|A3| can be interpreted
as the hypothetical release time when the cloud size was zero. Fitting the cloud size
to the model σ2 = A1(t + |A3|)A2 yields exponents of A2 between 1.2 and 1.9, which is
also not compatible with a growth of the tracer cloud proportional to the time to the
power of 3. An extended approach of the inertial subrange model σ2 = A1(t + |A2|)3
was also fitted directly. Both the comparison of the exponents as well as the χ2 test
for the inertial subrange model (table 4.1) show clearly that also the extended inertial
subrange model can not be verified. However, concerning the χ2 test of the fitting
of the modified power law model it can be seen that this model shows an acceptable
estimation for all tracer experiments. Although an improvement of the fit might be
expected due to the extension with the hypothetical release time the results of the χ2

test are comparable to the simple power law model. Like explained above in section
4.4.2 the data of the simulations show a initial cloud size at t = 0, but as this is small
compared to the size at later time steps it seems to be negligible concerning the quality
of the fitting.

The curves of the fittings discussed in this section are shown in figures 4.32 to 4.38.
In these figures it can be seen, too, that the initial subrange model is not a good
approximation for the data of the simulations. Differences between the power law
approaches with and without a hypothetical release time can only be observed in figures
4.32, 4.34 and 4.38. This is compatible with the results of the χ2 test (table 4.1).

The Joseph and Sendner model

According to Joseph and Sendner a modelled cloud size σ2 = A1(t + |A2|)2 would be
used, where σ2 grows with the square of the elapsed time (ch. 2.2). Again a parameter
A2 is used with respect to an initial cloud size. As can be seen in table 4.1 for none
of the tracer experiments an exponent of around 2 can be achieved using the extended
power low. Only for tracer 1 of simulation 3 does the exponent of 1.814 come close to
2. That means that also the Joseph and Sendner model has to be rejected.

The shear diffusion model

Both the inertial subrange model as well as the Joseph and Sendner model predict
a radially symmetric behaviour. However, previous sections (4.2 and 4.3) show that
the spreading of the tracer clouds is usually elongated. This means that an important
aspect is missing for the characterisation of a cloud. The big advantage of shear diffusion
models is the possibility to describe non-radially symmetric tracer distributions (ch.
2.2). According to equation 2.16 the cloud size can then be modelled as

σ2 = 2
√

4A2
1t

2 + 1/3 A1A2t4,

where A1 = Kh and A2 = Kh(∂u/∂y)2 + 4Kz(∂u/∂z)2. The growth of the cloud size
should be σ ∼ tm with m changing from 1 to 2 (ch. 2.2). So the shear diffusion model
should be in fair agreement with the results of the simulations, as the considerations
using the power laws already showed exponents in this range. The χ2 test shows that
only for 4 out of 7 tracer experiments the fit satisfies the significance criteria. This
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Figure 4.32: Fitted curves and data for the growth of the tracer cloud of tracer 10 of
simulation 1.

means that with a probability of approximately 60% the growth of the cloud size of a
tracer released into Lake Constance in a central position can be described by a shear
diffusion model. Especially the fit of tracer 4 of simulation 4 shows a value of χ2

mod

that is significantly higher than χ2 = 26.22.
Looking at the fitting curves shown by figures 4.32 to 4.38 it can also be noticed that

the general power laws show a better approximation of the data of the simulations than
the shear stress model. However, it is also shown that the behaviour of the cloud size
as σ ∼ tm with m lying between 1 and 2 is the same as the behaviour predicted by
the shear diffusion model. Furthermore the shear diffusion model is the only one of the
described horizontal diffusion models that is able to estimate the growth of the cloud
size for tracers released in a central position in a sufficient way in 60% of the cases.
Both, the inertial subrange model as well as the Joseph and Sendner model fail.

As mentioned before the shear diffusion model describes not only the cloud size but
is also able to model the variance in the direction of the major and minor principal
axes as function of time (eq. 2.15). The corresponding model functions containing
three fitting parameters then look like:

σ2
ma =2A1t +

1
3
(A1A

2
2 + A3)t3+√

A2
1A

2
2t

4 + [
1
3
(A1A2

2 + A3)t3]2,

σ2
mi =2A1t +

1
3
(A1A

2
2 + A3)t3−√

A2
1A

2
2t

4 + [
1
3
(A1A2

2 + A3)t3]2,

where A1 = Kh, A2 = ∂u/∂x and A3 = Kz(∂u/∂z)2 and a point-like initial concen-
tration distribution is assumed. This modelling of the variances in the direction of the
major and minor principal axes is not further tested for the simulations of Lake Con-
stance. But Peeters et al. [1] showed for several experiments that the shear stress model
can also be successfully used to describe the behaviour of the variances in direction of
the principal axes.
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Figure 4.33: Fitted curves and data for the growth of the tracer cloud of tracer 4 of
simulation 2.
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Figure 4.34: Fitted curves and data for the growth of the tracer cloud of tracer 1 of
simulation 3.
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Figure 4.35: Fitted curves and data for the growth of the tracer cloud of tracer 4 of
simulation 4.
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Figure 4.36: Fitted curves and data for the growth of the tracer cloud of tracer 5 of
simulation 4.
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Figure 4.37: Fitted curves and data for the growth of the tracer cloud of tracer 6 of
simulation 4.
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Figure 4.38: Fitted curves and data for the growth of the tracer cloud of tracer 7 of
simulation 4.
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Figure 4.39: Peak concentrations of the tracer clouds of simulation 1 over time.

4.5 Relevance of dilution of the tracer concentration

For the characterisation of a tracer cloud especially concerning its potential of danger
not only the spatial distribution but also the rate of dilution is important. Therefore,
the temporal behaviour of the peak concentration of a tracer cloud is considered for the
different simulations. The results can be seen in figures 4.39 to 4.42. Figures 4.39 and
4.41 clearly show the different behaviour of tracers released at the surface and tracers
released into deeper layers where the process of dilution is much slower. The peak
concentration of tracers released at the surface is below 1% of the initial concentration
after one week, whereas the peak concentration of tracers released at greater depth
does not reach the 1% mark within the simulated time of two weeks. Figure 4.40 shows
the influence of the distance to the shore on the dilution process. The tracers released
at a larger distance (Tracer 4 and 5) show a noticeably faster dilution than the other
tracers. After two weeks tracers released between 2 and 5 kilometres to the shore close
to the surface show a peak concentration between 0.08% and 0.2%, tracers released
close to the shore around 0.4% (figs. 4.39, 4.40, 4.41 and 4.42).
These results show that a substance released in a sufficiently large concentration could
still have a notable peak concentration after one week. An initial concentration of 100
mg/l for example which is a reasonable value in case of an accident would still result in
a maximum concentration of 1 mg/l. Depending on the substance, that could still be an
endangering amount. The consideration of the peak concentration however represents
the worst case. Depending on the position within the tracer cloud the concentrations
can of course be much smaller. One has to be aware of that the peak concentration is
not located in the centre of mass. Finally, it has to be mentioned that only conservative
tracers are considered here and so biodegradation has no effect on the decrease of the
peak concentration over time.
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Figure 4.40: Peak concentrations of the tracer clouds of simulation 2 over time.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
10

−1

10
0

10
1

10
2

timestep [d]

pe
ak

 c
on

ce
nt

ra
tio

n 
[%

]

 

 

Tracer 1
Tracer 2
Tracer 3
Tracer 4
Tracer 5
Tracer 6
Tracer 7
Tracer 8
Tracer 9
Tracer 10

Figure 4.41: Peak concentrations of the tracer clouds of simulation 3 over time.
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Figure 4.42: Peak concentrations of the tracer clouds of simulation 4 over time.
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5 Summary and conclusions

In this study several numerical tracer experiments for Lake Constance were done (ch.
3). The data of the simulations were analysed using the method of spatial moments as
described in chapter 2.1. Here the behaviour of a tracer cloud was investigated and the
applicability of the moment analyses for Lake Constance was established comparing the
approximated cloud shape defined by the moments to the real concentration distribution
(ch. 4). Afterwards the behaviour of the cloud size over time was investigated with
special regard to boundary influences. In addition, theoretical horizontal diffusion
models described in chapter 2.2 were fitted to the data of the simulations. Finally, the
process of dilution was considered.

In chapters 4.1 and 4.2 it was shown that the movement of the centre of mass and
the spreading around the centre of mass is small in deeper layers compared to the near
surface layers of the stratified Lake Constance. Further it was shown that the vertical
movement of the centre of mass and the vertical spreading are negligible compared to
the horizontal components in a stratified lake.

Considering the movement of the centre of mass (ch. 4.1) a link to the local flow field
was investigated. As an important result it appeared that the local velocity field can
not be used to estimate the movement of the centre of mass which is a quantity resulting
from a spatial averaging process. An evaluation of the change of the centre of mass in
connection to the flow situation of Lake Constance can only be done considering the
whole area of a tracer cloud and the large scale motions. The analysis of the centres of
mass of the different simulations then showed that the main direction of the movement
appears to be from the south east to the north west. This is reasonable as this is the
direction of the wind which is the main driving force.

Figure 5.1 shows the schematic change of the shape of a tracer cloud released in a
central position over time, as investigated in chapter 4.3. As can be seen until day 3.5
the cloud has a nearly elliptic shape which means it can be well approximated by a
Gaussian distribution implied by the method of spatial moments. At day 7 still a shape
similar to an ellipse can be assumed and an approximation by the method of spatial
moments works well. After 7 days effects of large scale advection and of the boundaries
begin to affect the shape of the cloud and after 14 days the cloud is widely and irregular
spread in several directions. Therefore, after day seven the spatial moments are not
able to give an usable approximation of the cloud shape.
For tracers released at a distance between 2 and 3.5 kilometres to the shore this was
shown to be valid too (4.3). Although the tracer clouds already reach the boundaries
after around 4 days the approximation of the cloud shape after 7 days is still sufficiently
good using the moment analysis. For tracers released close to the shore it was shown in
chapter 4.3 that an approximation by the methods of spatial moments is not meaningful.

Considering the behaviour of the cloud size it is shown in chapter 4.4 that a sensitive-
ness to boundary influences can be observed. This means that the growth of a tracer
cloud is usually retarded after the cloud reached the shore. For tracers released in the
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After 14 days

After 7 days

After 3.5 days

Figure 5.1: Schematic spreading of a tracer cloud in Lake Constance.

centre of the lake with an approximate distance of 5 kilometres this could be observed
after 7 days and for tracers released in a distance between 2 and 3.5 kilometres after
approximately 4 days.

For tracers released in a central position similar curves describing the growth of
the cloud size over time could be found. To investigate this behaviour the horizontal
diffusion models described in chapter 2.2 were fitted to these curves. The fitting was
done for the first week only to minimise boundary influences. Only the shear diffusion
model by Carter and Okubo was able to describe the growth of the tracer cloud in a
sufficient way and for 60% of the tracers released in the centre of Lake Constance. For
the other 40% the fitting failed the χ2 test (4.4.2). Systematic errors might be caused
by the initial cloud size and influences of the discretisation. The inertial subrange
model and the model by Joseph and Sendner failed always. This might be caused by
the assumption of a radially symmetric behaviour.

To describe the process of dilution the peak concentration was considered in chapter
4.5. For tracers released close to the surface a concentration around 1% of the input
concentration can be found after 1 week and around 0.1% after 2 weeks. Using that
information the maximum possible concentration and therefore a worst case can be
estimated.
For example uncertainties in the approximation using spatial moments can then be
relativised as on the boundary of a tracer cloud the concentrations are usually much
smaller again than the peak concentration.

All results of this study only represent one special situation with an uniform constant
wind coming from south east. Anyhow, it has to be kept in mind that the flow and
transport situation in Lake Constance is very complex. To get a more general idea of
the situation much more analysis for different conditions has to be done. However, it
is shown that the method of spatial moments can be applied to Upper Lake Constance
yielding to satisfying results as long as boundary influences and influences of large scale
advection can be neglected. Furthermore, it was shown that theoretical horizontal
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5 Summary and conclusions

diffusion models can describe the behaviour of the cloud size which yields to a good
possibility to estimate diffusion coefficients. The applicability of the horizontal diffusion
models also depend on the assumption that boundary influences can be neglected. To
give a quantitative prediction for the concentration range a consistent behaviour of the
peak concentration over time could be established.
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