
Adaptive methods for multi-phase flow:
Grid-adaptivity

Benjamin Faigle,
I. Aavatsmark, B. Flemisch, R. Helmig



2

Department of Hydromechanics and Modeling of Hydrosystems



3

Department of Hydromechanics and Modeling of Hydrosystems

a) Efficiency reasons:
– Most time spent for the solution of 

the pressure equation
• Grid resolution affects 

assembling and solution 
time!

Why adaptive grids?
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b) Qualitative reasons:
– Sequential: Solution not 

converged but 
approximated: Pressure 
field should be as good as 
possible.

– The finer the grid, the less 
nummerical diffusion.

– Global refinement not always 
possible.

Why adaptive grids?
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Numerical Scheme

Mass conservation:
– For phases ® and components ·, for each component:

– Solution strategies:
• Fully implicit
• Sequential

– Summation yields one pressure equation.
– Transport equation
– -Flash calculations
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Outline

• Introduction
– Why using adaptive grids?

• Simulation on adaptive grids
– How to adapt

• Representation of fluxes near refined cells

– Numerical Results

• Outlook
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How to refine the grid?

Finite Volume context:
– Refine  with closure

» Problem:

» e.g. Johannsen: Cell 80m x 10m

– Refine with irregular edges Hanging node
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Fluxes: Tpfa

– Standard approach to approximate flux:

Use a Two-Point flux approximation

– Problem:

6=

r© ¼ ©j ¡ ©i
¢x
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Example Simulation 1

– 2 D, injection of CO2 into a rectangular domain filled with brine.

– Comparison of fully refined vs. adaptive grids.

– Compositional two-phase system.

– Material data:

Neumann BC:
qn = ¡0:2 Mt/m yr.
qw = free °ow

Porosity Permeability Entry Pressure BC-lambda
0.15 10¡13m2 500 Pa 2

Dirichlet BC:
Sw = 1
pn = 2:5e7Pa +%gz
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Fluxes: Tpfa is inaccurate

– Standard approach to approximate flux:

Use a Two-Point flux approximation

– Problem:
• Coloured cells expect flux to the left!

r© ¼ ©j ¡ ©i
¢x

Height: ©w;i = pw;i + %w;igzi
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Fluxes: Mpfa

Multi-point flux approximation (Mpfa)
a) Define an “interaction region”.

b) Introduce new points on interface.
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Fluxes: Mpfa

Multi-point flux approximation (Mpfa)
a) Define an “interaction region”.

b) Introduce new points on interface.

c) Approximate flux with new points.

Area of left inter-
action region

Value at cell 
center of cell i

Rotated vector connecting the points i,k

f°;i = ¡nT°KirUi Value on  
introduced point k

rUi =
1

T

2X

k=1

ºk(u
¤
k ¡ u0)
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Fluxes: Mpfa

Multi-point flux approximation (Mpfa)
a) Define an “interaction region”.

b) Introduce new points on interface.

c) Approximate flux with new points.

d) Approximate flux as seen from all cells. 
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Fluxes: Mpfa

Multi-point flux approximation (Mpfa)
a) Define an “interaction region”.

b) Introduce new points on interface.

c) Approximate flux with new points.

d) Approximate flux as seen from all cells. 

e) Write everything into a large equation
system of form

where T contains the „transmissibility coefficients“ (introduced points 
already eradicated), and u is the vector of unknown cell values

f = Tu
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Fluxes with Mpfa

Results: Flux error in horizontal direction

z ¡ Coordinate: ©w;i = pw;i + %w;igxi
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Fluxes with Mpfa

Results after 5 years of injection

reference
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Example  Simulation 2

More challenging example:
– Tilted domain.

– No quadratic cells.

– Two periods
• Injection phase: Pressure gradient drives flow.
• Post-injection phase: Gravity drives flow.

Neumann BC:
qn = ¡0:2 Mt/m yr.
qw = free °ow

Dirichlet BC:
Sw = 1
pn = 2:5e7Pa +%gz
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Saturation at the end of the injection period (2 years):



19

Department of Hydromechanics and Modeling of Hydrosystems

Saturation at the end of the post-injection period (5 years):
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Fluxes with MPFA – Improvements

Flux through the edge:
– Twice the flux of first half-edge of the interaction volume.

– Construct second interaction region:

• Strongly dependent on
surrounding cells.

• Expensive way to “search”
the region.

• Is it “worth the effort”?
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Accurate result with second half edge!
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Mpfa – Programming Obstacles

Larger stencil: More 
inteaction
– Many iterators used to 

come from intersection 
to all 3 neighbours and 
point connecting point.

Per sub-face required:
– 3 neighbour elements

– Point in the middle

– All surrounding 
Elements?? 
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Summary

Mpfa on adaptive grids “does not look so bad”!

With adaptive grids simulation can be fast and still accurate:
– Tpfa on static, fine grid: 75s

– Tpfa (3 levels): 16s

– Mpfa (3 levels) 16.3s

– Mpfa ('', 2 half-edges) 16.9s
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Future work

– Investigate Refinement Indicators
• Application of several indicators.
• Dependence of refinement criteria on solution scheme.
• Influence of Refinement on the solution.
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Future work

– Investigate Refinement Indicators
• Application of several indicators.
• Dependence of refinement criteria on solution scheme.
• Influence of Refinement on the solution.

– Extension to three dimensions.

– Applications
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Thank you

for your attention!
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Implicit Pressure

Volume balance:

– If we use non-wetting pressure as primary variable

water
gas

+ =
water

gas

vw = ¡¸wK(r pn ¡r pc ¡ %wg);

vn = ¡¸nK(r pn ¡ %ng);

Acs et. al (1985)

Transport Estimate

Pressure Equation

Transport Step

Flash Calculation

Upate, Output

Volume
derivatives

Formulation
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Solution Scheme: Sequential

Initialization

Transport Estimate

Pressure Equation

Transport Step

Flash Calculation

Upate, Output

End

Time-
step

Volume
derivatives @vtotal

@C·estimate
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Solution Procedure on Adaptive Grids

Initialization

Transport Estimate

Pressure Equation

Transport Step

Flash Calculation

Upate, Output

End

Time-
step

Volume
derivatives

Adaptive Module

Create Indicator → Criteria

Store solution

Flash calculation

Mark cells, adapt grid

Reconstruct solution

S®; X
·
®; pc

C·; p
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Implicit Pressure

Discretized (multi-phase):

Formulation
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Explicit Step

Transport Equation (explicit):

– Determines size of the time step.

Equilibrium (Flash-) Calculation
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Upate, Output
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Derivation of the Pressure Equation

– Volume contraint:

– Taylor expansion in time:

– Reordering:
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vt (t) + ¢t
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Pressure Equation with Mpfa
Adaptive Grid
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