Thermally Enhanced In Situ Source Zone Removal

- in-situ source removal
- organic contaminants boiling point up to approx. 200°C
- LNAPL & DNAPL
- non cohesive & cohesive soil
- unsat. & satur. zone

Comparison 'cold' SVE with THERIS

<table>
<thead>
<tr>
<th>Time [d]</th>
<th>CVOC Mass Flux from Source Zone [kg/d]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conventional 'cold' SVE

- conventional soil vapor extraction (SVE): usually several years of operation
Thermally enhanced in situ source zone removal

Target:
- liquid contaminant (10 °C) ⇒ gaseous phase
- short remediation time

THERIS = Thermally enhanced in-situ remediation with thermal wells

Steam-Air Injection: Field of Application

vadose zone: high to medium permeability (gravel to sandy silt)

saturated zone: porous aquifers
- K: 5 x 10⁻¹ to 1 x 10⁻³ m/s (sand > silt) for radial steam propagation:
 - 3 - 5 m in radius for 150 kg/h steam (120 kW)
- the higher anisotropy the wider steam propagation

Zeitz - Impressions From The Pilot Field

- horizontal radial steam expansion > 2.5 m in the saturated zone
- reduction of benzene concentration in soil vapor > 99%
- removal of contaminant mass > 95%
- to be achieved during six months (1600 m³ of soil)

Zeitz - Heating Of The Subsurface

- target average temperature in subsurface > 75°C
- cooling (SVE)
Zeitz - Heat Propagation

- Target: radial steam extraction > 2.5 m in the saturated zone.
- Extraction process:
 - day 44
 - day 50
- Symmetric steam propagation
- "Thermal radius" ~ 5m
- Operation of two wells.

Indication of Remediation Progress by SVE

- Reduction of benzene concentration in SVE by 99%.
- Removal of more than 99% in soil (soil vapour-soil eq. Kₕ-method)
- 0.16 mg benzene / kg soil.
- Soil sampling eight months after steam-air injection confirmed
- 0.1 mg/kg for unsaturated zone and 0.5 mg/kg including saturated zone.

Zeitz - Mass Extraction of Benzene by SVE

- Target: Reduction of benzene concentration in soil vapor > 99%.

Set up and working principle of dielectric soil heating

- 380 V 13.56 MHz
- MTC & MUX
- RF generator

Applied electrode geometries

- Parallel plates or net-shaped electrodes
- Arrays of rod-like electrodes (optional: also used as extraction wells)
- Radio-wave antenna

Similar to microwave oven

- Fast re-orientation of polar molecules (e.g. water) or other polar structures in the external electrical field.

Interaction within the material

- Heat formation.

ISRFH with a modular RF system

Zeitz - Summary

- Heating of Subsurface
 - Effective heating to exceed target temperature.
 - Effective, fast & wide-ranging steam propagation in saturated zone.

- Remediation Progress
 - Mass extraction by "cold" SVE and air sparging (59% of total mass).
 - Remediation target achieved by SI (35% of total mass in 13 weeks).
 - Minor mass of Benzene in saturated zone: approximately 300 kg (~ 4%).

- Remediation goals
 - Mass removal: more than 99% of Benzene extracted (6.75 to Benzene).
 - Groundwater: reduction of benzene concentrations by 75%.

Arrangement for ISRFH project

- RF unit
- Manifold
- RF generator
- Process control system
- Power
- Cable

- Sensing head for p, T, c
- 3 m
- Electrode distance
- Needle
- Matchbox
- 4 electrodes / extraction wells (optional also used as shielding)
- 9 points for vapour sampling.

Thermally enhanced in situ source zone removal

- Arrays of rod-like electrodes
- Parallel plate or net-shaped electrodes
- Dielectric soil heating
- Water / Alternating Current (RF) generator
- Thermally enhanced in situ source zone removal
Thermally enhanced in situ source zone removal

Electrode / extraction well

- **Site characterization**
 - **Soil:** very inhomogeneous
 - **Groundwater table:** 8.5 m bgl
 - **Lignite:** > 9 m bgl
 - Treatment of the **unsaturated zone** between 3 and 7 m bgl.
 - **Contamination:** mainly benzene < 3.5 g/kg, variety of aromatic and aliphatic VOC

Temperature profile

- Temperature distribution in a soil volume of about 300 m³ after 60 d RF heating with 15 kW
- **VOC concentration**
 - Increase in VOC concentration by a factor of 4 to 8

ISRFH – new electrode design

ISRFH with a modular RF system

- Temperature profile
- VOC concentration

ISRFH – Main Results

- The demonstration project consisted of three stages:
 1. “cold” SVE (24 days)
 2. RF heating alone (18 days)
 3. combined SVE + RFH (36 days)
- App. 300 m³ were heated to a mean temperature of 54°C.
- The **radius of influence** for RF heating was **about 5 m**.
- SVE supported heat transport in the soil.
- Extraction of VOCs was significantly enhanced by heating although quantification was difficult due to interference with the soil around the demonstration site (1.3 tonnes were eliminated).

Site D: BTEX-petr. hydrocarbon remediation

- **Surrounding SVE-wells**
- **Central SVE-wells**
- **Thermal wells**

Thermally enhanced in situ source zone removal

Factor 100 in mass recovery

Remediation Area

THERIS application

Workshop Area

Street View
Thermally enhanced in situ source zone removal

TUBA-THERIS-TUBA combination @ industrial site

Temperatures after 80 days

Workshop usage during THERIS remediation

Evaluation of the technology

Eurodemo sustainability demands:
- processes understood
- results from applications are well documented
- high contaminant extraction rates
- fast decontamination
- costs & environmental impacts are significantly less

Conclusions
- Thermally enhancements can be efficiently applied for the in-situ remediation of the unsaturated and the saturated zone.
- Thermally enhancements can enable a continued usage of the building during remediation.
- Thermally enhancements consume less energy than 'cold' SVE.
- The quality of site evaluation effects the quality of the design.
- The remediation goals can effect the efficiency.

Heat-up and relax
Thermally enhanced In-situ Remediation
reconsite GmbH
Auberlenstrasse 13
D-70736 Fellbach
Dr.-Ing. Uwe Hiester
Phone: +49 (0)711-410190-11
Fax: +49 (0)711-410190-19
http://www.reconsite.com
E-mail: info@reconsite.com