Thermische In-situ-Sanierung von Boden- und Grundwasser – über 20 Jahre Technologietransfer

Hans-Peter Koschitzky

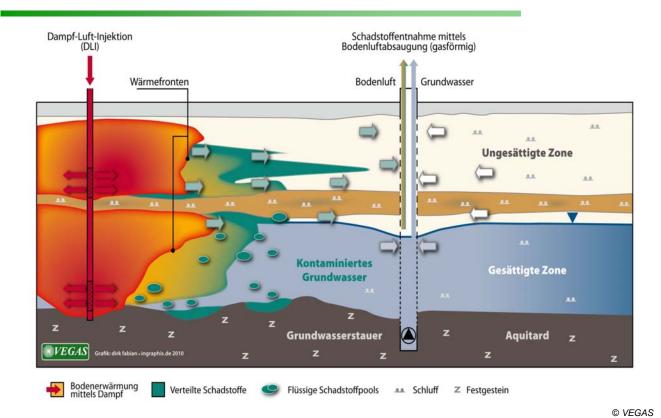
Oliver Trötschler et al.

Versuchseinrichtung zur Grundwasser- und Altlastensanierung Institut für Wasser- und Umweltsystemmodellierung, Universität Stuttgart vegas@iws.uni-stuttgart.de; www.vegas.uni-stuttgart.de

Altlasten 2018

18. Karlsruher Altlastenseminar 27. & 28. Juni 2018

Was können Sie erwarten


Thermische In-Situ-Sanierungsverfahren, TIsS Technologietransfer / Fallbeispiele der letzten 20 Jahre

- Ehemalige chemische Reinigung innenstädtisch,
 Pilotierung und Sanierung "Karlsruhe Durlach", CKW
- Ehemalige Verbrennungsanlage Biswurm CKW im Kluftgestein, Pilotierung und Sanierung
 - "Lessons learned"
- Ehemaliges "Fotoapparatewerk" Sanierung eines CKWkontaminierten Standort mit hohem Grundwasserstand

Fazit TIsS - Ausblick

TIsS: Dampf-Luft-Injektion, DLI (konvektiv)

VEGAS

Thermische In-situ-Sanierung...

– über 20 Jahre Technologietransfer

Altlasten 2018 18. Karlsruher Altlastenseminar 27. & 28. Juni 2018

Kos

Einsatzbereiche Dampf-Luft-Injektion

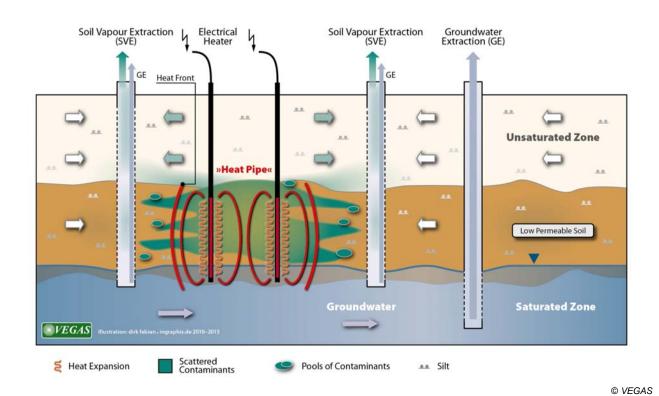
Dampf-Luft-Injektion (DLI) Wärmefronten Wärmefronten Z Z Z VEGAS Grafik: dirk fabian - ingraphis.de 2010 Z Bodenerwärmung mittels Dampf

Einsatzbereiche

DNAPL und LNAPL, leicht- und mittelflüchtig, Siedetemperaturen < 180°C

- UZ: Lockergestein mit mittlerer bis guter Durchlässigkeit (Schluff → Kies)
- GZ: Porengrundwasserleiter (Sand bis Schluff) mit k_f: 2 x 10⁻⁵ bis 5 x 10⁻⁴ m/s

Thermische Reichweite GZ


- Dampfausbreitung: > 3 5 m Radius (mit 150 kg/h Sattdampf)
- anisotrope Schichtung vorteilhaft

Besonderheiten

- Simultane Sanierung GZ und UZ,
- max. Temperatur 100 °C
- Schneller, hoher Energieeintrag (konvektiv)
 - → online Überwachung erforderlich
- Sanierungssteuerung angepasst an Temperaturverlauf und Schadstoffaustrag
 - Mögliche Gefügeveränderungen bei stark organhaltige Böden (Torflagen) → Setzungen?

Feste Wärmeguellen Verfahrensprinzip (konduktiv)

VEGAS

Thermische In-situ-Sanierung... - über 20 Jahre Technologietransfer

Altlasten 2018 18. Karlsruher Altlastenseminar 27. & 28. Juni 2018

Kos

Einsatzbereiche Feste Wärmequellen

Soil Vapour Extraction (SVE) Electrical Heater Heat Front **Heat Pipe VEGAS** Scattered Contaminants **E** Heat Expansion Pools

Einsatzbereiche

DNAPL und LNAPL, leicht- und schwerflüchtig, Siedetemperaturen < 250°C (?)

gering durchlässige Bodenschichten UZ: (Feinsedimente, Schluffe, Tone, Lehm, Durchlässigkeiten: bis 10-9 m/s

unter best. Bedingungen möglich, durch Großversuche Eignung nachgewiesen

Thermische Reichweite GZ

Abstand der Heizelemente im m-Bereich (Standort- und projektabhängig)

Besonderheiten

- Langsamer Energieeintrag (konduktiv)
- Temp. > 100 °C erst nach vollständiger Verdampfung des Wassers im Boden
- Nach Austrocknung erhöht sich die Durchlässigkeit für BLA deutlich
 - Mögliche Setzungen (Tonlagen) beachten
 - Geringerer Betriebs- und Wartungsaufwand
 - Kombination mit DLI kann sinnvoll sein

TIsS, (Dampf-Luft-Injektion) von der Forschung zur Anwendung

Jahr	Standort	Geologie/Hydrogeologie	Schad stoff	Beschreibung / Besonderheiten
1998 Pilot	Plauen ehem. Benzol- Verladestation, Industriebrache	(UZ), sandiger Schluff, -2,5 bis -4,5 m über kiesig/sandigem GWL	BTEX	EU-Projekt mit Sanierungsfirma, erste erfolgreiche Anwendung und Nachweis der Effektivität und Wirtschaftlichkeit
1998 – 2000 Pilot	Mühlacker ehemalige Sondermülldeponie, Deponie heute gesichert	(UZ), verwitterte Ton- /Mergel-steine (Gipskeuper) getrennt durch Schichtwasserhorizont (15 m u. GOK, DRM-Aquifer bei 30 m u. GOK)	CKW	Modellvorhaben LfU Baden- Württemberg, Sanierungskonzept erstellt, keine Umsetzung, Deponie gesichert, Abstrommonitoring
2003/2004 Pilot Feste Wärme- quellen	Hamburg ehem. chem. Reinigung, innerstädtisch, dicht bebaut	(UZ), bei - 4 bis -6,5 m bindige Sedimentschicht und Mergellage, GW bei -11 m, Sanierungsfläche ca. 80 m ²	CKW	drei Monaten Sanierungszielwert unterschritten, Einsatzfähigkeit nachgewiesen, Sanierungszeit "kalten" BLA um eine Größenordnung, geringer
2004 Sanierung	Albstadt ehemaliger metallverarb. Betrieb, innerstädtisch	(UZ / GZ): schluffig/tonig (-3,8 m), durchlässiger Kalkstein (-5,6 m) ü. Mergelgestein	CKW	Schadensherd unter Gebäude, Sanierung unter Bodenplatte, laufender Betrieb (Druckerei), erfolgreiche Sanierung

© VEGAS

Thermische In-situ-Sanierung...

- über 20 Jahre Technologietransfer

Altlasten 2018 18. Karlsruher Altlastenseminar 27. & 28. Juni 2018

os 7

TIsS, Dampf-Luft-Injektion: von der Forschung zur Anwendung

Jahr	Standort	Geologie/Hydrogeologie	Schad stoff	Beschreibung / Besonderheiten
2005 Pilot 2010/11 Sanierung	Karlsruhe-Durlach ehem. chem. Reinigung, hist. Altstadt	(GZ, vadose, UZ) schluffig, sandiger Kies mit Schlufflagen (bis -9 m)	CKW (PCE)	Sanierung unter bewohntem Gebäude. Gesamtsanierung abgeschlossen, Konz. im GW heute n.n.
2008 Pilot	Zeitz ehemaliges Hydrierwerk & Verladestation, Industriebrache	(GZ, vadose, UZ), kiesig/ sandig, Schlufflage, sandig/kiesig (-12 m) über Kohlekomplex	Benzo I	Pilot. erfolgreich, Sanierungskonzept erstellt, keine Umsetzung / Auskofferung im Zuge großräumiger Bebauung
2009 Pilot 2012- 2016, DLI, 2016-2018 Abkühl., BLA	Biswurm, VS ehemalige Verbrennungs-anlage, Brachfläche	(GZ, vadose, UZ), geklüfteter Sandsteinaquifer, 3 - 18 m u. GOK (Tonstein bis -21 m u. GOK)	CKW	Erfolg. Pilotierung Basis für Sanierungsplanung, Sanierung mit "Überraschungen" und "lessons learned", derzeit Nachsorge / Überwachung
2010 / 2013 Feasib./Pilot, 2018 Sanierung laufend	Oberursel ehemaliger Chemikalien-handel, hist. Altstadt	(UZ, vadose), schlecht durchlässiger Untergrund, Tonschichten, (10 ⁻⁶ – 10 ⁻⁵ m/s)	CKW	Altstadt unter Gebäude Feasibility, Pilotierung (Fj. 2013 bis Sept. 2013, derzeit Sanierung, starkes, öffentliches Interesse durch NGO

TIsS, (Dampf-Luft-Injektion): von der Forschung zur Anwendung

Jahr	Standort	Geologie/Hydrogeologie	Schad stoff	Beschreibung / Besonderheiten
2013 2015 2016 Pilot/San.	Sindelfingen ehemaliges Chemielager unter Parkhaus	(UZ und GZ) tonige schluffig mit Torfanteil 2 – 16 m u. GOK	CKW	Feasibility / Pilotierung, dann abschnittweise Schaden- herdentfernung, starke Setzungen aber ohne Einfluß auf Gebäude
2012 – 2013 Pilot 2014 Sanierung	Stuttgart ehemaliger metallverab. Betrieb, innerstädtisch	(UZ und GZ), tonig-dichter Keuper und DRM, unterliegend Gipskeuper- Aquifer 2 - 8 m u. GOK siehe u.a. [16] "youtube"	CKW	EU-Projekt CityChlor "Stuttgarter Str." Pilot, Feste Wärmequellen, wiss. Begleitung abgeschlossen 07.2013, Basis für Sanierung 12/13 – 05/2014 (ohne VEGAS)
2012 Feasibility 2015 – 2016 Sanierung	Bad Liebenzell ehemaliger metallverarb. Betrieb, Fotoapp. Campingplatz,	(UZ, GZ) teilweise u. Gebäude, quart. Talablagerungen, kiesig, sandig, schluffig, hoher GW- Stand 1 - 10 m u. GOK	CKW	Feasibility / Sanierungsvorschlag, wirtschaftlichere Alternative zur Großbohrlochverfahren Sanierung abgeschlossen, derzeit Nachsorgemonitoring

© VEGAS

Thermische In-situ-Sanierung...

- über 20 Jahre Technologietransfer

Altlasten 2018 18. Karlsruher Altlastenseminar 27. & 28. Juni 2018

os

Ehemalige chemische Reinigung – innenstädtisch, Pilotierung und Sanierung "Karlsruhe Durlach"

Thermische In-situ-Sanierung eines CKW-Schadens unter einem denkmalgeschützten Gebäude - von der Planung bis zur erfolgreichen Sanierung

Hans-Peter Koschitzky, Oliver Trötschler, Versuchseinrichtung zur Grundwasser- und Altlastensanierung, Universität Stuttgart

Stephan Denzel, dplan, Karlsruhe

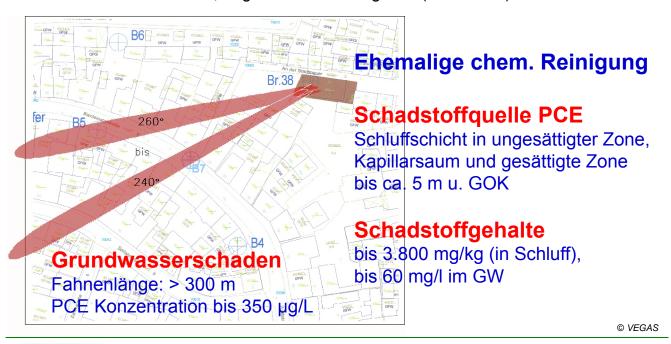
Stadt Karlsruhe Umwelt- u. Arbeitsschutz

Claudia Purkhold, Stadt Karlsruhe, Umwelt- und Arbeitsschutz

Wolfgang Maier-Oßwald, Steffen Hetzer (2010) Züblin Umwelttechnik GmbH, Stuttgart

Pilot-Standort Karlsruhe Durlach

Pilot-Standort Karlsruhe Durlach



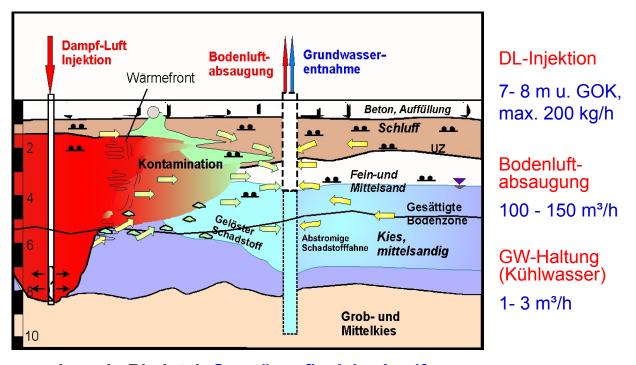
Standortbeschreibung

Altstadt Karlsruhe-Durlach

historisches Gebäude, eng bebautes Wohngebiet (2003/2004)

VEGAS

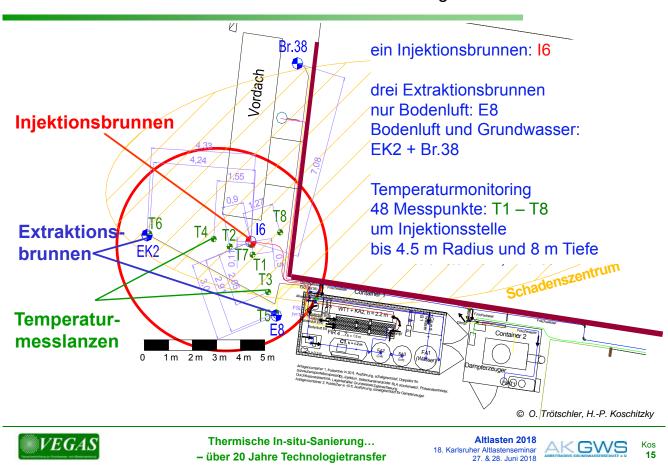
Thermische In-situ-Sanierung...

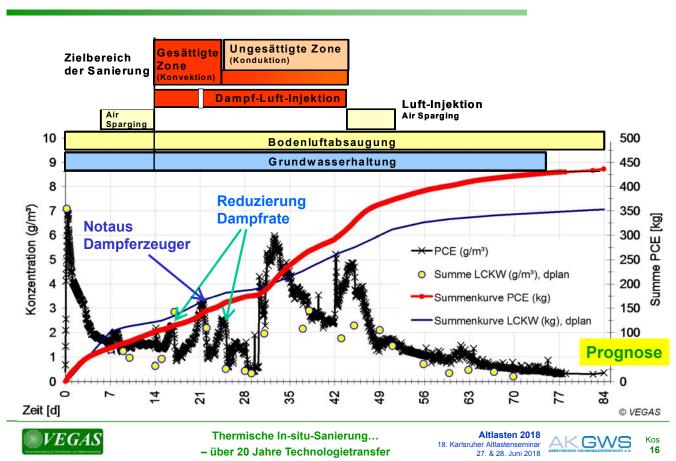

- über 20 Jahre Technologietransfer

Altlasten 2018 18. Karlsruher Altlastenseminar 27. & 28. Juni 2018

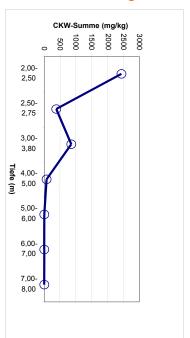
AKGWS

Kos

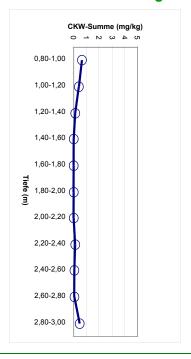

Geologie und Sanierungskonzept Pilotierung


Lage in Rheintal: Quartärer, fluvialer Aquifer

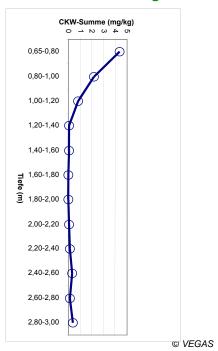
Pilot – Testfeld: Ausstattung



Massenbilanz Schadstoffaustrag



Bodenproben vor & nach Pilot-Sanierung

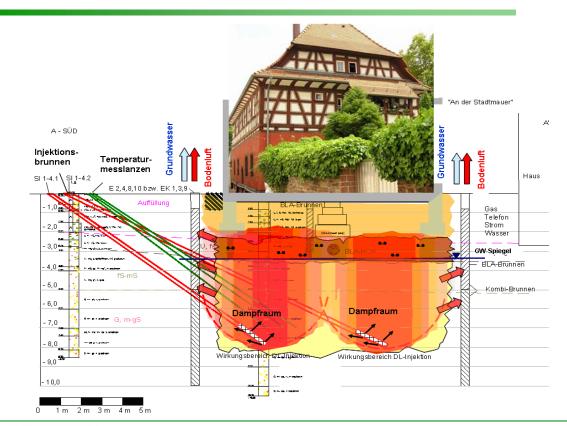

Sondierung Injektionsbr. 16 vor Pilot-Sanierung

Sondierung 1,5 m Abstand zu 16 nach Pilotierung

Sondierung 3 m Abstand zu 16 nach Pilotierung

VEGAS

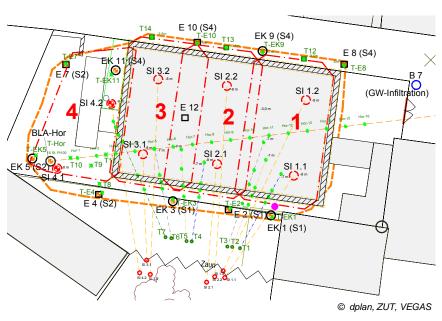
Thermische In-situ-Sanierung...


- über 20 Jahre Technologietransfer

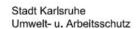
Altlasten 2018 18. Karlsruher Altlastenseminar 27. & 28. Juni 2018

AKGWS

Kos


Realisierung DLI unter dem Gebäude

d•plan



Sanierungsausführung

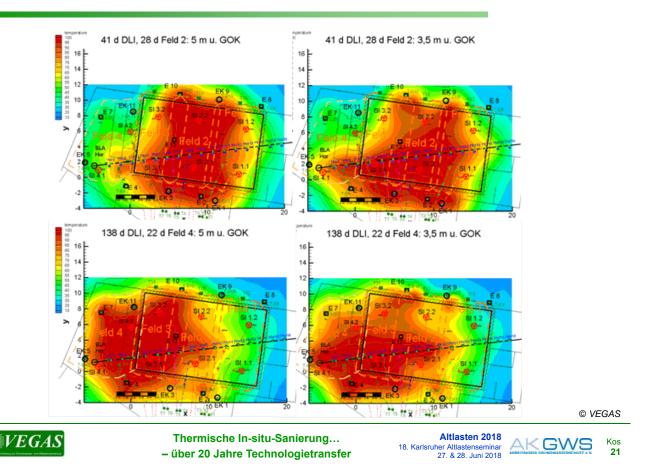
- Ausführungsplanung und Ausschreibung: Standortgutachter dplan (& VEGAS)
- Auftraggeber: Stadt Karlsruhe
- Ausführung: Züblin Umwelttechnik
- Wissenschaftliche Begleitung/Beratung, Sanierungsüberwachung und -steuerung: VEGAS & dplan
- BegleitkreisRP-Ka, Stadt, LUBW...

© VEGAS

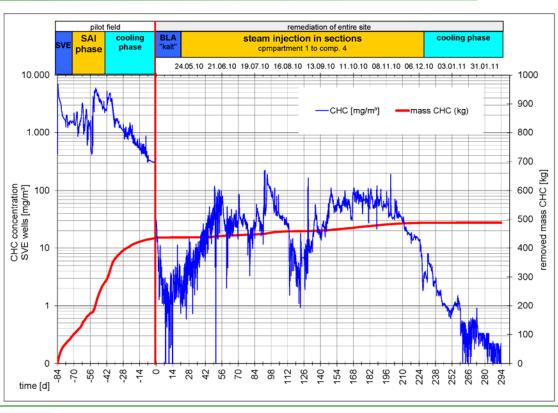
Thermische In-situ-Sanierung...

- über 20 Jahre Technologietransfer

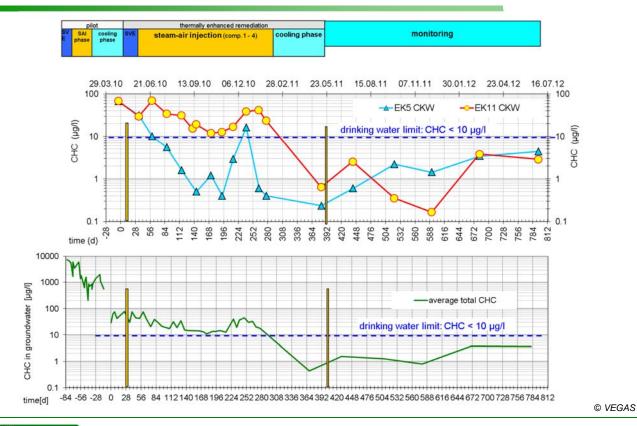
Altlasten 2018 18. Karlsruher Altlastenseminar 27. & 28. Juni 2018


Kos

Betrieb Mai - Juli 2010



Temperaturausbreitung



Schadstoffaustrag Bodenluft

Entwicklung der CKW - Konzentrationen im Grundwasser

VEGAS

Thermische In-situ-Sanierung... - über 20 Jahre Technologietransfer

Altlasten 2018 18. Karlsruher Altlastenseminar 27. & 28. Juni 2018

Ehemalige Verbrennungsanlage Biswurm – CKW im Kluftgestein, Pilotierung

Thermische In-situ-Sanierung im Kluftgestein: "Lessons learned" von der Planung bis zur Sanierungsrealität am Standort "Biswurm"

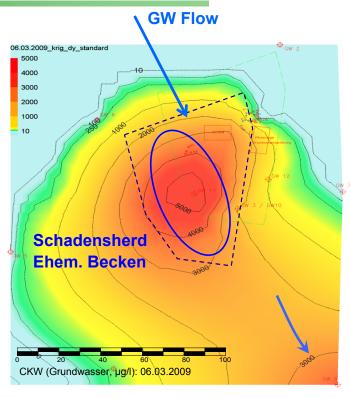
Hans-Peter Koschitzky¹ Oliver Trötschler¹, Bernd Lidola², Michaela Epp², Isabell Kleeberg² Stefan Schulze³, Holger Weiß⁴

(1) Versuchseinrichtung zur Grundwasser- und Altlastensanierung, Universität Stuttgart

- (2) Stadtbauamt Villingen-Schwenningen, Abteilung Wasser und Boden
- (3) GEOsens, Ingenieurpartnerschaft, Ebringen
- (4) Helmholtz-Zentrum für Umweltforschung GmbH, UFZ Leipzig

z.B.: Symposium Strategien zur Boden- und Grundwassersanierung, DECHEMA, Frankfurt a.M., 30.11.2015

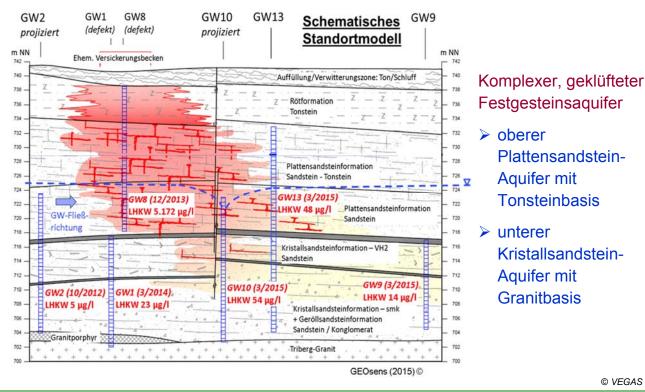
NICOLE Workshop, Vienna, Austria, 15-17 June 2016, Turning failure into success - What can we learn when remediation does not go as planned



Schadenssituation Biswurm

Schadensbild 2007 / 2009

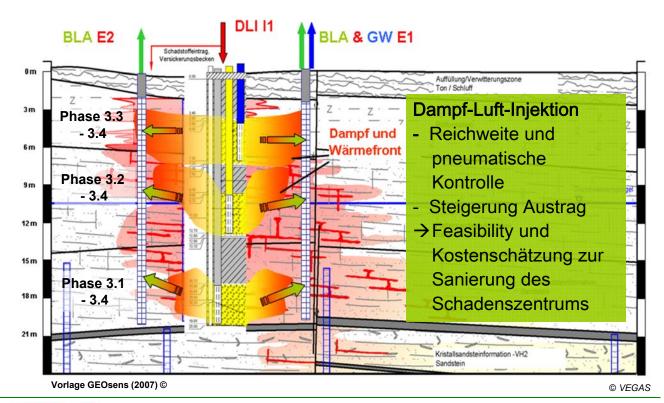
- → ca. 2.900 m² Kernbereich bzw. 43.000 m3 Kluftgestein (CKW-Schaden)
- → 5 m UZ und ca. 16 m gesättigte Zone, CKW bis 4.000 mg/m³ in der Bodenluft bis 4 mg/L im Grundwasser
- → Länge Schadstofffahne unbekannt, mind. 1 ha Fläche kontaminiertes Grundwasser



Thermische In-situ-Sanierung... - über 20 Jahre Technologietransfer

Altlasten 2018 18. Karlsruher Altlastenseminar 27. & 28. Juni 2018

Geologie und Schadensbild in einem Kluftaquifer



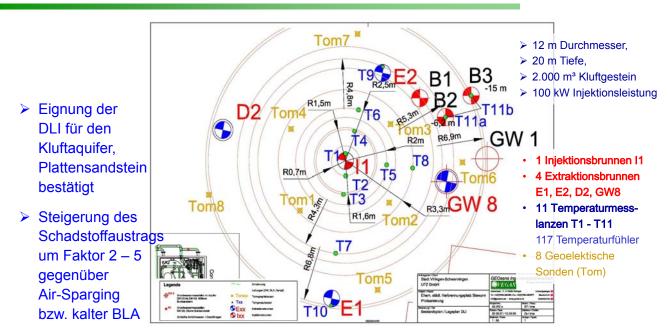
Festgesteinsaquifer

- Plattensandstein-Aquifer mit **Tonsteinbasis**
- Kristallsandstein-Aquifer mit Granitbasis

Geologie und thermische Erschließung

VEGAS

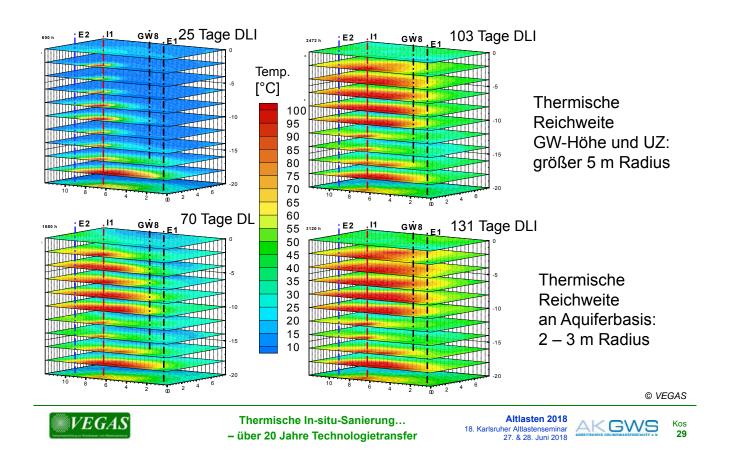
Thermische In-situ-Sanierung...


– über 20 Jahre Technologietransfer

Altlasten 2018 18. Karlsruher Altlastenseminar 27. & 28. Juni 2018

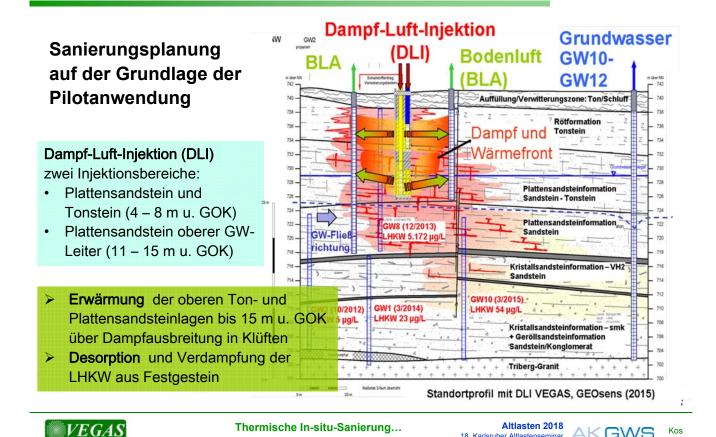
AKGWS

Kos

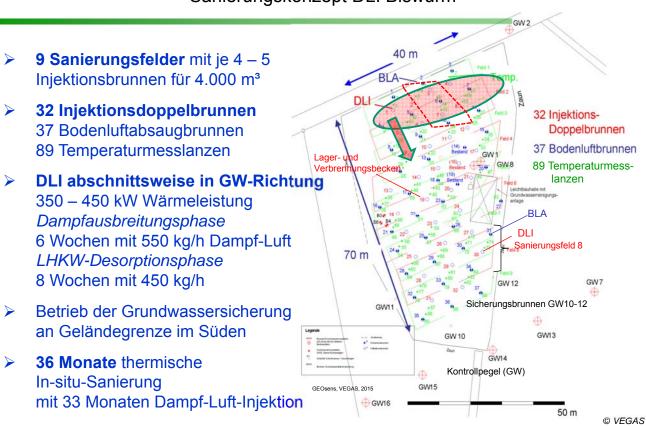

Pilotanwendung Biswurm

- Im oberen Aquifer und in der ungesättigten Zone: thermische Reichweite von mehr als 10 m Durchmesser erreicht
- Schadstoffaustrag: 500 kg LHKW in 3 Monaten aus ca. 1.500 m³ Festgestein

Überblick Wärmeausbreitung



Eindrücke vom Testfeld



Geologie und Prinzip der DLI

Sanierungskonzept DLI Biswurm

- über 20 Jahre Technologietransfer

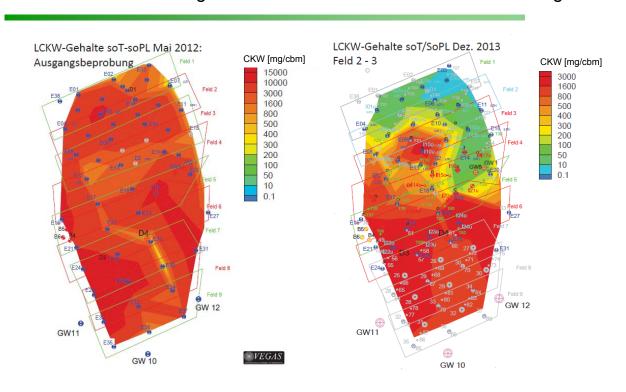
KGWS

18. Karlsruher Altlastenseminar 27. & 28. Juni 2018

Sanierung Biswurm

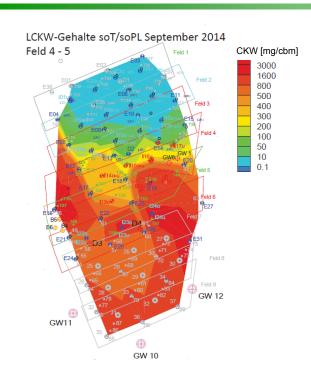
VEGAS

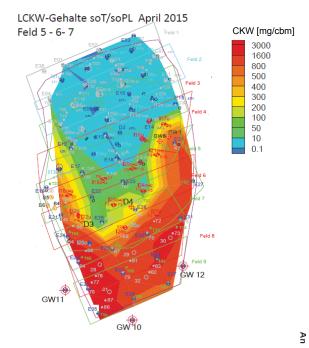
Thermische In-situ-Sanierung...


- über 20 Jahre Technologietransfer

Altlasten 2018 18. Karlsruher Altlastenseminar 27. & 28. Juni 2018

AKGWS


Kos


Entwicklung der LCKW-Gehalte während der Sanierung

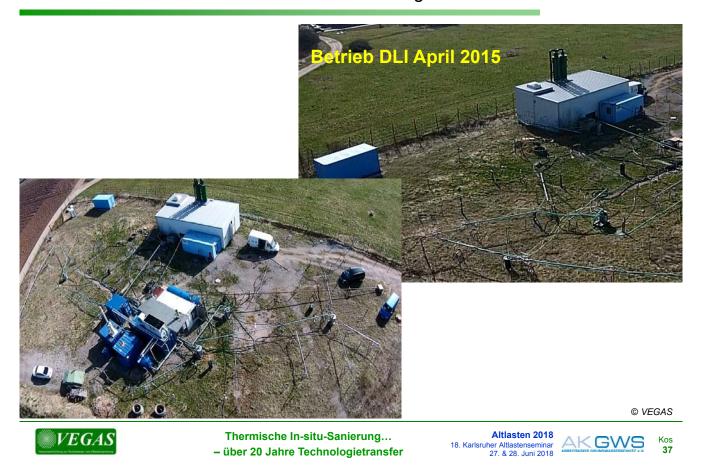
Entwicklung der LCKW-Gehalte während der Sanierung

© VEGAS

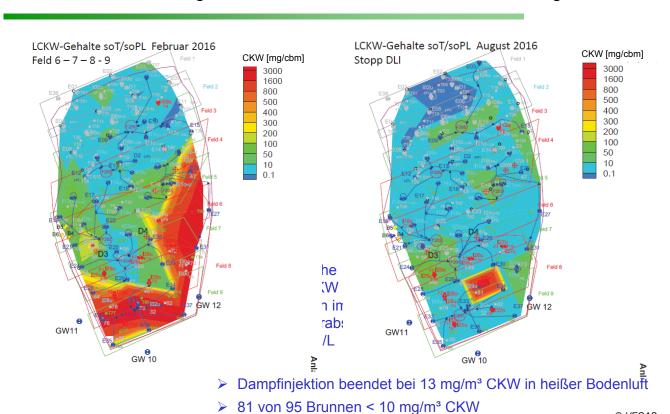
Thermische In-situ-Sanierung...

- über 20 Jahre Technologietransfer

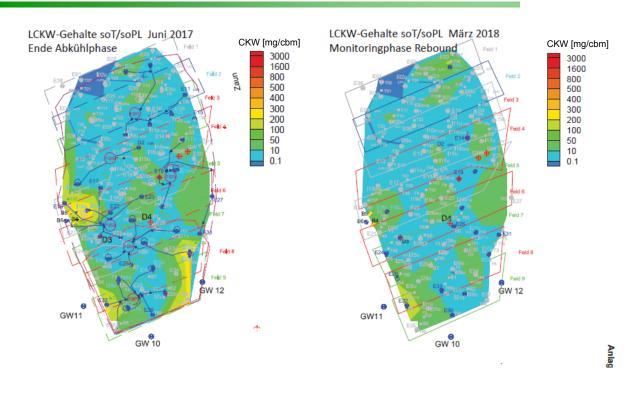
Altlasten 2018 18. Karlsruher Altlastenseminar 27. & 28. Juni 2018


Kos

Eindrücke vom Sanierungsfeld in Biswurm



Blick auf das Sanierungsfeld

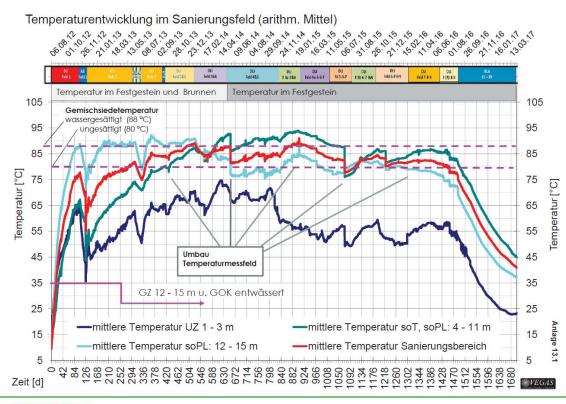


Entwicklung der LCKW-Gehalte während der Sanierung

Entwicklung der LCKW-Gehalte während der Sanierung

© VEGAS

Thermische In-situ-Sanierung...


- über 20 Jahre Technologietransfer

Altlasten 2018
18. Karlsruher Altlastenseminar
27. & 28. Juni 2018

Kos

Entwicklung der Temperaturen während der Sanierung

Sanierungsplanung nach Pilotanwendung

→ abschnittsweise thermische Sanierung (jeweils 3 Monate)

Dampf-Luft-Injektion

- 3 Monate je Feldabschnitt auf 2 Injektionsebenen
 - 6 Wochen Aufheizdauer +
 - 8 Wochen Austragsdauer
 - Abkühlungsphase, je ca. 1 Woche
- → September 2015: Abschluss und Sanierungskontrolle

... und die Realität:

Desorptionsdauer deutlich länger

→ simultane Sanierung von 2 - 3 Feldabschnitte mit 350 – 450 kW

Dampf-Luft-Injektion

- 4-6 Monate je Feldabschnitt
 - 5 Wochen Aufheizdauer Tonstein (200 kW) +
 - 11 13 Wochen Austragsdauer Tonstein- und Plattensandstein (300 kW)
 - 9 Wochen Desorptionsaustrag aus Plattensandstein (150 kW)
 - Abkühlungsphase gesamtes Feld ca. 20 Monate
- → August 2016:

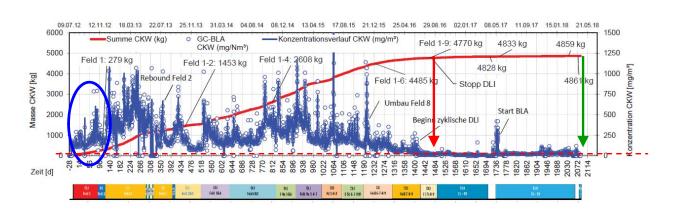
Ende DLI und Abkühlphase

→ März 2018:

Reboundtest und "Nachsorge"

© VEGAS

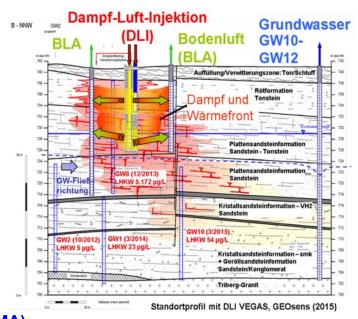
Thermische In-situ-Sanierung...


- über 20 Jahre Technologietransfer

Altlasten 2018 18. Karlsruher Altlastenseminar 27. & 28. Juni 2018

Kos

Schadstoffaustrag über die Gesamtsanierungszeit



- > Typischer Schadstoffaustrag in Feld 1, aber in Felder 2 6 deutlich anders
- Sanierungszielwert Bodenluft in den einzelnen Feldern: 20 mg/m³ CKW
- Sanierungszeit um Faktor 3 höher im Vergleich zur Pilotierung
- Schadstoffaustrag bis zu 20 kg CKW / Tag; im Mittel 3.5 kg CKW / Tag
- > 4,780 kg CKW Austrag zum Ende der DLI (Aug. 2016, 1.480 Tage, 13 mg/m³ CKW)
- ➤ Nach ca. 20 Monaten Abkühlphase noch ca. 80 kg → Gesamtaustrag 4.861 kg CKW

Kurzsteckbrief

- Beginn der Sanierung:18.07.2012, ca. 71 Monate
- Dampf-Luft-Injektion:Start: 06.08.2012 bis 28.08.2016
- Abschaltung DLI August 2016
- Nachsorgephase mit BLA bis März 2018 und GW-Haltung bis Sommer 2018
- Positive Nachsorgephase,
 E_{max} < 10 g/d LCKW
 aktive GW-Förderung: 9 g/d LCKW
 passive Fracht: 1,9 g/d LHKW (XUMA)

Endgütiger Abschluss (Bewertungskommission) im Juli 2018

© VEGAS

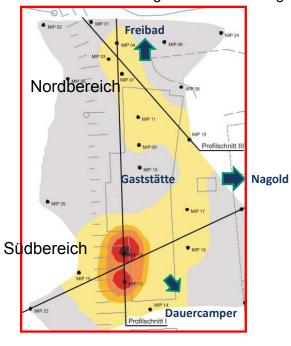
Thermische In-situ-Sanierung...

– über 20 Jahre Technologietransfer

Fazit Biswurm

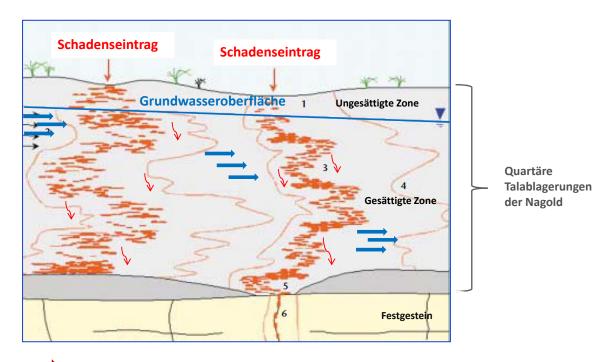
- LHKW Austrag über BLA ist dominant: fast 4.900 kg "nur" 125 kg über Grundwassersicherung
- Behördliches Sanierungsziel erreicht:
 - < 10 g/d CKW Emission und < 20 µg/L CKW im Grundwasser
- ➤ **Gesamtschadstoffaustrag** in 4 Jahren DLI entspricht Austrag nach 50 Jahren GW-Sanierung (bei konstantem Schadstoffaustrag)
- Finanziell und energetisch günstiger als Pump&Treat
- → Sanierung des Festgesteins mittels DLI effektiv
- → Kontroll- und steuerungsintensiv
- → Anpassung des Sanierungsbetriebs an Sanierungsfortschritt erfordert Flexibilität

Altstandort "Regula King" **Bad Liebenzell, Nagoldtal**


Thermische In-situ-Sanierung... - über 20 Jahre Technologietransfer

Altlasten 2018 18. Karlsruher Altlastenseminar 27. & 28. Juni 2018

Untergrundverunreinigungen – woher?


- ➤ Fotoapparatehersteller Regula King (1942 1963)
- Einsatz LCKW-haltiger Mittel zur Reinigung, Entfettung → das "Übliche"

Konzeptionelle Modellvorstellung der Untergrundverunreinigungen

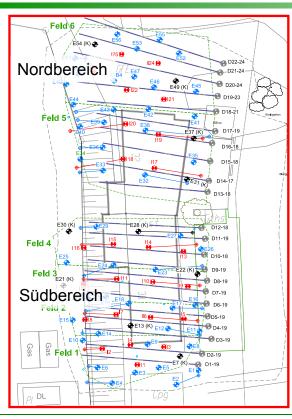
Schadensschwerpunkt unterhalb Gaststätten-/Sanitärgebäude

© VEGAS

Thermische In-situ-Sanierung... - über 20 Jahre Technologietransfer

Altlasten 2018 18. Karlsruher Altlastenseminar 27. & 28. Juni 2018

Entwicklung Schadensituation


Sanierungsbereich	Südbereich	Nordbereich	
Sanierungsfelder	Feld 1 bis Feld 4	Feld 5 und Feld 6	
Ausbildung Schadenskörper	$A \approx 450 \text{ m}^2, T \approx 8 \text{ m},$ $V \approx 3.600 \text{ m}^3$	$A \approx 250 \text{ m}^2, T \approx 4-5 \text{ m},$ $V \approx 1.200 \text{ m}^3$	
Ausgangslage Grundwasser (Schadensbereich) LCKW	vor P&T (2004): max.18.391 µg/l vor P&T (2004): max. 9.826 µg/l 2004 bis 2013 P&T und BLA Stagnierend hohe Schadstoffkonzentrationen: → 2012 Alternative Sanierungsmöglichkeiten		
	vor DLI (2013/14): Ø 750 μg/l	vor DLI (2013/14): Ø 30 μg/I	
Ausgangslage Boden (Schadensbereich) LCKW	vor DLI 2013: max. 2.701 mg/kg	vor DLI 2013: max. 65 mg/kg	
Geschätztes Restinventar	Vor DLI 2013: ≈ 715 kg bis 2.065 kg LCKW		

Dampf-Luft-Injektion - Grunddesign

Sanierungsfeld unterirdisch (6 Felder)

- > 25 St. Injektionsbrunnen Dampf-Luft-Injektion
- ▶ 46 St. Extraktionsbrunnen Bodenluft
- 22 St. Bodenluftdrainage (400 m)
- > 10 St. Kombinationsbrunnen + 6 vorh. Br.
- 90 Temperaturmesslanzen

Leistungsgrößen

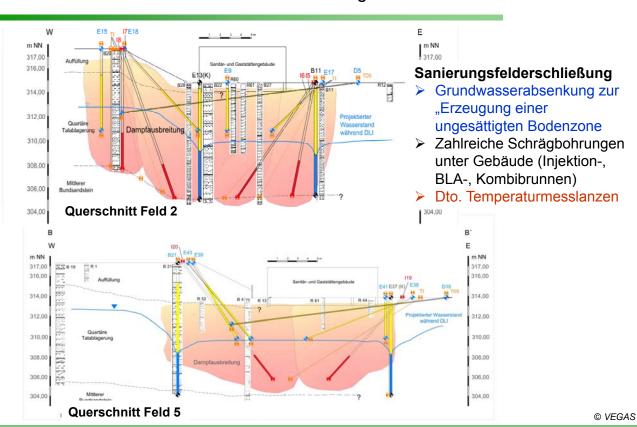
- > 500 750 kW Dampfleistung
- 1000 m³/h Bodenluftabsaugung
- ➤ 20 30 m³/h Grundwasserförderung

Zeitdauer (geplant)

- Aufheizphase je Feld: 14 d
- Austragsphase je Feld: mind. 30 d
- Austragsphase gesamt, 210 Tage
- Abkühlphase mind. 30 Tage
- Sanierungsdauer 14 17 Mon. (zzgl. Anlagenbau)

© VEGAS

Thermische In-situ-Sanierung...


- über 20 Jahre Technologietransfer

Altlasten 2018 18. Karlsruher Altlastenseminar 27. & 28. Juni 2018

Kos

Erschließung

© VEGAS

Thermische In-situ-Sanierung...

- über 20 Jahre Technologietransfer

Kurzsteckbrief

- Dauer der Sanierung: 07.04.15 23.09.2016
 Dampf-Luft-Injektion: Start: 13.04.2015, Stopp: 23.08.2016
- 6 Sanierungsabschnitte, Behandlung abschnittsweise
- 4 Felder (Südbereich) erfolgreich saniert (bis Januar 2016) mit ca. 680 kg LCKW-Austrag
- Inbetriebnahme DLI Nordbereich Feld 5 am 30.03.2016 und Feld 6 am 11.05.2016
- 2 Felder (Nordbereich) erfolgreich saniert (bis August 2016) mit 28 -30 kg LCKW
- → Ende Sanierung im September 2016
- → gesamt: 710 kg LCKW nach 507 Betriebstagen über BLA >99 %, 5 kg (0,7 %) aus Grundwasser (über P&T würden 160 Jahre benötigt)
- → LCKW in Grundwasser an allen Brunnen < 40 µg/L, Emissionen < 4 g/d, Bagatellgrenze
- → Verteilerausschuss, Abschluss: 19.10.2017
- → Aktuell Überwachungsprogram

Zusammenfassung & Ausblick

- Bestimmung der Einsatzgrenzen über Pilotanwendungen Kluftaquifere, dampfunterstützte konduktive Sanierung gering durchlässiger Sedimente (Schluffe, Tone), Tiefen über 20 m, große Aquifermächtigkeiten
- Durch zahlreiche Referenzprojekte immer neue Erkenntnisse und Erfahrungen
- teilweise auch Abweichungen (Überraschungen) zwischen Pilotierung und Gesamtsanierung → "Lessons learned"
- Entwicklung war / ist nur möglich durch viele Beteiligte und Geldgeber

⊌ VEGAS

Thermische In-situ-Sanierung... - über 20 Jahre Technologietransfer

Altlasten 2018 18. Karlsruher Altlastenseminar 27. & 28. Juni 2018

Kos

Zusammenfassung & Ausblick (auch international)

- Dimensionierung entsprechend dem Stand der Technik im Rahmen der SU ist möglich → DLI Tool steht bei TASK kostenlos z.V., wird erweitert durch Erfahrungen und aktuelle Grundlagenuntersuchungen bei VEGAS
- Erfolg ist maßgebend an sorgfältiger Erkundung und detailliertes Konzeptionelles Standortmodel gekoppelt
- Sorgfältige Planung erforderlich, TIsS haben klare Anwendungsgrenzen und auch Ausschlusskriterien
- Vollständige, kontrollier- und nachweisbare Sanierung von Schadensherden innerhalb definierten und bestimmbaren Zeiträumen (mit gewissen Bandbreiten) möglich
- Zur Kostensicherheit in der Vorplanung sollten bis zu 30 % Reserve angesetzt werden.
- "intensive" Sanierungsbegleitung und -steuerung (Online-Datenerfassung, Anlagensteuerung) erforderlich
- TISS sind Verfahren bei denen sanierungsbegleitend der Austrag erfasst (on-line) und eine Sanierung (Sanierungserfolg) messtechnisch nachgewiesen werden kann
- TISS werden weltweit zunehmend (erfolgreich) angewendet, Expertenwissen ist erforderlich, Beispiele siehe nachfolgende Vorträge

Thermische In-situ-Sanierung...

- über 20 Jahre Technologietransfer

Altlasten 2018 18. Karlsruher Altlastenseminar 27. & 28. Juni 2018

(0S