Steam-Air Enhanced In-Situ Remediation of a Chlorinated Hydrocarbon Source under a Historical Building - from Planning to Successful Rehabilitation -

Hans-Peter Koschitzky, Oliver Trötschler, Versuchseinrichtung zur Grundwasser- und Altlastensanierung, Universität Stuttgart

Stephan Denzel, dplan, Karlsruhe

Stadt Karlsruhe Umwelt- u. Arbeitsschutz

Claudia Purkhold, Stadt Karlsruhe, Umwelt- und Arbeitsschutz

AquaConSoil 2013, Barcelona 16-19 April 2013

AquaConSoil Barcelona 2013

Introduction

Pilot Application (2005)

- remediation planning → site description
- thermally enhanced remediation → steam-air injection
- pilot; what for? → confirmation and design steam-air technology
- → Remediation concept

Remediation – Monitoring (2010/2012)

- remediation concept → sequential steam-air injection
- data monitoring → surveillance and process control
- Process operation → remediation progress and results
- Realization of thermally enhanced remediation and aftercare

© VEGAS

dt Karlsruhe nwelt- u. Arbeitsschutz // deplan Steam-Air Enhanced In-Situ Remediation of a Chlorinated Hydrocarbon Source under a Historical Building - from Planning to Successful Rehabilitation -

Kos/trö

Site Karlsruhe Durlach

Stadt Karlsruhe Umwelt- u. Arbeitsschutz Steam-Air Enhanced In-Situ Remediation of a Chlorinated Hydrocarbon Source under a Historical Building - from Planning to Successful Rehabilitation -

Site Karlsruhe Durlach

VEGAS

d•plan

Steam-Air Enhanced In-Situ Remediation of a Chlorinated Hydrocarbon Source under a Historical Building - from Planning to Successful Rehabilitation -

Pilot Site Karlsruhe Durlach

© VEGAS

d•plan

Hydrocarbon Source under a Historical Building - from Planning to Successful Rehabilitation -

Kos/trö

Contamination

O. Trötschler, H.-P. Koschitzky, Steffen Ochs, Stephan Denzel

Steam-Air Enhanced In-Situ Remediation of a Chlorinated Hydrocarbon Source under a Historical Building - from Planning to Successful Rehabilitation -

Geology and remediation concept

d•plan

Steam-Air Enhanced In-Situ Remediation of a Chlorinated Hydrocarbon Source under a Historical Building - from Planning to Successful Rehabilitation -

Pilot field installation

Implementation of pilot remediation

3 months duration → four different phases:

- (1) "cold SVE" and groundwater pumping (5 days)
- (2) air-sparging (7 days)
- (3) steam-air injection (28 days)
- (4) Cooling phase: air-sparging, SVE und gw pumping (5 weeks)

Steam expansion – temperature monitoring

- from Planning to Successful Rehabilitation -

Contaminant removal

- from Planning to Successful Rehabilitation -

Summary of pilot application

- Steam propagation > 4 m radius
 - → initial phase of maximum steam rate required
- time required is dominated by conductive heating of the silt layers
 - → 4 6 weeks of reduced steam-air rate to heat up silt
- 440 kg PCE via SVE & 10 kg via GW removed:

- "cold" SVE: 70 kg - air-sparging: 30 kg - steam-air: 340 kg

- acceleration factor for steam-air of about 5
- safe design and cost estimation for full site remediation

VEGAS

Stadt Karlsruhe
Umwelt- u. Arbeitsschutz

Steam-Air Enhanced In-Situ Remediation of a Chlorinated Hydrocarbon Source under a Historical Building - from Planning to Successful Rehabilitation -

Kos/trö

© VEGAS

Remediation goal and concept full scale

- → 1.600 m³ of soil to be treated in-situ
- → 10 months of steam-air injection
- → 300 kW of steam injection power

Implementation of full scale remediation

- → same as pilot
- "cold" soil vapour extraction and groundwater pumping all compartments (1 week)
- (2) air-sparging (each compartment)
- (3) steam-air injection (6 weeks, each compartment)
- (4) cooling phase: air-sparging and gw pumping 6 weeks)

VEGAS

idt Karlsruhe nwelt- u. Arbeitsschutz Steam-Air Enhanced In-Situ Remediation of a Chlorinated Hydrocarbon Source under a Historical Building - from Planning to Successful Rehabilitation -

Kos/trö

@ VFGAS

Remediation: implementation

- Site owner: Stadt Karlsruhe
- Remediation planning and contracting: consultant dplan (& VEGAS)
- Operation: Züblin Umwelttechnik
- Scientific assistancy, monitoring and remediation control: VEGAS & dplan
- Advisory board RP-Ka, City of KA, EPA (LUBW) of Baden-Württemberg

© VEGAS

Stadt Karlsruhe

Umwelt- u. Arbeitsschutz

Steam-Air Enhanced In-Situ Remediation of a Chlorinated Hydrocarbon Source under a Historical Building - from Planning to Successful Rehabilitation -

VEGAS

Kos/trö 15

Steam injection under the uilding

Remediation control and decision criteria

Control and balances

- Controll of steam expansion and heat using 120 thermocouples in the subsurface
- Control and monitoring CHC and BTEX in soil vapour extraction (all lines, single wells and treatment)

Criteria of closure treatment of a compartment

- 1. target temperature of 87°C to be achieved in saturated zone (azeotropic temperature TCE-PCE-water)
- 2. Concentration of contaminant in SVE falling short of 20 mg/m³ and remaining constant or falling
 - → compartment successfully treated
 - → switch to next field

© VEGAS

Steam-Air Enhanced In-Situ Remediation of a Chlorinated Hydrocarbon Source under a Historical Building - from Planning to Successful Rehabilitation -

Kos/trö 17

Drilling works and wells construction

VEGAS State Unit

tadt Karlsruhe mwelt- u. Arbeltsschutz **deplan** Steam-Air Enhanced In-Situ Remediation of a Chlorinated Hydrocarbon Source under a Historical Building - from Planning to Successful Rehabilitation -

Kos/tr

Betrieb Mai - Juli 2010

VEGAS Stadt Karluruhe Umwelh- u. Arbeitsschutz d-plan Steam-Air Enhancee Hydrocarbon S a from Plannie

Steam-Air Enhanced In-Situ Remediation of a Chlorinated Hydrocarbon Source under a Historical Building - from Planning to Successful Rehabilitation -

Kos/trö 19

Temperature development during remediation

VEGAS Stadt K

tadt Karlsruhe Imwelt- u. Arbeltsschutz & deplan Steam-Air Enhanced In-Situ Remediation of a Chlorinated Hydrocarbon Source under a Historical Building - from Planning to Successful Rehabilitation -

Heat propagation: compartment 2

Heat propagation: compartment 4

Contaminant removal by SVE

Development of CHC in groundwater

Stadt Karlsruhe
Umwelt- u. Arbeitsschutz

deplan

Steam-Air Enhanced In-Situ Remediation of a Chlorinated Hydrocarbon Source under a Historical Building - from Planning to Successful Rehabilitation -

VEGAS

d•plan

23

Summary and some numbers of full scale remediation

- Total duration incl. drilling works 70 weeks
- Duration of remediation 42 weeks (ca. 30 weeks steam-air injection)
- Contaminant removal mass 50 kg CHC, (500 kg incl. pilot)
- Remediation goals achieved concerning CHC concentration (10 mg/m³ in soil vapour, << 10 µg/L in groundwater)
- Impressive reduction of groundwater contamination
 - before: 60.000 μg/L
 - two years after: < 5,0 μg/L bis n.n.

© VEGAS

Steam-Air Enhanced In-Situ Remediation of a Chlorinated Hydrocarbon Source under a Historical Building - from Planning to Successful Rehabilitation -

Kos/trö 25

Summary and some numbers of full scale remediation

Reduction of indoor contamination

before: CHC up to 10 mg/m³
 during and after: CHC = 0 mg/m³

- costs total budget ca. 600.000 €
 - 25% drilling and construction
 - 25% consumables, energy (mainly gas for steam production)
 - 50% for plants installation and operation
 - → specific costs: ~ 180 €/to soil

Energy balance 470 kWh/m³ soil (84% heat; 16% electric)

total consumption: 780 MWh (thermical energy),

153 MWh electrical energy

© VEGAS

dt Karlsruhe nwelt- u. Arbeitsschutz // deplan Steam-Air Enhanced In-Situ Remediation of a Chlorinated Hydrocarbon Source under a Historical Building - from Planning to Successful Rehabilitation -

Kos/tr

team-Air Enhanced In-Situ Remediation of a Chlorinated Hydrocarbon Source under a Historical Building - from Planning to Successful Rehabilitation -

Kos/trö

.. at the very end..

Thanks to all involved partners for the good and team work and cooperation

Thanks for your patience and your interest

Any questions?

hans-peter.koschitzky@iws.uni-stuttgart.de

<u> http://www.vegas.uni-stuttgart.de</u>

Dr.-Ing. Hans-Peter Koschitzky & Oliver Trötschler VEGAS, Versuchseinrichtung zur Grundwasser- und Altlastensanierung, Universität Stuttgart

© VEGAS

