

NanoRem in a nutshell

Hans-Peter Koschitzky, Joachim Roos, Alexandra Gens, USTUTT

NanoRem Final Conference

Nanoremediation for Soil and Groundwater Clean-up
- Possibilities and Future Trends

Frankfurt am Main, 21st November 2016

1

University of Stuttgart VEGAS - USTUTT

Outline

- Introduction
- Overall Goals
- Project Structure
- Main Results
- NanoRem Toolbox

What is NanoRem?

NanoRem – Taking Nanotechnological Remediation Processes from Lab Scale to End User Applications for the **Restoration of a Clean Environment**

NanoRem in a nutshell

NanoRem Final Conference, 21st November 2016

NanoRem is a €14 million

and an international Project

international collaborative project with 29 Partners from 13 countries,

Advisory Group (PAG) providing

Industry, research, SMEs, public

agencies, technology providers

01.02.2013 - 31.01.2017

linkages to the USA and Asia.

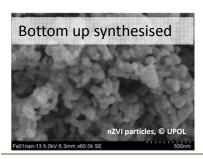
University of Stuttgart

HELMHOLTZ

University of Stuttgart **VEGAS - USTUTT**

Deltares

tecnalia) inspiring


University of Stuttgart VEGAS - USTUTT

What is nanoremediation?

NanoRem Final Conference, 21st November 2016

- The use of nanoparticles (NPs) for treatment (remediation) of contaminated soil and groundwater
- Depending on the use of different particles types nanoremediation processes generally involve reduction, oxidation, sorption or a combination
- NPs usually defined as particles with one or more dimensions <100nm
- Can include larger composite particles with embedded nanoparticles

NanoRem in a nutshell

Advantages of NPs for in situ remediation

- Small size
 - → higher surface area
 - → very reactive
- NPs (in a carrier fluid) injected into saturated zone via wells
- Focus on source treatment
- Applicable below buildings
- "independent" of application depth
- different NPs
- for various contaminants
- innovative technology

NanoRem in a nutshell

NanoRem Final Conference, 21st November 2016

University of Stuttgart VEGAS - USTUTT

Overall Goals (1)

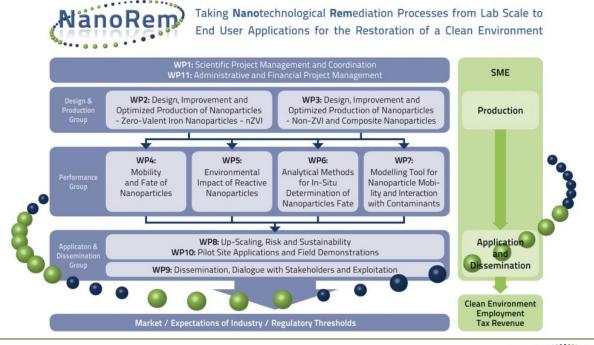
- (1) Identify the most appropriate nanoremediation technological approaches to achieve a step change in remediation practice
- (2) Develop **lower cost production techniques** and production at **commercial scales** of nanoparticles
- (3) Determine the **mobility and migration potential of nanoparticles** in the subsurface, and relate these both
 to their potential usefulness and also their potential to
 cause harm

Overall Goals (2)

- (4) Develop a comprehensive set of tools for design, application and monitoring practical nanoremediation performance and determine the fate of nanoparticles in the subsurface
- (5) Engage in dialogue with key stakeholder and interest groups to ensure that research, development and demonstration meets their needs, is most sustainable and appropriate whilst balancing benefits against risks
- (6) Carry out a series of full scale applications in several European countries to provide cost estimations and performance, fate and transport findings

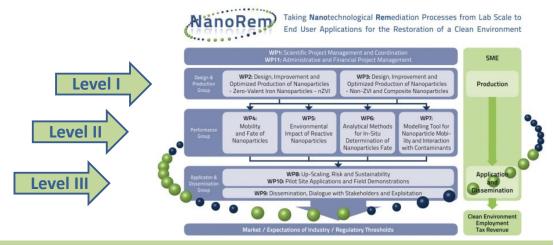
NanoRem in a nutshell

NanoRem


NanoRem Final Conference, 21st November 2016

WWW.NANOREM.EU

University of Stuttgart **VEGAS - USTUTT**



NanoRem Structure

NanoRem's three level approach

- Development and production: WP2 and WP3
- II Properties and behavior in the environment: WP4 to WP7
- III Application, permission (approval) and promotion
 - Large scale experiments and pilot sites: WP8 and WP10
 - Dissemination, communication and exploitation: WP9

NanoRem in a nutshell

NanoRem Final Conference, 21st November 2016

11

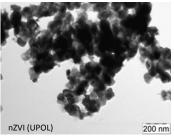
University of Stuttgart VEGAS - USTUTT

NanoRem Main Results (1)

(1) Identify the most appropriate nanoremediation technological approaches to achieve a step change in remediation practice

- Model systems have been used to investigate mobility, reactivity, functional lifetime and reaction products
- For NP optimisation, the influence of size, surface chemistry, structure and formulations was investigated
- ✓ Results led to enhanced NPs and novel NP types
- ✓ Step change: Extension of practically treatable contaminants

More information: Bulletin no 4: "A Guide to Nanoparticles for the Remediation of Contaminated Sites"



NanoRem Main Results (2)

- (2) Develop **lower cost production techniques** and production at **commercial scales** for nanoparticles
- ✓ Laboratory scale production processes were up-scaled to the industrial level, resulting in a commercially available and economically competitive technology
- ✓ nZVI particles have been improved: Surface coating allows for a more convenient handling regarding transport and storage (air-stable)

More information: Bulletin no 4: "A Guide to Nanoparticles for the Remediation of Contaminated Sites"

NanoRem in a nutshell

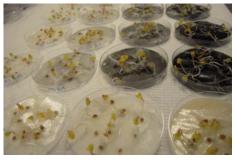
NanoRem Final Conference, 21st November 2016

13

University of Stuttgart VEGAS - USTUTT

NanoRem Main Results (3a)

- (3) Determine the **mobility and migration potential of nanoparticles** in the subsurface, and relate these both to their **potential usefulness** and also their **potential to cause harm**
- Experiments for mobility and migration potential ranged from laboratory scale (columns), over large-scale contained laboratory systems to field tests
- ✓ More information:
 - Final Report on Three Large-Scale Experiments and Generalized Guideline for Application
 - Stability, Mobility, Delivery and Fate of optimized NPs under Field Relevant Conditions and
 - NanoRem site bulletins


Reactivity studies (VEGAS/USTUTT)

NanoRem Main Results (3b)

- Investigations included unintended secondary effects of NPs application on environment and ecosystems
- ✓ In the lab, no significant toxic effects were observed on soil and water organisms (tests included effects on earthworms, radish roots, green algae and bacteria)
- ✓ In three out of four field sites investigated, no toxic effects were observed up to nine months after NP injection. The remaining one was transient

Radish seeds (Claire Coutris, NIBIO)

✓ A positive effect on organohalide-respiring bacteria was observed in two cases

NanoRem in a nutshell

NanoRem Final Conference, 21st November 2016

15

University of Stuttgart VEGAS - USTUTT

Commercially Available NanoRem Particles

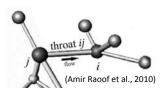
Particle name	Type of particle	Manufacturer	Process of contaminant removal	Target contaminants
Carbo-Iron® (industry)	Composite of Fe(0) and activated carbon	ScIDre GmbH, Germany	Adsorption + Reduction	Halogenated organics (contaminant spectrum as for NZVI)
FerMEG12	Mechanically ground nZVI particles	UVR-FIA GmbH, Germany	Reduction	Halogenated hydrocarbons
NANOFER 25S	Nano scale zero valent iron (nZVI)	NANO IRON s.r.o., Czech Republic	Reduction	Halogenated hydrocarbons and heavy metals
NANOFER STAR	Air stable powder, nZVI	NANO IRON s.r.o., Czech Republic	Reduction	Halogenated hydrocarbons and heavy metals
Nano-Goethite	Pristine iron oxides stabilized with HA	University of Duisburg-Essen, Germany	Oxidation (bioremediation) + Adsorption of HM	Biodegradable (preferably non-halogenated) organics, such as BTEX; heavy metals

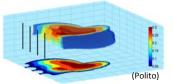
NanoRem Particles under Development

Particle name	Type of particle	Manufacturer	Process of contaminant removal	Target contaminants
Trap-Ox Fe- zeolites	Nanoporous alumosilicate	UFZ Leipzig, Germany	Adsorbent + Oxidation (catalyst)	Small molecules (dep. on pore size of zeolite) - e.g. BTEX, MTBE,
Bionano- magnetite	loaded with Fe(III) Produced from nano-Fe(III) minerals	University of Manchester, UK	Reducing agent and adsorption of heavy metals	dichloroethane, chloroform, Heavy metals, e.g. Cr(VI)
Palladized bionano- magnetite	Biomagnetite doped with palladium	University of Manchester, UK	Reduction (catalyst)	E.g. Halogenated substances (contaminant spectrum broader than for nZVI)
Abrasive Milling nZVI	Milled iron	Centre Tecnològic de Manresa, Spain	Reduction	Halogenated aliphatics and Cr(VI)
Barium Ferrate	Fe(VI)	VEGAS, University of Stuttgart, Germany	Oxidation	BTEX?, nitroaromatic compounds? (under investigation)
Mg/Al particles	Zero valent metals	VEGAS, University of Stuttgart, Germany	Reduction (reagent)	Halogenated hydrocarbons
Nano-FerAl	Composite of Fe and Al	UVR-FIA GmbH / VEGAS, Germany	Reduction (reagent)	Halogenated hydrocarbons

NanoRem in a nutshell

NanoRem Final Conference, 21st November 2016


17


University of Stuttgart VEGAS - USTUTT

NanoRem Main Results (4)

- (4) Develop a comprehensive set of tools for design, application and monitoring practical nanoremediation performance and determine the fate of nanoparticles in the subsurface
- ✓ Bulletin No 2: "Appropriate Use of Nanoremediation"
- ✓ Bulletin No 3: "Generalized Guideline for Application"
- ✓ Bulletin No 5: "Development and Application of Methods for Monitoring Nanoparticles in Remediation"
- ✓ Bulletin No 6: "Forecasting NP Transport for Soil Remediation"
- ✓ Pre-Deployment Risk Assessment Tool

Monitoring arrays on pilot site (VEGAS/USTUTT)

NanoRem Main Results (5)

- (5) Engage in dialogue with key stakeholder and interest groups to ensure that research, development and demonstration meets their needs, is most sustainable and appropriate whilst balancing benefits against risks
- Address real market and regulatory interests
- Communicating findings regarding renegade particles and relative sustainability over the life cycle of a typical remediation project
- ✓ "Exploitation Strategy, Risk-Benefit Analysis and Standardisation Status" available on www.nanorem.eu
- ✓ Life Cycle Assessment Report on production process of 3 NPs included in "Final Report on Three Large-Scale Experiments and Generalized Guideline for Application"
- ✓ "NanoRem Case Study Sustainability Assessment Background and Workbook" to provide background, context and procedures for a sustainable remediation

NanoRem in a nutshell

NanoRem Final Conference, 21st November 2016

19

University of Stuttgart VEGAS - USTUTT

NanoRem Main Results (6)

- (6) Carry out a series of full scale applications in several European countries to provide cost estimations and performance, fate and transport findings
- ✓ NPs were applied in both large-scale containers and on pilot sites to provide onsite validation of the lab-scale results
- ✓ Site results can be found in the site bulletins on www.nanorem.eu
- ✓ All field trials were carried out within a risk management regime that gained the required regulator approvals
- ✓ Qualitative sustainability assessment for one NanoRem pilot site and an external one
- ✓ Spin-Offs:
- Intrapore UG, Essen. Germanv
 intrapore
- Photon Water Technology s.r.o., Liberec, Czech Republic

VEGAS

Large Scale Flume (VEGAS/USTUTT)

DECHEMA
Gesellschaft für Chemische Technik
und Biotechnologie e.V.

NanoRem in a nutshell

NanoRem Final Conference, 21st November 2016

21

University of Stuttgart VEGAS - USTUTT

NanoRem Pilot Sites

Site	Country	Site Primary Investigator	Target Cont.	NP-Type	Reaction Principle	Aquifer
Solvay	СН	Solvay	CHC	FerMEG12 (milled nZVI)	Reduction	porous / unconfined
Spolchemie 1	CZ	Aquatest	CHC	NANOFER 25S / NANOFER STAR	Reduction	porous / unconfined
Spolchemie 2	CZ	Aquatest	BTEX	Nano-Goethite (Iron-Oxide)	Oxidation / microbial enhancement	porous / unconfined
Neot Hovav	IS	Negev, BGU	TCE, cis- DCE, toluene	Carbo-Iron [®]	Adsorption / Reduction	fractured
Balassagyarmat	HU	Golder	PCE, TCE, DCE	Carbo-Iron®	Adsorption / Reduction	porous / unconfined
Nitrastur	ES	Tecnalia	As, Pb, Zn, Cu, Ba, Cd	NANOFER STAR	Reduction	porous / unconfined

Spolchemie pilot site I, micropumps check (VEGAS/USTUTT)

Installations at Solvay site (VEGAS/USTUTT)

Injection at Spolchemie pilot site 1 (VEGAS/USTUTT)

NPs for Solvay pilot site (VEGAS/USTUTT)

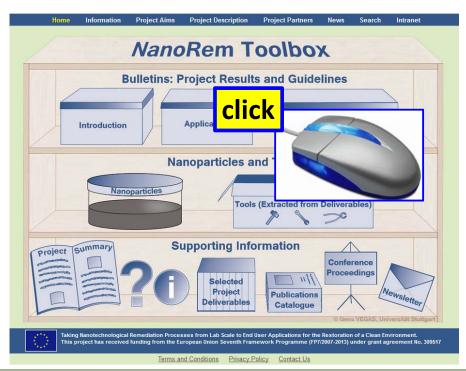
NanoRem in a nutshell

NanoRem Final Conference, 21st November 2016

23

University of Stuttgart VEGAS - USTUTT

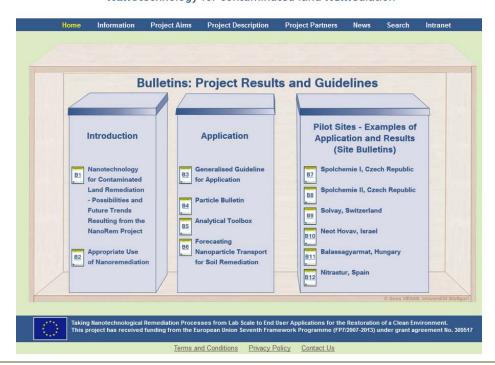
www.nanorem.eu


Nanotechnology for contaminated land Remediation

Nanotechnology for contaminated land Remediation

NanoRem in a nutshell

NanoRem Final Conference, 21st November 2016


25

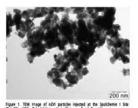
University of Stuttgar* VEGAS - USTUTT

Nanotechnology for contaminated land Remediation

List of NanoRem bulletins

No.	Title
1	Nanotechnology for Contaminated Land Remediation - Possibilities and Future Trends Resulting from the NanoRem Project
2	Appropriate Use of Nanoremediation
3	Generalised Guideline for Application of Nanoremediation
4	A Guide to Nanoparticles for the Remediation of Contaminated Sites
5	Development and Application of Methods for Monitoring Nanoparticles in Remediation
6	Forecasting Nanoparticle Transport for Soil Remediation
7-12	Site-Bulletins

NanoRem in a nutshell

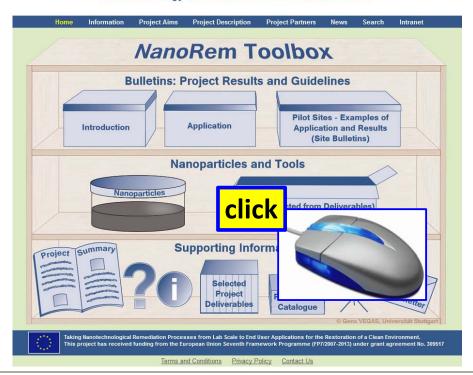

NanoRem Final Conference, 21st November 2016

University of Stuttgart VEGAS - USTUTT

NanoRem Bulletin

Nanotechnology for Contaminated Land Remediation - Possibilities and Future Trends Resulting from the NanoRem Project

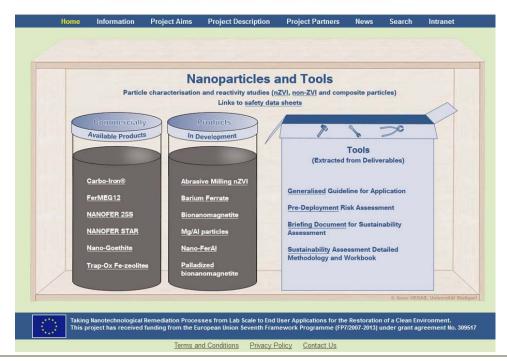
VEGAS



Nanotechnology for contaminated land Remediation

NanoRem in a nutshell

NanoRem Final Conference, 21st November 2016


29

University of Stuttgart VEGAS - USTUTT

Nanotechnology for contaminated land Remediation

DECHEMA

Gesellschaft für Chemische Technik
und Bidrechnologie e. V.

NanoRem in a nutshell

NanoRem Final Conference, 21st November 2016

31

University of Stuttgart VEGAS - USTUTT

Thank you for your attention

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under Grant Agreement No. 309517.

This presentation reflects only the author's views. The European Union is not liable for any use that may be made of the information contained therein.

Hans-Peter Koschitzky
Versuchseinrichtung zur Grundwasser- und Altlastensanierung
Institut für Wasser- und Umweltsystemmodellierung, Universität Stuttgart
vegas@iws.uni-stuttgart.de
www.vegas.uni-stuttgart.de

