

Generalized Guideline for Nanoremediation Application

Jürgen Braun, USTUTT

NanoRem Final Conference Nanoremediation for Soil and Groundwater Clean-up - Possibilities and Future Trends

Frankfurt am Main, 21st November 2016

1

NanoRem Final Conference, 21st November 2016

Gesellschaft für Chemische Technik und Biotechnologie e.V.

Flowchart of Guideline

Generalized Guideline for Nanoremediation Application

NanoRem Final Conference, 21st November 2016

WWW.NANOREM.EU

Gesellschaft für Chemische Technik und Biotechnologie e.V.

Prerequisites

- Detailed Site Investigation
- Conceptual Site Model (what we know + what we don't know)

Generalized Guideline for Nanoremediation Application

Prerequisites

- Particle List
 - Reaction type
 - Reaction mode
 - Recommended site conditions
 - Stabilizer
 - Application rules
 - Reactivity data for typical target contaminants

	Re	actio		es su vartici		nd by I	the	R	eactic	in mo	de	R	site	nend condi		for	2	bill- er ided	Ge		rules se	for	spie	ossib off a cation	pp8-		velopr statu	
Particle Type	Oridation	Reduction	Hydrophobic kopfion	Soption of metals/metalloids	Support of biology, treatment	Hydrohnia		Reactive component consumed	Additional reagents needed	Geneous products formed		Anaestric	Aardoic	pH cc7	pH = 7	pt > 7	100	8	Institation of suspension needed	Disperser reeded			we and these add ope			Texted at field scale	Ready for up-scaled testing	Reserch at laboratory scale
Nano iron oxide	x		\square	x	x										\square		х						F				\square	F
Carbo-Iron	(X)	x	x	x	x	(X)		x		x		x			x	x	x		x	х			x			х	\vdash	F
Fe-zeolite BEA 35	x	F	x	t	t	H		\vdash	x	x	\vdash	F	F		F	\vdash	х	F	\vdash		\vdash		F				t	t
Fe-zeolite MFI 120	x	F	x	t	t			\vdash	x	x		F	\vdash		\vdash		x	\vdash	\vdash		-		F				t	t
Biomagnetite	t	x	\vdash	x	\vdash				-			x			x			x			-		x				\vdash	x
Pd Biomagnetite	\vdash	x	\vdash	x	\vdash	\vdash				x		x			x	x		x					x				\vdash	x
Al, Mg	\vdash	x	-	-	-			x	(X)	x	-	x	-	-	x	x		-	\vdash	-	-	-	\vdash	-			\vdash	x
BaFeO ₄	x	-	-	-	+	\vdash	-	x	-	x	-	x	x	x	x	-	-	-	-	-	-	-	x	-			\vdash	x

© NanoRem

Generalized Guideline for Nanoremediation Application

Prerequisites

• Operating Window

- Requirements/ limitations
- Process/ Synergies
- Deployment
- Operational boundaries
- Treatable contaminants
- Hydrogeology
- Hydrochemistry
- Additional info

Process Acronym		ReduNP	OxiNP	OxiNP	ReduNP	OxiNP
riocess Acronym		incouring a second s	O.I.I.I	Nanogoethite	neuditi	U.M.
		Petr	Petr	UDE. Beate	Carbo-Iron, Katrin/Anett	Trap-Ox Fe-zeolites, Anett
Requirements /	saturated zone	1.60	rea -	obe, beate	carbo non, ratiny niete	http://www.contest
Limitations	unsaturated zone					
Limitations	plume					
	residual					
	pool					
	sorbed					
	sorbed					
	Main Process	Primarily Reduction Based	Primarily Oxidation Based	Primarily Oxidation Based,	Primarily reduction based (by Fe(0)	Primarily adsorption + catalytic
Process	Main Process	Primarily Reduction Based	Primarily Oxidation Based	anaerobic biodegradation enhanced		primarily adsorption + catalytic oxidation (in combination with
		a design of the second second		by ferric oxide nanoparticles.	adsorption by activated carbon	hydrogen peroxide)
	Description	enhanced NZVI reduction based	anaerobic biodegradation	Nanogoethite serves as terminal	Composite of Fe(0) and microscale	Microporous alumosilicate particles
		process with the use of small size	enhanced by oxidic nanoparticles.	electron aceptor during the	activated carbon (Fe/AC) applied in	loaded with Fe(III) which act as
		and migrating particles.		degradation of organic	aqueous suspensions with	adsorbent and oxidation catalyst
				contaminants through bacterial	stabilizers (CMC, humic acid)	
				oxidation		
	Tiered approach	According to site conditions is	According to site conditions is	polishing after source removal	> Source zones: contaminant phase	Mainly used for formation of a
	(nanoremediationas part of a		recommended nanoremediation as		or saturated soil should be removed	barrier against spreading of plumes
	treatment train) recommended?	part of treatment train.	part of treatment train.		previously by alternative methods	which can be regenerated by
		Generaly the technology is	Generaly the technology is		(excavation, phase separation),	injection of hydrogen peroxide, can
		convenient after free phase	convenient for polishing after		> Carbo-Iron application is usually	be used as polishing after source
		removal or / and to intermediate	source, and high contaminant		followed by subsequent	removal
		area between source and plume.	concentrations removal.		(enhanced) natural attenuation	
					processes after reactive period	
	Synergies	Reductive bioremediation	Bioremediation	Bioremediation	> Contaminant retardation in	sorption by zeolite leads to
					reactive zone due to sorption by AC-	retardation + collects contaminants
					component	which are slowly released from
					> Bioremediation	sorbed/trapped state
	risk management	source control/Plume management	plume management	plume management	source control/Plume management	plume management
	Contaminant outcome	Destruction of organic compounds,	Destruction	Destruction of organic compounds,	Destruction	Destruction
		imobilisation or stabilisation of		imobilisation or stabilisation of		
		metals		metals		
	1		1	1	1	
1						
						noDom

© NanoRem

6

Generalized Guideline for Nanoremediation Application

Pre-Screening Tool

- "Simple" Excel based tool
- Combines NP-information, CSM, OW, site specific contaminants, hydro-geochemical conditions, injection technology etc. to give
- → Indication on potential of nanoremediation
- \rightarrow List of critical parameters

Prescreening tool		B 1			
		Nand	oRe	m ⁄	
planning tool for applicability	1	INCIN	hus.		
nano-particles at specific sites		0			
Particle	Input (drop down or	Effect of Conditio			
oxidative	reductive	value)	favorable	unfavorab	
Condi	tion				
	general conditions	is			
		limited			
access to si	te (select)	restrictions		_	
spatial extent of conta	amination (give m ³)	1000			
area affected	d (give m²)	100			
		injection			
legal boundary co		possible			
pilot application p		Yes			
location of ground w					
Hydraulic cond		1,0E-05			
expected contami	nant mass (kg)	3000			
	hydrochemical condit	ions			
ground water v	elocity (m/d)	0,1			
	redox potential (mV)	100			
stoichiometry (ration ox/cont)		1			
Background consumption (NOM, factor to stoichiometry)		1			
(nom, ractor to storemonically)	m-value mMol/L	10			
	p-value mMol/L	0,1			
0 2 2	nitrate content in ground	0,1			
	water (mg/L)	100			
	sulfate content in ground				
	water (mg/L)	100			
longevity of the particles t		5			
	enhancement of NA (sel.)	Yes			
efficiency of p		20			
	hydrogeolocical condit	ions			
type particle inj		direct push			
depth of contamination (ove	rburden/pressure needed)	1			
contaminant distr	ibution (select)	blobs			
expected gas proc	luction (select)	moderate			
9		-			
	Sum		17	3	
		Looks goo	d, but check		
	Result		arameters	8	

Generalized Guideline for Nanoremediation Application

7

Site Specific Particle Tests

University of Stuttgart VEGAS - USTUTT

> Gesellschaft für Chemische Technik und Biotechnologie e.V.

Generalized Guideline for Nanoremediation Application

NanoRem www.nanorem.eu

VEGAS - USTUTT Site Specific Reactivity Tests

- For specific site conditions and/or specific contaminants
 - Batch tests for yes/no decisions
 - Column tests for mass balance and longevity

Generalized Guideline for Nanoremediation Application

WanoRem www.nanorem.eu

9

Site Specific Mobility Tests

Goal:

- homogeneous particle distribution in reactive zone
- − Safe NP deposit \rightarrow Renegades?
- Cascading column experiments
 - Experimental reproduction of radial flow field (hyperbolically decreasing v)
 - High resolution in time and space
 - Direct indication of travel distance and of homogeneity of NP distribution
 - Input for numerical model to predict particle placement in radial flow field

Generalized Guideline for Nanoremediation Application

NanoRem Final Conference, 21st November 2016

- Small column experiments based on filtration theory
 - Particle breakthrough and particle deposition
 - calculate attachment efficiency, particle deposition rate coefficient
 → Prediction of travel distance for base flow → Renegades
 - Input for numerical model

 → use MNMs or MNM3D to predict
 particle placement in radial flow
 field

Experimental Upscaling

Generalized Guideline for Nanoremediation Application

Model Assisted Upscaling

University of Stuttgart VEGAS - USTUTT

- Pilot Tests
- Selection of nanomaterial, evaluation of efficiency and longevity
- Particle distribution (ROT) → distance of application wells
- Effects on aquifer properties
- Reactivity and reaction kinetics, formation of intermediate products
- Verification of application method and performance of proposed equipment
- Cost estimation for a full scale remediation

Full Scale Design

- Based on monitoring, site specific particle tests, numerical model, remediation goal and pilot test decide on
 - NP to be used (pure / modified / composite / ...)
 - Composition of slurry (NP concentration, surfactants, additives, stabilizers, ...)
 - Injection technology (direct push injection, well infiltration, ...) and well spacing
 - Target NP concentration in subsurface and total NP mass to be injected
 - Injection monitoring
 - Health and safety measures

Site Installation and NP Deployment

- Drilling/DP equipment
 - Installing of wells prior to injection, use packers to focus injection
 - Use direct push technology
- Preparation of slurry
 - Dispersers, vessels, inert gases, dosing equipment, injecition pumps, water supply, ...
- Deployment of slurry
 - Injection pumps, packers, direct push rods,
- Monitoring

ind Biotechnologie e V

Health and safety

Monitoring

- Pre-Injection Monitoring
 - Qualitative and quantitative delineation of contamination
 - Characterization of hydrochemical milieu
 - Determination of aquifer properties

→ direct push / depth oriented soil and water sampling

- Monitoring during NP injection
 - Particle transport and distribution

→ direct measurement via susceptibility sensors or water samples

→ indirect measurement via temperature or tracers

(caution: ROI is not necessarily equal to ROT)

- Monitoring during system recovery phase
 - Determination of natural flow conditions
 - Confirmation of NP distribution (renegades?)
 - → Monitoring of head (water table)
 - → Evaluation of soil samples
- Long term monitoring
 - Determination of success
 - \rightarrow Analysis of water samples for daughter products, metabolites and end products of reaction
 - → Analysis of soil samples
 - → Final data analysis

Long Term Performance "Success?"

- Reduction of concentration
 - Based on ground water samples
 - Point type information
 - High spatial and temporal uncertainty
 - No information on inventory or emission

Reduction of emission

- Based on ground water samples
- Integrative approach necessary (e.g. pumping test)
- High certainty, but only snapshot ("rebound effect")
- No (little) information on inventory

- Reduction of inventory
 - Based on soil samples
 - Only point type information possible
 - high uncertainty due to heterogeneity
 - Comparison before
 after uncertain
 - No (little) information on emission

WWW.NANOREM.EU

19

Costs

Generalized Guideline for Nanoremediation Application

Regulatory Issues

- Description of technology
 - General mode of operation
 - Site installations
 - NP deployment / injection technology to be applied
 - Necessity of pilot test
 - Detailed description of monitoring system
- Description of suspension
 - Particles
 - Additives

und Biotechnologie e.V

Stabilizers

Regulatory Issues

- Description of chemical processes
 - Applicability to given contaminants
 - Reaction kinetics, degradation products
- Risk / Risk Management
 - to ecology
 - to humans
 - Options for risk mitigation
 - Stakeholder involvement

Generalized Guideline for Nanoremediation Application

NanoRem Final Conference, 21st November 2016

Regulatory Issues

- Alternative Technologies
 - Technical aspects
 - Combination with other technologies / treatment trains
- Financial aspects
- Long Term Risk
 - Stability of NP in subsurface
 - Change of land use (zoning) due to nanoremediation?
 - Stakeholder involvement
- Best Practice

und Biotechnologie e.V

- Well documented sites with comparable NP application

Generalized Guideline for Nanoremediation Application

NanoRem Final Conference, 21st November 2016

Regulatory Aspects

- Injection permit, monitoring, reporting
- Remediation Goal
- **Time Horizon / Time Limitations**
- Site Installation and Mobilization of Equipment
- Additional Site Investigation

NanoRem Final Conference, 21st November 2016

University of Stuttgart

•

Cost for NP and Suspension

- Hydrogeological Conditions •
 - Injection system and operation
 - Aquifer pre-treatment
- Geometry, Inventory and Accessibility of Contaminants
- **Miscellaneous**

und Biotechnologie e.V

University of Stuttgart **VEGAS - USTUTT**

- Shipping costs, customs
- Compensation of land owners

Generalized Guideline for Nanoremediation Application

NanoRem Final Conference, 21st November 2016

VEGAS - USTUTT Examples of Nanoremediation

Site	Country	Site Primary Investigator	Target Cont.	NP-Туре	Reaction Principle	Aquifer
Solvay	СН	Solvay	СНС	FerMEG12 (milled nZVI)	Reduction	porous / unconfined
Spolchemie 1	CZ	Aquatest	СНС	NANOFER 25S / NANOFER STAR	Reduction	porous / unconfined
Spolchemie 2	CZ	Aquatest	BTEX	Nano-Goethite (Iron-Oxide)	Oxidation / microbial enhancement	porous / unconfined
Neot Hovav	IS	Negev, BGU	TCE, cis- DCE, toluene	Carbo-Iron®	Adsorption / Reduction	fractured
Balassagyarmat	HU	Golder	PCE, TCE, DCE	Carbo-Iron [®]	Adsorption / Reduction	porous / unconfined
Nitrastur	ES	Tecnalia	As, Pb, Zn, Cu, Ba, Cd	NANOFER STAR	Reduction	porous / unconfined

\rightarrow see CLAI:RE NanoRem Bulletin for details

Generalized Guideline for Nanoremediation Application

Thank you for your attention

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 309517

This presentation reflects only the author's views. The European Union is not liable for any use that may be made of the information contained therein.

For more information, please visit www.nanorem.eu

Generalized Guideline for Nanoremediation Application

