Steam-Air Injection in fractured Bedrock: Results and Lessons Learned of a CHC-Remediation at the Site Biswurm (Villingen-Schwenningen, Germany)

> Oliver Trötschler¹, Hans-Peter Koschitzky¹ Bernd Lidola², Isabell Kleeberg², Stefan Schulze³

¹ VEGAS, University of Stuttgart, Germany
 ² Stadtbauamt Villingen-Schwenningen, Germany
 ³ GEOsens, Ingenieurpartnerschaft, Ebringen, Germany

GEOsens Ingenieurgeologie Umweltgeologie Messtechnik

AquaConSoil 2015, Copenhagen ThS 1C.27 Thermal Remediation 2, 11th June 2015

Short History of the "Biswurm" Site

Former communal incineration plant for liquid organic waste (1960-1974)

- leaking storage and incineration ponds;
- spill of chlorinated and aromatic hydrocarbons (CHC, BTEX), mineral oils
- 2004: excavation of top soil (4 m bgs): 1600 kg CHC and 600 kg mineral oils etc. were removed
- 2006 2007: detailed site investigation
 → hydraulic containment P&T and SVE
- 2009 looking for alternative remediation options

Steam-Air Injection in fractured Bedrock: Results and Lessons Learned AquaConSoil 2015, Copenhagen, Session ThS 1C.27, 11th June 2015 Trö/Kos

Extent of Contamination at Biswurm

Geology and Contamination

complex fractured bedrock aquifer

- unsaturated zone "Röt" formation = claystone
- upper platy sandstone aquifer mudstone basis (21 m bgs.)
- Iower siliceous sandstone aquifer
- granite basis (37 m bgs.)

© VEGAS

4

Steam-Air Injection in fractured Bedrock: Results and Lessons Learned AquaConSoil 2015, Copenhagen, Session ThS 1C.27, 11th June 2015

Pilot Field Biswurm in 2009

- Applicability of steam-air injection to remediate the claystone and upper platy sandstone
- Increase of mass extraction by a factor of 2 to 5 as compared to "cold" soil vapour extraction

- For the upper aquifer and for the unsaturated zone a steam expansion of more than 10 m in diameter was confirmed
- Total mass removal of 500 kg CHC during 3 months from 1,500 m³ of bedrock © VEGAS

VEGAS

Steam-Air Injection in fractured Bedrock: Results and Lessons Learned AquaConSoil 2015, Copenhagen, Session ThS 1C.27, 11th June 2015

Remediation Concept (I)

Steam-Air Injection in fractured Bedrock: Results and Lessons Learned AquaConSoil 2015, Copenhagen, Session ThS 1C.27, 11th June 2015

Impressions of Current Remediation

VEGAS

Steam-Air Injection in fractured Bedrock: Results and Lessons Learned AquaConSoil 2015, Copenhagen, Session ThS 1C.27, 11th June 2015 © VEGAS

Design and Reality of the Remediation

... but real life is different

Steam-air injection

• June 2016 (estimated)

end and remediation control

➔ time of desorption is significantly longer

➔ simultaneous remediation of two

sections each

4 - 6 months each section (> 45 month)

→ + 11 – 13 weeks evaporation time of

claystone and sandstone (300 kW)

Cooling phase → in total 6 months

→ 5 weeks heating time of claystone (200 kW)

→ 9 weeks desorption phase of platy sandstone

Remediation design based on pilot application

→ thermally enhanced remediation section by section

Steam-air injection

- 3 4 months each section (33 month)
- → 6 weeks steam-air expansion (heating)
- \rightarrow + 8 weeks removal time (evaporation & desorption)
- Cooling phase one week each section (2,5 months)
- January 2015 end and remediation control

VEGAS

Steam-Air Injection in fractured Bedrock: Results and Lessons Learned AquaConSoil 2015, Copenhagen, Session ThS 1C.27, 11th June 2015

(150 kW)

Temperature Development

Target temperature in the unsaturated zone > 80°C Target temperature in the saturated zone > 88°C

- Dewatering leads to a target temperature of 80°C
- Until end of dewatering process (section 3) temperature in saturated zone > 88°C
- Pre-heating of claystone results in temperatures $> 90^{\circ}C$, \rightarrow increase of evaporation process

© VEGAS

© VEGAS

Trö/Kos

9

Heat propagation and consequences

Steam-Air Injection in fractured Bedrock: Results and Lessons Learned AquaConSoil 2015, Copenhagen, Session ThS 1C.27, 11th June 2015

Trö/Kos

Spatial Contaminant Distribution (I)

AquaConSoil 2015, Copenhagen, Session ThS 1C.27, 11th June 2015

Limits of Application - Lessons Learned -

Steam-Air Injection in fractured Bedrock: Results and Lessons Learned AquaConSoil 2015, Copenhagen, Session ThS 1C.27, 11th June 2015

Summary after 30 months

- Fractured bedrock is challenging in flux and control → spreading of evaporated contaminants in fractures
- Heat transport and contaminant removal differs from pilot trial \rightarrow uncertainty requires additional resources (+ 30%)
- Target temperatures exceeded
- CHC removal by SVE is dominant: 4,000 kg CHC 120 kg CHC by groundwater containment
- Remediation procedure requires adaption to mass removal (SVE system)
- Additional time required 45 months instead of 33 months

→ the efficient remediation of fractured bedrock by steam-air injection requires additional control and financial resources

© VEGAS

Thank you

The work presented would not have been possible without

- the valuable contributions and project control of GEOsens engineering partnership
- the decision of the public construction authority to support an innovative technology in a novel field of application

And the support and funding:

The environmental agency of Baden-Württemberg (LUBW), the regional council (RP Freiburg) and the community of Villingen-Schwenningen support the application of a thermally enhanced remediation of the site by steam-air injection.

www.vegas.uni-stuttgart.de

Steam-Air Injection in fractured Bedrock: Results and Lessons Learned AquaConSoil 2015, Copenhagen, Session ThS 1C.27, 11th June 2015

Azeotropic Temperatures at Biswurm

Azeotropic temperature = co-boiling of steam and CHC depends on pressure

→ target temperature unsaturated zone (claystone and sandstone) down to 12 m bgs.: 80°C

→ target temperature saturated zone (sandstone) down to 15 m bgs.: 88°C

© VEGAS

© VEGAS

Trö/Kos

