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Abstract: This paper presents a rapid forecast model for simulating hyperconcentrated sediment-laden floods in the Lower Yellow River.
The model is a hybrid of a conventional one-dimensional mathematical model for unsteady sediment-laden flow and an artificial neural
networks model for encapsulation of numerical results. The former provides detailed river flood routing information under typical
scenarios, whereas the latter extracts modeling outputs from the former and establishes a station-specific model for efficient floot
forecasting. Three typical floods that occurred in the Lower Yellow River in 1977, 1982, and 1996 are simulated. Not only the hybrid
model predictions are found to be in close agreement with measured data, but also the computational speed is significantly enhanced.
is found that sediment transport is of significance with regard to the flooding behavior of hyperconcentrated flows. Therefore, the mode!
presented herein is of particular use for rivers with high sediment concentration.
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Introduction also given in Fig. 2 indicating that the deposition rate is fairly low
at about 0.3 10" kg for sediment concentrations below about
The Yellow River, the second largest river in Chi(fg. 1), is 60 kg/n®. At higher sediment concentrations the deposition rate

noted for its high sediment concentration; in fact, the maximum a&ppears to increase nonlinearly. Itis quite obvious that the amount
recorded sediment concentration in the Yellow River to date has Of deposition increases more rapidly during HCSLF than LCSLF
been 1,650 kg/f(Chien 1988. In cases where the Yellow River €vents. From Tiexie to Gaocun there are many measurement sta-
has a sediment concentration above 100 k/@hen et al. tions, and it is well established that the river cross-section
(2000 categorize the flood as a hyperconcentrated sediment-changes form often during a HCSLF. This is typical behavior of a
laden flood(HCSLP). This type of flood is quite different from a braided river domma}ed by flood event;, ar\d implies that there
low-concentrated sediment-laden floddCSLF) with regard to ~ May be a potential increase of flood risk in the whole Lower
flow characteristics, flood routing, and consequential effects on Yellow River. Under these circumstances, it is necessary to be
sediment transport and river bed deformation. able to predict consequences very quickly at any specific station.
In the Lower Yellow River, the consequences of a HCSLF on Therefore, rapid forecasting of sediment concentration, discharge,
sediment transport and river deformation, such as channel erosiorf?nd Water level, which are closely related to the consequences of
and deposition, are quite different to that of LCSLF. Fig. 2 pre- 1100ds, is vital. o o _
sents the spatially averaged mean deposition rate of sediment Many difficulties arise in the prediction, prevention, and con-
against the spatially averaged mean sediment concentration oblrol of hyperconcentrated floods due to the uncertainties encoun-
tained by analyzing field data from stations located between tered in modeling turbulent free surface flows with high sediment

Tiexie and Gaocun. A polynomial fit to the rather limited data is concentration. For example, there are no explicit rating curves
expressing the relationship between water level and flow dis-

charge in the Lower Yellow River due to changes in sediment
concentration during flooddg-ig. 3).
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Fig. 1. Lower Yellow River downstream of Sanmenxia

Fig. 3. Typical rating curves at Huayuankou

Numerical Modeling

Hall (1996 used an ANN model to study the dynamic variation of
precipitation and runoff processes in catchments. Hsu et al. Basic Equations and Parameters
(1995 compared results obtained from ANN to conventional
mathematical models, and indicated that ANN is more efficient
for the prediction of runoff characteristics. Li and (1999 es-
tablished an ANN model for sediment-laden flows in rivers. oA Q)

Yonas and Michael1999 investigated several types of ANN- ok W =0 1)
agent architectures and proved their ability in encapsulating site-

specific knowledge and data. Ni and X¢2003 applied inte- 0 4 2 0, iz,
grated ANN and hydrodynamic models associated with the — 4 —(ali—') + o~ +9Ai<—' + —') =0 2
geographical information system to control flood diversion in the A

Jingjiang diversion area.

The aforementioned studies demonstrate the apparent advan-
tages of ANN in rapid prediction, feedback, and process control
through encapsulation of knowledge from numerical models in
large computational domains. In the present paper, an ANN is

The basic equations of one-dimensional unsteady sediment-laden
flow are as follows:

J AAVIS) | 5
E(AiS) LV gl (Kayjouij a0 S 0if)

m

used to extract information from conventional hydrodynamic and = 2 (KyjouihySjoy) = ,0,=0 ()
sediment models, and the resulting hybrid model used to enhance =1
the simulation of hyperconcentrated floods in the Lower Yellow
River. The hybrid model provides detailed hydraulic information oy _ Kujorij 0 o g 2

. . . 7 ; w;j(f;S; = S4) =0 4
at any section under consideration and facilitates rapid response ot

to varying flow and sediment conditions. Egs.(1) and(2) are continuity and momentum equations for fluid

flow, respectively, and Eq¢3) and(4) are the continuity equation

for sediment transport and riverbed deformation, respectively. In
Eq. (3) the first two terms relate to advection of suspended sen-
diment, the third and fourth terms relate to sediment fluxes, and

2r & Tiexie-Gaocun (1950-1997) i .
sl Polvnomial the flf_th (source term corresponds to the s_,(_)urce-tye lateral sedi-
E" 16 oly ment inflows to the system. In these gquatlonﬂ,,z,mN.andN
z is the total number of cross sections along the rivif(d
= 1.4 =Q,A,q., ) denotes the quantity at théh cross section; each
g 1.2 cross section is divided into several subsections, d:atﬂd)
‘—‘g 1 =Ky,as,fq,-++) stands for the quantity at thjéh subsection of the
$ 08 ith cross sectionQ=water dischargeA=cross sectional ared;
b =time; x=coordinate in flow directiong, =lateral water inflow
g 0.6 per unit length;Z=water stageg=gravitational accelerationy,
= 04 anda,=momentum correction factoK =discharge factor related
0.2 to riverbed roughnessi=width; S=suspended sediment concen-
0 . L . ) tration by volume;S§ =lateral sediment inflow per unit length;
0 50 100 150 200 V=velocity of water flow;Z,=bed elevationi.=saturation re-

S (kg/m?) covery coefficientio=settling velocity of sediment particlesy
) ) ) " . is defined as weight of sedimer®;=sediment carrying capacity;
Fig. 2. Curve of sediment concentration and deposition from Tiexie K,=comprehensive coefficient; arfg=subsaturation coefficient.
to Gaocun The saturation recovery coefficieat denotes the ratio between
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the bottom and average concentrations under equilibrium condi-

rection are evaluated by the following expressigikang et al.

tions, which is not a constant in this model and is evaluated using 2001):

the following empirical expression obtained by integrating the
sediment concentration over water de@fhang and Zhang 1992

1 )
Qx = —— eX%BZl ) (5)
NO KUx

and

in which
1 -
/ 1
No:f f(N—g,n)exp(S.BBiarctg\/— - 1)dn (6)
o \CC KUx M
f<L5 ) =1- 3mg, La( m-m?+arcsint)  (7)
cc gc.C cc M
Hereink, C and us=Karman constant, Chezy resistance coeffi-
cient, and friction velocity, respectivelyy=relative depth;c,
=vortex coefficient(c,=0.375); the Karman universal constant
k=0.4-1.680.365-S,)\'S,, and,K,;=comprehensive coefficient.
Based on similarity theory and movable bed modelsis derived
as follows(Zhang and Zhang 1992
ul®

1 1.14
Kl - K4.5( )
2.65 V05

The subsaturation coefficieri} is deduced from numerous ex-
perimental data and can be estimated fr@hang et al. 200L

( IS )[O.l/arctgsls)]

(8)

= ©

f:L:

To ensure that the model is capable of simulating both normal

S_ h: [0.1-1.6w/kux)+1.35] A [0.2+2.6w/kux)+Sy;]
R
S hy V
C = Qi
17 rb h . \[01-18w/u)+13] [ \/ | [0.2+2.6w/ku.)+Sy]
[ o) ¥ o
a \h \%
(15
0.6 0.1
SofSTY o
dcpi S Vi
C2: le (17)

J a2 G o

It should be noted that Eq$1)—(4) do not directly couple the
liquid and solid phases, as is in fact the case between the liquid
and solid phases in hyperconcentrated flows. Various researchers
(Greimann et al. 1999; Ni et al. 20pBave shown that the effects

of hyperconcentration should be taken into account when the
depth-averaged suspended sediment concentration exceeds
100 kg/n?. Herein, the effect of hyperconcentration is incorpo-
rated by the use of empirical parametéach as sediment carry-

ing capacity, etg.in the governing equations.

sediment-laden flows and hyperconcentrated flows in the Lower Numerical Method

Yellow River, the following equation for the sediment carrying
capacity is introduce@Zhang et al. 2001t

0.0022 +S,)V? h (%%
S =2 ( S In( ) (10
Kys_vmghw 6Dsp
Ym
where S =particle volume fraction; h=water depth; Dg,

=median diameter of bed materialg,=specific weight of sedi-
ment; andvy,,=specific weight of muddy water. The sediment
settling velocityw and Manning’s roughness coefficienare two
important parameters in the modeling process. Allowing for the
special conditions that pertain to the Lower Yellow River, the
sediment settling velocity can be expressedzimng et al. 20011

SU 3.5
2.25\"d—5J

and the Manning'’s coefficient can be estimated fi@fang et al.
2001

w:wo(l—l.ZHSJ){1+ (12)

O«
K/ CHF
n=— 12
9] o 49<§>0 77 +3—“<1 —§> sin(i)a2 |
' h/)™ 8 h h
in which &. =friction thickness, defined as
S, = D50{1 + ldS.l—lero'S(l—Fr3)]} (13)

Preissmann four-point-difference approximatiof@unge et al.
1980 and the tridiagonal matrix algorithm are employed for solv-
ing equation system@l) and(2). The discrete form of Eq.3) is
solved using an implicit scheme. After discretization, the riverbed
deformation equatio) becomes

Zn+1 —

Kqji 0 . "
bij = lr)‘ij+At_lijy_llwij(flijS} t-gt (18
0

in which At=time step.

Boundary and Initial Conditions

Boundary conditions for the equation system given by Edjs.
and(2) are
(inlet condition

Q1=0Q4(t) or Z;=24(t) (19

Z,=2Z,(t) or Qy=1(Z,) (20

where Q,=inlet discharge, and;=inlet water level;Q, and Z,
=outlet discharge and water level, respectively.

As to the boundary conditions for the sediment transport equa-
tion, the concentration at entrance section is given. Initial condi-
tions are determined by a series of physical parameters, such as
water level, sediment concentration, and topographic features. For
simplicity, these parameters are initially given estimated values. It
should be noted that the approximation errors disappear quickly

(outlet condition

The suspended sediment concentration profile and the distributionafter the start of simulation, subject to the correct boundary con-

of the sediment particle’s median diameter in the transverse di-

ditions being implemented.
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Fig. 4. Comparison of computed result and measured data at Huayuankou station, 1996

Model Validation hyperconcentrated floods even when the sediment concentration

In 1977, 1982, and 1996, major floods occurred along the 400 km S igher than 100 kg/(Fig. 6. Detailed information about
reach of the Lower Yellow River between Tiexie and Sunkou validation and model reliability can be seen in Zhang et al.
(Fig. 1). The numerical model was set up for the reach, calibrated, (200D.

and validated against measured data, which is from the “Yellow

River Yearbook Report{Yellow River Conservancy Commis-

sion, 1977, 1982, and 1998nitial and boundary conditions were ~ Radial-Basis Function—Atrtificial Neural Networks

determined by measured data. The topographic data are the crosklodel

sectional data along the concerned reach of the river with a dis-

tance about 10 km between two adjacent sections, obtained in theAs the rapid simulating HCSLF in the Lower Yellow River is one
wet season before the specific flood’s coming in a year. The dis- of the typical nonlinear processes, ANNs are introduced to speed
charge processes at Xiaolangdi upstream Tiexie, which corre-up the simulation of the complicated HCSLF. The combination of
sponds to the specific floods, are given as inlet condition; and thea conventional one-dimensional mathematical model for unsteady
rating curves at Sunkou are given as outlet condition. For the sediment-laden flow and an ANN model for encapsulation of nu-
validation tests, computational grids consisting of 41 nodes in the merical results would be more efficie(li and Xue 2003 The

x direction were used with spatial increment of abalx conventional one-dimensional mathematical model provides de-

=10,000 m. The time step wast=900 s. tailed river flood routing information under typical scenarios, and
It should be addressed that the sediment makeup in the Yellowthe ANN model extracts numerical results from the former as

River can be well reflected by a median diameisp, which training samples and validation samples to establish a station-

implies a simplification with the uniform-sediment assumption in specific model for efficient flood forecasting. The first step in the
the mobile-bed equatior€hien 1988. Moreover, previous stud-  combination of the two models is to obtain detailed numerical
ies have revealed that suspended load is the major part and bedinformation under typical scenarios based on the calibrated nu-
load is negligible in sediment-laden flows, particularly for the merical model, then to design structures of the ANN model and
HCSLF (Chien 1988; Zhao 1996Since the parameters were de- extract training samples and validation samples from the numeri-
termined using numerous measured data obtained under differental results. The third step is to train and validate the ANN model,
conditions, the modeling results could reflect the complex re- where a neural network takes previously solved samples from the
sponse of the HCSLF such as the extremely looped rating curvenumerical model, looks for patterns in these samples, learns these
shown in Fig. 3 resulted from both bedform processes and hyper-patterns, and develops the ability to classify new patterns cor-
concentration. rectly. The last step is to use the ANN model to simulate if it is
Good convergence is found with this grid system. Examples validated.
taken from the model validation tests are given in Figs. 4-6,  Among the various learning algorithms available to neural net-
where reasonable agreement between the calculated and measureebrks, the radial basis functio(RBF)—ANN has the apparent
results is evident. It is clear that the model properly describes advantages of learning efficiency over the more frequently used
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Fig. 5. Comparison of computed and measured discharge

backpropagation ANN. The RBF—ANN is often used in fields of time-delayed phenomena. In order to simulate the time-delayed
forecasting, regression, and function interpolatidichael and phenomena correctly, in the ANN model for dischalgey., at
David 199§. It is particularly appropriate to the present study, Huayuankoy, the serial discharg® is sampled as a sequence of
due to there being sufficient samples from hydrodynamic and five temporal values before tinteas the input nodes of the ANN
sediment transport models to guarantee the accuracy of the ANNmodel. Initially, there are 12 hidden layers, which are naturally
model (Lohninger 1993; Dai et al. 2000With integration of adjusted to the proper number of nodes during the ANN training
RBF-ANN and numerical modeling based on partial-differential process. The output layer calculates one new discharge at.time

equations in terms of the continuum concédptand Li 2000, the So the arrangement of input, hidden, and output nodes are 5, 12,
combined model has been designed to achieve rapid simulation ofand 1, respectively. Although the station-specific model is highly
hyperconcentrated floods. efficient for discharge evaluation at a particular station under con-

The RBF-ANN for HCSLF in the Yellow River includes mod-  sideration, it is not suitable for simulation of the whole process at
els for discharge, water level, and sediment concentration. Itall stations, which should be accomplished by a hydrodynamic
should be noted that there are two categories of the model that aranodel. Nevertheless, a one-dimensional ANN model could be
considered in the present paper. The “station-specific’ ANN established through extending the number of nodes in the input
model establishes a relationship between a single desired statiohayer based on a station-specific modgle discharge inpujs
and the entrance station, whereas the “one-dimensional” ANN with an additional five inputs of distance ordinate sediment
model establishes a relationship between multiple stations and thecarrying capacitys+, saturation recovery coefficient:, riverbed
entrance station. The system is truly time varying and has strongroughness, and cross sectional width All the foregoing input
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Fig. 6. Comparison of computed and measured sediment concentration at Huayuankou
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parameters are time dependent and are selected to denote the_. . .
) ) ing the H nk ion- ific ANN modélfter
difference between stations. The numbers of nodes for the one-SS g the Huayuankou station-specific gdéviter, 5,000

dimensional model then become 10, 12, 1, for the input layer iterations, the training process of the ANN models become_ stab_le,

hidden layer, and output layer respe’ctive,ly ’ ’ and the root mean square error only changes Q.QOZ from .|terat.|on
’ ’ ’ 5,000 to 18,000. It is obvious that 5,000 training iterations is

enough to construct a stable ANN model, but further training

Encapsulation of Station-Specific Knowledge iterations will not lead to an overtraining state.

Fig. 8 shows the close agreement achieved between the pre-

For any given station, evaluated and validated values of water . . . - -
level and discharge at certain time steps can be extracted from thedICtEOI discharges obtained using the ANN model and the input

one-dimensional hydrodynamic model. To guarantee wide adapt-(va"datiom measurements at H_uayuankou. An indication of the
ability of the ANN model, typical Lower Yellow River boundary performance of the training set is that the root mean square error

. 0 S

conditions are provided from the 1977, 1982, and 1996 flood data. of the ANN model 'S.abOUt than 7'2/0'. The qverall precision 1S

. . 92.8%(1 rms erroy. Figs. 9 and 10 provide validation results for

The numerical model results under these representative flood sce- : .

i - ater levels and sediment concentrations at Huayuankou. The
narios provide an adequate sample of data sets for the neura

. . - . validation set for the ANNgFig. 9) is of the same length as that
networks. Thus a rapid response is established between d|scharg%r the numerical model v:flidgti ) ig. 4) because thegsame data
water level and sediment concentration. For the station-specific . OG.' s

set was used in both cases. It is evident that the ANN models

ANN model, 250 training samples and 50 validation samples are reproduce properly the output of the numerical model, with which
selected from numerical results at the Huayuankou, Jiahetan, P properly P ’
they were trained.

Gaocun, and Shunkou stations. For the one-dimensional ANN
model, 1,000 training samples and 200 validation samples are

extracted from numerical modeling results. Improvement of Computational Speed

All computations have been performed on a PC with CPU
Evaluation and Verification of Atrtificial Neural Network 866 MHz and RAM of 128 M under th&/indows 200Profes-
Model sional operating system. The CPU time is less than 11 s for

station-specific models and less than 27 s for one-dimensional
gmodels in order to calculate discharge, water level, and sediment
concentration at Huayuankou, Jiahetan, Gaocun, and Sunkou with
the ANN. The CPU time for the RBF—ANN model is approxi-

The system root mean square error decreases within the trainin
process. Fig. 7 illustrates a typical error decay pro¢ebtained
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Fig. 8. Comparison of artificial neural networks computed and mea- Fig. 10. Comparison of artificial neural networks computed and
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mately 50 times faster than the corresponding one-dimensional
hydrodynamic model. It is therefore found that the combination
of the conventional hydrodynamic numerical model and ANN
leads to considerable efficiency gains.

Conclusions

Hyperconcentrated sediment-laden flows have very different char-
acteristics to low-concentrated sediment laden flows, and are in-
herently more difficult to predict, prevent, or control. Due to dif-
ferences in the solid—liquid flow physics, conventional
mathematical models developed for low-concentrated sediment-
laden floods are not applicable to hyperconcentrated floods.
Herein, a model that integrates a conventional one-dimensional
mathematical model for unsteady sediment-laden flow and an
ANN has been developed. In the present uncoupled model, the
effect of hyperconcentration is necessarily incorporated through
the calibration of the numerical model to the field data through
empirical parametersuch as sediment carrying capacity, gtin
future work, it would be better to develop a fully coupled numeri-
cal model and use it to train the ANN model.

The model provides a rapid-response forecast tool applicable
to varying flow and sediment conditions. Three typical floods
occurring in 1977, 1982, and 1996 in the Lower Yellow River

'I'I
|

= F=V/(gh)*? Froude number;
function as defined in EqJ);
= subsaturation coefficient as defined in E9);
= gravitational acceleratiofm/s?);
= water depthim);
= discharge modulus;
= comprehensive coefficient as defined in E);
= integral function as defined in E);
= Manning’s roughness coefficient;
= flow discharge(md/s);
= flow discharge per unit widtfim?/s);
lateral water inflow per unit lengttm?/s);
= sediment concentratiofkg/m®);
= sediment carrying capacitkg/md);
= lateral sediment inflow per unit length;
= particle volume fraction;
= time (9);
= friction velocity (m/9);
= flow velocity (m/9);
= spatial variablgm);
= coordinate in transversal directigm);
= water level(m);

Z, = bed elevationmy;

o* = saturation recovery coefficient;
ag,6p = mMomentum correction factors;

_h
B —h
I

.-.énrchm.‘—:nrO:oZZ:X:r@
Il

c
*
I

N< x <
|

have been used to evaluate and validate the model. It has been vy = specific weight of water;
demonstrated that the numerical results closely fit the measured v,, = specific weight of muddy water,,=vy+S(ys—vy)/v;

data. The computational speed has been significantly improved,
confirming the practical applicability of the hybrid model to rapid
estimation of hydraulic and sediment parametensch as dis-
charge, water level, and sediment concentratidrhe present
model is appropriate to both hyperconcentrated and low-
concentrated sediment-laden floods. Station-specific ANN models
trained with data from a specific time period may become increas-
ingly inaccurate at predicting future scenarios if the river reach
changes its bed morphology considerably due to erosion and
deposition. Future work is required to develop ANN models that
are retrained as and when new data are available, and are biase
towards the most recent information.
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Notation

The following symbols are used in this paper:
A = cross-sectional are@n?);
B = flow width at free surfacém);
b = empirical coefficient;
C = Chézy resistance coefficient;
C,,C, = functions as defined in Eq15) and (17),
respectively;
¢, = ¢,=0.375k, vortex coefficient;
D5, = median diameter of bed materiah);
d,, = average diameter of suspended mateina);
dsp = median diameter of suspended mate(ia);

vs = specific weight of sediment;

vo = dry weight of sediment;

At = time step(s);

d* = friction thickness(m);

m = relative depth;

k = Karman universal constant;

o = settling velocity of sediment particlgésn/s); and

wy = settling velocity of sediment particles in clear water
(m/s).
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