This image shows Tobias Köppl

Tobias Köppl

PD Dr.

Lecturer
Fraunhofer Institute for Open Communication Systems (FOKUS)

Contact

Subject

Biomedical Engineering, Machine Learning and Quantum Computing

Abitur

June 2004 in Regensburg, Werner-von-Siemens Gymnasium (Germany)

Academic Degrees

2010: Diploma (Dipl. Tech.-Math.),  TU München (Germany)
2015: Doctoral Degree (Dr. rer. nat.), TU München (Germany)
2020: Habilitation (Dr. habil.), University Stuttgart (Germany)

Akademischer Werdegang

since 11/2023: Research Position, Frauenhofer Institute for Open Communication Systems (FOKUS), Berlin (Germany)
05/2023-10/2023: Research position, Hasselt University, Faculty of Sciences: Mathematics and statistics, Computational mathematics (Belgium)
10/2022-03/2023: Interim Professor (W2), Computational Mathematics, Department of Computer Science, TU Munich (Germany)
02/2022-09/2022: Research position, Hasselt University, Faculty of Sciences: Mathematics and statistics, Computational mathematics (Belgium)
01/2019-12/2021: Akademischer Rat a. Z., Chair for Numerical Mathematics (Prof. Wohlmuth), TU Munich (Germany)
10/2014-12/2018: Research Assistant, Department of Hydromechanics and Modelling of Hydrosystems, University of Stuttgart (Germany)
06/2010-09/2014: Research Assistant, Chair for Numerical Mathematics, TU Munich (Germany)

Publications

  1. Mitra, K., Köppl, T., Duijn, H. v., Pop, I. S., & Helmig, R. (2019). Fronts in two-phase porous media flow problems: the effects of hysteresis and dynamic capillarity. Studies in Applied Mathematics, 1906. https://research.tue.nl/en/publications/fronts-in-two-phase-porous-media-flow-problems-the-effects-of-hys
  2. Vidotto, Ettore., Koch, Timo., Köppl, Tobias., Helmig, Rainer., & Wohlmuth, Barbara. (2019). Hybrid Models for Simulating Blood Flow in Microvascular Networks. Multiscale Modeling & Simulation, 17, Article 3. https://doi.org/10.1137/18M1228712
  3. Köppl, T., Fedoseyev, M., & Helmig, R. (2018). Simulation of surge reduction systems using dimensionally reduced models. Journal of Hydraulic Engineering. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001553
  4. Köppl, T., Santin, G., Haasdonk, B., & Helmig, R. (2018). Numerical modelling of a peripheral arterial stenosis using dimensionally reduced models and machine learning techniques. International Journal for Numerical Methods in Biomedical Engineering. https://doi.org/10.1002/cnm.3095
  5. Schneider, M., Köppl, T., Helmig, R., Steinle, R., & Hilfer, R. (2018). Stable propagation of saturation overshoots for two-phase flow in porous media. Transport in Porous Media, 121, Article 3. https://doi.org/10.1007/s11242-017-0977-y
  6. Köppl, T., Vidotto, E., Wohlmuth, B. I., & Zunino, P. (2018). Mathematical modeling, analysis and numerical approximation of second order elliptic problems with inclusions. Mathematical Models and Methods in Applied Sciences, 28, Article 5. https://doi.org/10.1142/S0218202518500252
  7. Drzisga, D., Köppl, T., Pohl, U., Helmig, R., & Wohlmuth, B. I. (2016). Numerical modeling of compensation mechanisms for peripheral arterial stenoses. Computers in Biology and Medicine, Article 70.
  8. Köppl, T., & Wohlmuth, B. I. (2014). Optimal a priori error estimates for an elliptic problem with Dirac right-hand side. SIAM Journal on Numerical Analysis, 52. https://doi.org/10.1137/130927619
  9. Köppl, T., Schneider, M., Pohl, U., & Wohlmuth, B. I. (2014). The influence of an unilateral carotid artery stenosis on brain oxygenation. Medical Engineering and Physics, 36(7).
  10. Köppl, T., Wohlmuth, B. I., & Helmig, R. (2013). Reduced one-dimensional modelling and numerical simulation for mass transport in fluids. International Journal for Numerical Methods in Fluids, 72. https://doi.org/10.1002/fld.3728
  11. Weinzierl, T., & Köppl, T. (2012). A geometric space-time multigrid algorithm for the heat equation. Numerical Mathematics: Theory, Methods and Applications, 5. https://doi.org/10.4208/nmtma.m12si07
  12. Köppl, T. (2016). Simulation von Blutfluss durch arterielle Netze. https://www.iws.uni-stuttgart.de/publikationen/hydrosys/paper/mitpw/Skript_final.pdf
  13. Köppl, T., Helmig, R., & Wohlmuth, B. I. (2015, October). A multi-scale model for mass transport in arteries and tissue. 3rd International Workshop on Computational Engineering CE 2014, 06.10.2014 - 10.10.2014, Universität Stuttgart.
  14. Köppl, T., Vidotto, E., & Wohlmuth, B. I. (2015, September). A local error estimate for the Poisson equation with a line source term. ENUMATH 2015, 14.09.2015 - 18.09.2015, Ankara.
  15. Köppl, T. (2010). Ein adaptiver Raum-Zeit Mehrgitteralgorithmus zur Lösung der Wärmeleitungsgleichung [Diplomarbeit].
  16. Köppl, T. (2015). Multi-scale modeling of flow and transport processes in arterial networks and tissue [Promotionsschrift]. TU München,.
To the top of the page