Publications

Journal publications, PhD theses, student theses and other publications from our institute

Journals (last 50)

  1. 2019

    1. Tarasova, L., Merz, R., Kiss, A., Basso, S., Blöschl, G., Merz, B., … Wietzke, L. (2019). Causative classification of river flood events. Wiley Interdisciplinary Reviews: Water, 6(4), e1353. https://doi.org/https://doi.org/10.1002/wat2.1353
    2. Koch, T., Schneider, M., Helmig, R., & Jenny, P. (2019). Modeling tissue perfusion in terms of 1d-3d embedded mixed-dimension coupled problems with distributed sources. ArXiv E-Prints, arXiv:1905.03346.
    3. Hörning, S., Sreekanth, J., & Bárdossy, A. (2019). Computational efficient inverse groundwater modeling using Random Mixing and Whittaker–Shannon interpolation. Advances in Water Resources, 123, 109–119. https://doi.org/10.1016/j.advwatres.2018.11.012
    4. Xiao, B., Haslauer, C., & Bohling, G. (2019). Comparison of Multivariate Spatial Dependence Structures of DPIL and Flowmeter Hydraulic Conductivity Data Sets at the MADE Site. Water, 11(7). https://doi.org/10.3390/w11071420
    5. Marra, F., Nikolopoulos, E. I., Anagnostou, E. N., Bárdossy, A., & Morin, E. (2019). Precipitation frequency analysis from remotely sensed datasets: A focused review. Journal of Hydrology, 574(October 2018), 699–705. https://doi.org/10.1016/j.jhydrol.2019.04.081
    6. Lebrenz, H., & Bárdossy, A. (2019). Geostatistical interpolation by quantile kriging. Hydrology and Earth System Sciences, 23(3), 1633--1648. https://doi.org/10.5194/hess-23-1633-2019
    7. Wang, T., Singh, S. K., & Bárdossy, A. (2019). On the use of the critical event concept for quantifying soil moisture dynamics. Geoderma, 335, 27–34. https://doi.org/10.1016/j.geoderma.2018.08.013
    8. Yang, G., Coltman, E., Weishaupt, K., Terzis, A., Helmig, R., & Weigand, B. (2019). On the Beavers-Joseph interface condition for non-parallel coupled channel flow over a porous structure at high Reynolds numbers. Transport in Porous Media. https://doi.org/10.1007/s11242-019-01255-5
    9. Huang, Y., Bárdossy, A., & Zhang, K. (2019). Sensitivity of hydrological models to temporal and spatial resolutions of rainfall data. Hydrology and Earth System Sciences, 23(6), 2647--2663. https://doi.org/10.5194/hess-23-2647-2019
    10. Bennett, J. P., Haslauer, C. P., Ross, M., & Cirpka, O. A. (2019). An Open, Object‐Based Framework for Generating Anisotropy in Sedimentary Subsurface Models. Groundwater, 57(3), 420–429. https://doi.org/10.1111/gwat.12803
    11. Grundmann, J., Hörning, S., & Bárdossy, A. (2019). Stochastic reconstruction of spatio-temporal rainfall patterns by inverse hydrologic modelling. Hydrology and Earth System Sciences, 23(1), 225--237. https://doi.org/10.5194/hess-23-225-2019
    12. Auer, H., Bliefernicht, J., Seidel, J., Kunstmann, H., & Demuth, N. (2019). Evaluierung hochaufgelöster Ensemble-Nieder- schlagsvorhersagen für die Hochwasserfrühwar- nung in kleinräumigen Flussgebieten am Beispiel der Starkregenperiode 2016 in Deutschland. Hydrologie Und Wasserbewirtschaftung, 63(3), 130–146. https://doi.org/10.5675/HyWa_2019.3_1
    13. Yang, G., Vaikuntanathan, V., Terzis, A., Cheng, X., Weigand, B., & Helmig, R. (2019). Impact of a linear array of hydrophilic and superhydrophobic spheres on a deep water pool. Colloids and Interfaces. https://doi.org/10.3390/colloids3010029
    14. Richardson, D., Kilsby, C. G., Fowler, H. J., & Bárdossy, A. (2019). Weekly to multi-month persistence in sets of daily weather patterns over Europe and the North Atlantic Ocean. International Journal of Climatology, 39(4), 2041–2056. https://doi.org/10.1002/joc.5932
    15. Yan, J., & Bárdossy, A. (2019). Short time precipitation estimation using weather radar and surface observations: With rainfall displacement information integrated in a stochastic manner. Journal of Hydrology, 574, 672–682. https://doi.org/10.1016/j.jhydrol.2019.04.061
  2. 2018

    1. Köppl, T., Santin, G., Haasdonk, B., & Helmig, R. (2018). Numerical modelling of a peripheral arterial stenosis using dimensionally reduced models and machine learning techniques. International Journal for Numerical Methods in Biomedical Engineering. https://doi.org/10.1002/cnm.3095
    2. Gnann, S. J., Allmendinger, M. C., Haslauer, C. P., & Bárdossy, A. (2018). Improving copula-based spatial interpolation with secondary data. Spatial Statistics, 28, 105–127. https://doi.org/10.1016/j.spasta.2018.07.001
    3. Gao, B., Davarzani, H., Helmig, R., & Smits, K. M. (2018). Experimental and numerical study of evaporation from wavy surfaces by coupling free flow and porous media flow. Water Resources Research. https://doi.org/10.1029/2018WR023423
    4. Becker, B., Guo, B., Bandilla, K., Celia, M. A., Flemisch, B., & Helmig, R. (2018). An adaptive multiphysics model coupling vertical equilibrium and full multidimensions for multiphase flow in porous media. Water Resources Research, 54. https://doi.org/10.1029/2017WR022303
    5. Bárdossy, A., & Pegram, G. (2018). Intensity–duration–frequency curves exploiting neighbouring extreme precipitation data. Hydrological Sciences Journal, 63(11), 1593–1604. https://doi.org/10.1080/02626667.2018.1524987
    6. Hansen, S. K., Haslauer, C. P., Cirpka, O. A., & V., V. V. (2018). Direct Breakthrough Curve Prediction From Statistics of Heterogeneous Conductivity Fields. Water Resources Research, 54(1), 271–285. https://doi.org/10.1002/2017WR020450
    7. Hörning, S., & Bárdossy, A. (2018). Phase annealing for the conditional simulation of spatial random fields. Computers & Geosciences, 112, 101–111. https://doi.org/10.1016/j.cageo.2017.12.008
    8. Schneider, M., Köppl, T., Helmig, R., Steinle, R., & Hilfer, R. (2018). Stable propagation of saturation overshoots for two-phase flow in porous media. Transport in Porous Media, 121(3). https://doi.org/10.1007/s11242-017-0977-y
    9. Cunningham, A. B., Class, H., Ebigbo, A., Gerlach, R., Phillips, A., & Hommel, J. (2018). Field-scale modeling of microbially induced calcite precipitation. Computational Geosciences, tbd. https://doi.org/10.1007/s10596-018-9797-6
    10. Praditia, T., Helmig, R., & Hajibeygi, H. (2018). Multiscale formulation for coupled flow-heat equations arising from single-phase flow in fractured geothermal reservoirs. Computational Geosciences. https://doi.org/10.1007/s10596-018-9754-4
    11. Koch, T., Gläser, D., Weishaupt, K., Ackermann, S., Beck, M., Becker, B., … Weinhardt, F. (2018). DuMuX 3.0.0. https://doi.org/10.5281/zenodo.2479595
    12. Hommel, J., Coltman, E., & Class, H. (2018). Porosity-Permeability Relations for Evolving Pore Space: A Review with a Focus on (Bio-)geochemically Altered Porous Media. Transport in Porous Media, 2(124). https://doi.org/10.1007/s11242-018-1086-2
    13. Gläser, D., Flemisch, B., Helmig, R., & Class, H. (2018). A hybrid-dimensional discrete fracture model for non-isothermal two-phase flow in fractured porous media.
    14. Amoatey, P. K., Bárdossy, A., & Steinmetz, H. (2018a). Inverse Optimization based Detection of Leaks from Simulated Pressure in Water Networks, Part 1: Analysis for a Single Leak. Journal of Water Management Modeling, 26. https://doi.org/10.14796/JWMM.C460
    15. Koch, T., Flemisch, B., Helmig, R., Obrist, D., & Wiest, R. (2018). A multi-scale sub-voxel perfusion model to estimate diffusive capillary wall conductivity in multiple sclerosis lesions from perfusion MRI data. BioRxiv Preprints. https://doi.org/10.1101/507103
    16. Suroso, S., & Bárdossy, A. (2018). Investigation of asymmetric spatial dependence of precipitation using empirical bivariate copulas. Journal of Hydrology, 565, 685–697. https://doi.org/10.1016/j.jhydrol.2018.08.056
    17. Gnann, S. J., Allmendinger, M. C., Haslauer, C. P., & Bardossy, A. (2018). Improving copula-based spatial interpolation with secondary data. Spatial Statistics, 28, 105–127. https://doi.org/10.1016/j.spasta.2018.07.001
    18. Amoatey, P. K., Bárdossy, A., & Steinmetz, H. (2018b). Inverse Optimization based Detection of Leaks from Simulated Pressure in Water Networks, Part 2: Analysis for Two Leaks. Journal of Water Management Modeling, 26. https://doi.org/10.14796/JWMM.C461
    19. Vidotto, E., Koch, T., Köppl, T., Helmig, R., & Wohlmuth, B. I. (2018). Hybrid models for simulating blood flow in microvascular networks. Eprint ArXiv:1811.10373. Retrieved from https://arxiv.org/abs/1811.10373
  3. 2017

    1. Lebrenz, H., & Bárdossy, A. (2017). Estimation of the Variogram Using Kendall’s Tau for a Robust Geostatistical Interpolation. Journal of Hydrologic Engineering, 22(9), 04017038. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001568
    2. Haese, B., Hörning, S., Chwala, C., Bárdossy, A., Schalge, B., & Kunstmann, H. (2017). Stochastic Reconstruction and Interpolation of Precipitation Fields Using Combined Information of Commercial Microwave Links and Rain Gauges. Water Resources Research, 53(12), 10740–10756. https://doi.org/10.1002/2017WR021015
    3. Bárdossy, A., & Hörning, S. (2017). Process-Driven Direction-Dependent Asymmetry: Identification and Quantification of Directional Dependence in Spatial Fields. Mathematical Geosciences, 49(7), 871--891. https://doi.org/10.1007/s11004-017-9682-1
    4. Guthke, P., & Bárdossy, A. (2017). On the link between natural emergence and manifestation of a fundamental non-Gaussian geostatistical property: Asymmetry. Spatial Statistics, 20, 1–29. https://doi.org/https://doi.org/10.1016/j.spasta.2017.01.003
    5. Haslauer, Claus P., Meyer, J. R., Bardossy, A., & Parker, B. L. (2017). Estimating a Representative Value and Proportion of True Zeros for    Censored Analytical Data with Applications to Contaminated Site    Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 51(13), 7502–7510. https://doi.org/10.1021/acs.est.6b05385
    6. Haslauer, C. P., Bardossy, A., & Sudicky, E. A. (2017). Detecting and modelling structures on the micro and the macro scales:    Assessing their effects on solute transport behaviour. Advances in Water Resources, 107, 439–450. https://doi.org/10.1016/j.advwatres.2017.05.007
    7. Mohammadi, F., Oladyshkin, S., Kopmann, R., Guthke, A., & Nowak, W. (2017). Bayesian selection of hydro-morphodynamic models under computational time constraints. Advances in Water Resources.
    8. Bárdossy, A., & Pegram, G. (2017). Combination of radar and daily precipitation data to estimate meaningful sub-daily point precipitation extremes. Journal of Hydrology, 544, 397–406. https://doi.org/10.1016/j.jhydrol.2016.11.039
    9. Bennett, J. P., Haslauer, C. P., & Cirpka, O. A. (2017). The Impact of Sedimentary Anisotropy on Solute Mixing in Stacked Scour‐Pool Structures. Water Resources Research, 53(4), 2813–2832. https://doi.org/10.1002/2016WR019665
  4. 2016

    1. Fraundorf, P., & Lipp, M. (2016). Molar standards & information units in the “new-SI.” Retrieved from https://hal.archives-ouvertes.fr/hal-01381003/file/MolarStandardsAndInformationUnits.pdf
    2. Singh, S. K., McMillan, H., Bárdossy, A., & Fateh, C. (2016). Nonparametric catchment clustering using the data depth function. Hydrological Sciences Journal, 61(15), 2649–2667. https://doi.org/10.1080/02626667.2016.1168927
    3. von Gunten, D., Wöhling, T., Haslauer, C. P., & Cirpka, O. A. (2016). Using an Integrated Hydrological Model to Estimate the Usefulness of Meteorological Drought Indices in a Changing Climate. Hydrology and Earth System Sciences, 20(10), 4159–4175. https://doi.org/10.5194/hess-20-4159-2016
  5. 2015

    1. von Gunten, D., Wöhling, T., Haslauer, C. P., Merchán, D., Cuasapé, J., & Cirpka, O. A. (2015). Estimating Climate-change Effects on a Mediterranean Catchment Under Various Irrigation Conditions. Journal of Hydrology: Regional Studies, 4, 550–570. https://doi.org/10.1016/j.ejrh.2015.08.001
    2. Sanchez León, E., Haslauer, C. P., & Cirpka, O. A. (2015). Combining 3D Hydraulic Tomography with Tracer Tests for Improved Transport Characterization. Groundwater, 54(5), 498–507. https://doi.org/10.1111/gwat.12381
  6. 2014

    1. von Gunten, D., Wöhling, T., Haslauer, C. P., Merchán, D., Causape, J., & Cirpka, O. A. (2014). Efficient Calibration of a Distributed pde-Based Hydrological Model Using Grid Coarsening. Journal of Hydrology, 519, 3290–3304. https://doi.org/10.1016/j.jhydrol.2014.10.025
  7. 2013

    1. Gong, R., Haslauer, C. P., Chen, Y., & Luo, J. (2013). Analytical Relationship Between Gaussian and Transformed-Gaussian Spatially Distributed Fields. Water Resources Research, 49(3), 1735–1740. https://doi.org/10.1002/wrcr.20143

PhD theses (last 50)

  1. 2018

    1. Mejri, E. (2018). Modeling and Analysis of Salt Precipitation on Evaporation Processes in the Unsaturated Zone (PhD dissertation). Université de Tunis El Manar, Ecole Nationale d´Ingenieurs de Tunis.
    2. Fetzer, T. (2018). Coupled Free and Porous-Medium Flow Processes Affected by Turbulence and Roughness - Models, Concepts and Analysis (PhD dissertation; Vol. 259). Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung.
  2. 2017

    1. Grüninger, C. (2017). Numerical coupling of Navier-Stokes and Darcy flow for soil-water evaporation (PhD dissertation, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung; Vol. 253). https://doi.org/10.18419/opus-9657
  3. 2016

    1. Kissinger, A. (2016). Basin-Scale Site Screening and Investigation of Possible Impacts of CO2 Storage on Subsurface Hydrosystems (PhD dissertation, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung; Vol. 251). Retrieved from https://dx.doi.org/10.18419/opus-8998
  4. 2015

    1. Nuske, P. (2015). Beyond local equilibrium : relaxing local equilibrium assumptions in multiphase flow in porous media (PhD dissertation, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung; Vol. 237). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2015/9796/pdf/thesisPhilippNuskeMerged.pdf
    2. Köppl, T. (2015). Multi-scale modeling of flow and transport processes in arterial networks and tissue (PhD dissertation). TU München,.
  5. 2014

    1. Lauser, A. (2014). Theory and Numerical Applications of Compositional Multi-Phase Flow in Porous Media (PhD dissertation, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung; Vol. 228). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2014/9074/pdf/lauser_thesis_2print.pdf
    2. Mosthaf, K. (2014). Modeling and Analysis of Coupled Porous - Medium and Free Flow with Application to Evaporation Processes (PhD dissertation, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung; Vol. 223). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2014/9064/pdf/DISSERTATION_KlausMosthaf_final.pdf
    3. Faigle, B. (2014). Adaptive modelling of compositional multi-phase flow with capillary pressure. (PhD dissertation, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung; Vol. 230). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2014/9068/
    4. Oladyshkin, S. (2014). Efficient modeling of environmental systems in the face of complexity and uncertainty (PhD dissertation, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung; Vol. 231). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2015/9523/pdf/Oladyshkin_HabilitationThesis.pdf
  6. 2013

    1. Flemisch, B. (2013). Tackling Coupled Problems in Porous Media: Development of Numerical Models and an Open Source Simulator (PhD dissertation, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung). Retrieved from https://www.iws.uni-stuttgart.de/publikationen/hydrosys/paper/2013/flemisch_habil.pdf
    2. Leube, P. (2013). Methods for Physically-Based Model Reduction in Time: Analysis, Comparison of Methods and Application (PhD dissertation, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung; Vol. 224). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2013/8801/pdf/diss_final_Leube_bib_v2.pdf
  7. 2012

    1. Erbertseder, K. (2012). A multi-scale model for describing cancer-therapeutic transport in the human lung (PhD dissertation, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung; Vol. 213). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2012/7200/
    2. Haas, T. (2012). Geistliche als Kreuzfahrer. Der Klerus im Konflikt zwischen Orient und Okzident 1095-1221 (PhD dissertation). ,.
    3. Darcis, M. (2012). Coupling Models of Different Complexity for the Simulation of CO2 Storage in Deep Saline Aquifers (PhD dissertation, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung; Vol. 218). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2013/8141/
  8. 2011

    1. Kuhlmann, A. (2011). Influence of soil structure and root water uptake on flow in the unsaturated zone (PhD dissertation, Universität Stuttgart, Institut für Wasserbau; Vol. 209). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2012/7214/
  9. 2010

    1. Dogan, M. O. (2010). Coupling of porous media flow with pipe flow (PhD dissertation, Universität Stuttgart, Institut für Wasserbau; Vol. 199). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2011/5942/
    2. Niessner, J. (2010). The Role of Interfacial Areas in Two-Phase Flow in Porous Media -- bridging scales and coupling models (PhD dissertation, Universität Stuttgart, Institut für Wasserbau). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2011/6305/
    3. Fritz, J. (2010). A decoupled model for compositional non-isothermal multiphase flow in porous media and multiphysics approaches for two-phase flow (PhD dissertation, Universität Stuttgart, Institut für Wasserbau, Lehrstuhl für Hydromechanik und Hydrosystemmodellierung; Vol. 192). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2010/5683
    4. Cao, Y. (2010). Robust numerical algorithms based on corrected operator splitting for two-phase flow in porous media (PhD dissertation, Universität Stuttgart, Universität Stuttgart). Retrieved from https://www.shaker.de/de/content/catalogue/index.asp?lang=de&ID=8&ISBN=978-3-8322-9237-9
  10. 2008

    1. Freeman, B. J. (2008). Modernization criteria assessment for water resources planning, Klamath Irrigation Project, U.S (PhD dissertation, Universität Stuttgart, Institut für Wasserbau; Vol. 166). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2008/3635/
    2. Patil, S. (2008). Regionalization of an Event Based Nash Cascade Model for Flood Predictions in Ungauged Basins (PhD dissertation, Universität Stuttgart, Institut für Wasserbau; Vol. 175). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2008/3653/pdf/doktorarbeit_patil_web.pdf
    3. Brommundt, J. (2008). Stochastische Generierung räumlich zusammenhängender Niederschlagszeitreihen (PhD dissertation, Universität Stuttgart, Institut für Wasserbau; Vol. 170). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2008/3470/pdf/Brommundt_170_online.pdf
    4. Class, H. (2008). Models for non-isothermal compositional gas-liquid flow and transport in porous media (PhD dissertation, Universität Stuttgart, Institut für Wasserbau). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2009/3847/pdf/class_habil_version1.1.pdf
    5. Assteerawatt, A. (2008). Flow and Transport Modelling of Fractured Aquifers based on a Geostatistical Approach (PhD dissertation, Universität Stuttgart, Institut für Wasserbau; Vol. 176). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2008/3639/
    6. Freiboth, S. (2008). A phenomenological model for the numerical simulation of multiphase multicomponent processes considering structural alternations of porous media (PhD dissertation, Universität Stuttgart, Institut für Wasserbau; Vol. 184). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2009/4610/pdf/Dissertation_Freiboth_Sandra.pdf
    7. Wagner, S. (2008). Water balance in a poorly gauged basin in West Africa using atmospheric modelling and remote sensing information (PhD dissertation, Universität Stuttgart, Institut für Wasserbau; Vol. 173). Retrieved from https://elib.uni-stuttgart.de/opus/frontdoor.php?source_opus=3615&la=de
    8. Papafotiou, A. (2008). Numerical Investigations on the Role of Hysteresis in Heterogeneous Two-Phase Flow Systems (PhD dissertation, Universität Stuttgart, Institut für Wasserbau; Vol. 171). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2008/3567/
  11. 2007

    1. Yang, W. (2007). Discrete-continuous downscaling model for generating daily precipitation time series (PhD dissertation, Universität Stuttgart, Institut für Wasserbau; Vol. 168). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2008/3515/
    2. Marx, A. (2007). Einsatz gekoppelter Modelle und Wetterrader zur Abschätzung von Niederschlagsintensitäten und zur Abflussvorhersage (PhD dissertation, Universität Stuttgart, Institut für Wasserbau; Vol. 160). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2007/3016/
    3. Schneck, A. (2007). Optimization of groundwater management considering the demands of water supply, agriculture and ecology (PhD dissertation, Universität Stuttgart, Institut für Wasserbau; Vol. 153). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2007/2884/
    4. Ochs, S. O. (2007). Steam injection into saturated porous media - process analysis including experimental and numerical investigations - (PhD dissertation, Universität Stuttgart, Institut für Wasserbau; Vol. 159). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2007/2971/
    5. Kebede Gurmessa, T. (2007). Numerical Investigation on Flow and Transport Characteristicsto Improve Long-Term Simulation of Reservoir Sedimentation (PhD dissertation, Universität Stuttgart, Institut für Wasserbau; Vol. 162). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2007/3272/
    6. Trifkovic, A. (2007). Multi-objective and Risk-based Modelling Methodology forPlanning, Design and Operation of Water Supply Systems (PhD dissertation, Universität Stuttgart, Institut für Wasserbau; Vol. 163). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2007/3251/
    7. Götzinger, J. (2007). Distributed Conceptual Hydrological Modelling - Simulation of Climate, Land Use Change Impact and Uncertainty Analysis (Eigenverlag des Instituts für Wasserbau, Universität Stuttgart; Vol. 164). Retrieved from https://elib.uni-stuttgart.de/opus/frontdoor.php?source_opus=3349&la=de
    8. Bielinski, A. (2007). Numerical Simulation of CO2 Sequestration in Geological Formations (PhD dissertation, Universität Stuttgart, Institut für Wasserbau; Vol. 155). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2007/2953/
    9. Hartmann, G. (2007). Investigation of Evapotranspiration Concepts in HydrologicalModelling for Climate Change Impact Assessment (PhD dissertation, Universität Stuttgart, Institut für Wasserbau; Vol. 161). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2007/3086/
    10. Pozos Estrada, O. (2007). Investigation on the Effects of Entrained Air in Pipelines (PhD dissertation, Universität Stuttgart, Institut für Wasserbau; Vol. 158). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2007/2942/
  12. 2006

    1. Das, T. (2006). The impact of spatial variability of precipitation on the predictive uncertainty of hydrological models (PhD dissertation, Universität Stuttgart, Institut für Wasserbau; Vol. 154). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2006/2882/
    2. Winkler, N. (2006). Optimierung der Steuerung von Hochwasserrückhaltebeckensystemen (PhD dissertation, Universität Stuttgart, Institut für Wasserbau; Vol. 147). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2006/2612/
    3. Breiting, T. (2006). Techniken und Methoden der Hydroinformatik - Modellierung von komplexen Hydrosystemen im Untergrund (PhD dissertation, Universität Stuttgart, Institut für Wasserbau; Vol. 144). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2006/2646/pdf/PROMO_PDF.pdf
    4. Flemisch, B. (2006). Non-matching triangulations of curvilinear interfaces applied to electro-mechanics and elasto-acoustics (PhD dissertation, Universität Stuttgart, Institut für Wasserbau). Retrieved from https://www.iws.uni-stuttgart.de/publikationen/hydrosys/paper/flemisch_thesis.pdf
    5. Niessner, J. (2006). Multi-Scale Modeling of Multi-Phase - Multi-Component Processesin Heterogeneous Porous Media (PhD dissertation, Universität Stuttgart, Institut für Wasserbau; Vol. 151). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2006/2769/
    6. Wolf, J. (2006). Räumlich differenzierte Modellierung der Grundwasserströmung alluvialerAquifere für mesoskalige Einzugsgebiete (PhD dissertation, Universität Stuttgart, Institut für Wasserbau; Vol. 148). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2006/2780/
    7. Manthey, S. (2006). Two-phase flow processes with dynamic effects in porous media - parameter estimation and simulation (PhD dissertation, Universität Stuttgart, Institut für Wasserbau; Vol. 157). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2007/2951/
    8. Kohler, B. (2006). Externe Effekte der Laufwasserkraftnutzung (PhD dissertation, Universität Stuttgart, Institut für Wasserbau; Vol. 149). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2006/2872/
    9. Fischer, M. (2006). Beanspruchung eingeerdeter Rohrleitungen infolge Austrocknungbindiger Böden (PhD dissertation, Universität Stuttgart, Institut für Wasserbau; Vol. 152). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2006/2834/
    10. Mödinger, J. (2006). Entwicklung eines Bewertungs- und Entscheidungsunterstützungssystemsfür eine nachhaltige regionale Grundwasserbewirtschaftung (PhD dissertation, Universität Stuttgart, Institut für Wasserbau; Vol. 156). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2007/3046/
  13. 2005

    1. Kobayashi, K. (2005). Optimization Methods for Multiphase Systems in the Subsurface - Application to Methane Migration in Coal Mining Areas (PhD dissertation, Universität Stuttgart, Institut für Wasserbau; Vol. 139). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2005/2297
  14. 2004

    1. Dreher, T. (2004). Selektive Sedimentation von Feinstschwebstoffen in Wechselwirkung mit wandnahen turbulenten Strömungen (PhD dissertation, Universität Stuttgart, Institut für Wasserbau; Vol. 167). Retrieved from https://www.iws.uni-stuttgart.de/publikationen/versuchsanstalt/167_Dreher_Thomas.pdf
To the top of the page