Publications

Journal publications, PhD theses, student theses and other publications from our institute

Journals (last 50)

  1. 2019

    1. Rodriguez-Pretelin, A., & Nowak, W. (2019). Dynamic re-distribution of pumping rates in well fields to counter transient problems in groundwater production. Groundwater for Sustainable Development, 8, 606–616. https://doi.org/10.1016/j.gsd.2019.02.009
    2. Most, S., Bolster, D., Bijeljic, B., & Nowak, W. (2019). Trajectories as training images to simulate advective-diffusive, non-Fickian transport. Water Resources Research, 55, 3465–3480. https://doi.org/10.1029/2018WR023552
    3. Motavita, D. F., Chow, R., Guthke, A., & Nowak, W. (2019). The Comprehensive Differential Split-Sample Test: A stress-test for hydrological model robustness under climate variability. Journal of Hydrology, 573, 501–515. https://doi.org/10.1016/j.jhydrol.2019.03.054
    4. Bode, F., Reed, P., Reuschen, S., & Nowak, W. (2019). Search Space Representation and Reduction Methods to Enhance Multi-Objective Water Supply Monitoring Design. Water Resources Research, 55(3), 2257–2278. https://doi.org/10.1029/2018WR023133
    5. Haas, J., Hagen, D., & Nowak, W. (2019). Energy storage and transmission systems to save the fish? Minimizing hydropeaking for little extra-cost. Sustainable Energy Technologies and Assessments.
    6. Pamparana, Giovanni, Kracht, W., Haas, J., Ortiz, J. M., Nowak, W., & Palma-Behnke, R. (2019b). Studying the integration of solar energy into the operation of a semi-autogenous grinding mill. Part II: effect of ore hardness variability, geometallurgical modeling and demand side management. Minerals Engineering, 137, 53–67. https://doi.org/10.1016/j.mineng.2019.03.016
    7. González-Nicolás, A., Cihan, A., Petrusak, R., Zhou, Q., Trautz, R., Riestenberg, D., … Birkholzer, J. T. (2019). Pressure management via brine extraction in geological CO2 storage: Adaptive optimization strategies under poorly characterized reservoir conditions. International Journal of Greenhouse Gas Control, 83, 176–185.
    8. Chow, R., Jeremy, B., Jürnjakob, D., Wöhling, T., & Nowak, W. (2019). Evaluating subsurface parameterization to simulate hyporheic exchange: The Steinlach River Test Site. Groundwater. https://doi.org/10.1111/gwat.12884
    9. Bürger, R., & Kröker, I. (2019). Computational uncertainty quantification for some strongly degenerate parabolic convection–diffusion equations. Journal of Computational and Applied Mathematics, 348, 490–508. https://doi.org/10.1016/j.cam.2018.09.006
    10. Pamparana, Giovanni, Kracht, W., Haas, J., Ortiz, J. M., Nowak, W., & Palma-Behnke, R. (2019a). Studying the integration of solar energy into the operation of a semi-autogenous grinding mill. Part I: framework, model development and effect of solar irradiance forecasting. Minerals Engineering, 137, 68–77. https://doi.org/10.1016/j.mineng.2019.03.017
    11. Veyskarami, M., Hassani, A. H., & Ghazanfari, M. H. (2019). Monitoring the behaviour of anionic polymer-anionic surfactant stabilized foam in the absence and presence of oil:Bulk and bubble-scale experimental analyses. The Canadian Journal of Chemical Engineering, 97. https://doi.org/10.1002/cjce.23368
  2. 2018

    1. Gosses, M., Nowak, W., & Wöhling, T. (2018). Explicit treatment for Dirichlet, Neumann and Cauchy      boundary conditions in POD-based reduction of groundwater models. Advances in Water Resources.
    2. Veyskarami, M., & Ghazanfari, M. H. (2018). Synergistic effect of like and opposite charged nanoparticle and surfactant on foam stability and mobility in the absence and presence of hydrocarbon:A comparative study. Journal of Petroleum Science and Engineering, 166. https://doi.org/10.1016/j.petrol.2018.03.076
    3. Xiao, S., & Lu, Z. (2018a). Global sensitivity analysis based on Gini’s mean difference. Structural and Multidisciplinary Optimization, 58(4), 1523–1535.
    4. Veyskarami, M., Hassani, A. H., & Ghazanfari, M. H. (2018). A new insight into onset of inertial flow in porous media using network modeling with converging/diverging pores. Computational Geosciences, 22. Retrieved from https://link.springer.com/article/10.1007/s10596-017-9695-3
    5. Xiao, S., & Lu, Z. (2018b). Reliability analysis by combining higher-order unscented transformation and fourth-moment method. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 4(1), 04017034.
  3. 2017

    1. Sinsbeck, M., & Nowak, W. (2017). Sequential Design of Computer Experiments for the Solution of Bayesian Inverse Problems. SIAM /ASA Journal of Uncertainty Quantification, 5(1), 640–664. https://doi.org/10.1137/15M1047659
    2. Guthke, A. (2017). Defensible Model Complexity: A Call for Data-Based and Goal-Oriented Model Choice. Groundwater, 55(5). https://doi.org/10.1111/gwat.12554
    3. Trevisan, L., Pini, R., Cihan, A., Birkholzer, J. T., Zhou, Q., González-Nicolás, A., & Illangasekare, T. H. (2017). Imaging and quantification of spreading and trapping of carbon dioxide in saline aquifers using meter-scale laboratory experiments. Water Resources Research, 53(1), 485–502. https://doi.org/10.1002/2016WR019749
    4. Moreno-Leiva, S., D’iaz-Ferrán, G., Haas, J., Telsnig, T., D’iaz-Alvarado, F. A., Palma-Behnke, R., … Eltrop, L. (2017). Towards solar power supply for copper production in Chile: Assessment of global warming potential using a life-cycle approach. Journal of Cleaner Production, 164, 242--249. https://doi.org/10.1016/j.jclepro.2017.06.038
    5. Pamparana, G., Kracht, W., Haas, J., D’iaz-Ferrán, G., Palma-Behnke, R., & Román, R. (2017). Integrating photovoltaic solar energy and a battery energy storage system to operate a semi-autogenous grinding mill. Journal of Cleaner Production, 165, 273–280. https://doi.org/10.1016/j.jclepro.2017.07.110
    6. Hassani, A. H., Veyskarami, M., Al-Ajmi, A. M., & Masihi, M. (2017). A modified method for predicting the stresses around producing boreholes in an isotropic in-situ stress field. International Journal of Rock Mechanics and Mining Sciences, 96. https://doi.org/10.1016/j.ijrmms.2017.02.011
    7. Agada, S. S., Geiger, S., ElSheikh, A., & Oladyshkin, S. (2017). Data-driven surrogates for rapid simulation and optimization of WAG injection in fractured carbonate reservoirs. Petroleum Geoscience, 23(2), 270–283. https://doi.org/10.1144/petgeo2016-068
    8. Emmert, M., Zigelli, N., Haakh, F., Bode, F., & Nowak, W. (2017). Risikobasiertes Grundwassermonitoring für Wasserschutzgebiete. Energie | Wasser-Praxis, 67(8), 68–71.
    9. Mehne, J., & Nowak, W. (2017). Improving temperature predictions for Li-ion batteries: data assimilation with a stochastic extension of a physically-based, thermo-electrochemical model. Journal of Energy Storage, 12, 288–296. https://doi.org/10.1016/j.est.2017.05.013
    10. Wirtz, D., & Nowak, W. (2017). The rocky road to universal scientific simulation frameworks. Environmental Software and Modelling, 93, 180–192. https://doi.org/10.1016/j.envsoft.2016.10.003
  4. 2016

    1. Veyskarami, M., Hassani, A. H., & Ghazanfari, M. H. (2016). Modeling of non-Darcy flow through anisotropic porous media:Role of pore space profiles. Chemical Engineering Science, 151. https://doi.org/10.1016/j.ces.2016.05.020
    2. Rahmann, C., Vittal, V., Ascui, J., & Haas, J. (2016). Mitigation Control against Partial Shading Effects in Large-scale PV Power Plants. IEEE Transactions on Sustainable Energy, 7(1), 173–180. https://doi.org/10.1109/TSTE.2015.2484261
    3. Nowak, W., & Guthke, A. (2016). Entropy-based experimental design for optimal model discrimination in the geosciences. Entropy, 18(11), 409. https://doi.org/10.3390/e18110409
  5. 2015

    1. Wöhling, T., Schöniger, A., Gayler, S., & Nowak, W. (2015). Bayesian model averaging to explore the worth of data for soil-plant model selection and prediction. Water Resources Research, 51(4), 2825–2846. https://doi.org/10.1002/2014WR016292
    2. Nowak, W., Bode, F., & Loschko, M. (2015). A multi-objective optimization concept for risk-based early-warning monitoring networks in well catchments. Procedia Environmental Sciences, 25, 191–198. https://doi.org/10.1016/j.proenv.2015.04.026
    3. Cody, B. M., Baú, D., & González-Nicolás, A. (2015). Stochastic injection-strategy optimization for the preliminary assessment of candidate geological storage sites. Hydrogeology Journal, 23(6), 1229–1245.
    4. Baú, D., Cody, B. M., & González-Nicolás, A. (2015). An iterative global pressure solution for the semi-analytical simulation of geological carbon sequestration. Computational Geosciences, 19(4), 781–789.
  6. 2014

    1. Karajan, N., Otto, D., Oladyshkin, S., & Ehlers, M. (2014). Application of the polynomial chaos expansion to approximate the homogenised response of the intervertebral disc. Biomechanics and Modeling in Mechanobiology, 13(5), 1065–1080. https://doi.org/10.1007/s10237-014-0555-y
    2. Enzenhöfer, R., Bunk, T., & Nowak, W. (2014). Nine steps to risk-informed wellhead protection and management: A case study. Groundwater, 52, 161–174. https://doi.org/10.1111/gwat.12161
  7. 2013

    1. Ashraf, M., Oladyshkin, S., & Nowak, W. (2013). Geological storage of CO2: global sensitivity analysis and risk assessment using arbitrary polynomial chaos expansion. International Journal of Greenhouse Gas Control, 19, 704–719. https://doi.org/doi:10.1016/j.ijggc.2013.03.023
  8. 2012

    1. Enzenhöfer, R., Nowak, W., & Helmig, R. (2012). Probabilistic Exposure Risk Assessment with Advective-Dispersive Well Vulnerability Criteria. Advances in Water Resources, 36, 121–132. https://doi.org/10.1016/j.advwatres.2011.04.018
    2. de Barros, F. P. J., Dentz, M., Koch, J., & Nowak, W. (2012). Flow topology and scalar mixing in heterogeneous porous media. Geophysical Research Letters, 39(L08404). https://doi.org/10.1029/2012GL051302
    3. Leube, P., Nowak, W., & Schneider, G. (2012). Temporal Moments revisited: Why there is there nobetter way for physically-based model reduction in time. Water Resources Research, 48(W11527). https://doi.org/10.1029/2012WR011973
    4. Nowak, W., Rubin, Y., & de Barros, F. P. J. (2012). A hypothesis-driven approach to optimal site investigation. Water Resources Research, 48(W06509). https://doi.org/10.1029/2011WR011016
  9. 2011

    1. Hlawatsch, M., Leube, P., Nowak, W., & Weiskopf, D. (2011). Flow Radar Glyphs-Static Visualization of Unsteady Flow with Uncertainty. IEEE Transactions on Visualization and Computer Graphics, 17(12), 1949–1958. https://doi.org/10.1109/TVCG.2011.203
  10. 2010

    1. Nowak, W., de Barros, F. P. J., & Rubin, Y. (2010). Bayesian Geostatistical Design: Task-Driven Optimal Site Investigation when the Geostatistical Model is Uncertain. Water Resources Research, 46(W03535). https://doi.org/10.1029/2009WR008312
  11. 2008

    1. Nowak, W., Schwede, R. L., Cirpka, O. A., & Neuweiler, I. (2008). Probability density functions of hydraulic head and velocity in three-dimensional heterogeneous porous media. Water Resources Research, 44(W08452). https://doi.org/10.1029/2007WR006383
    2. Schwede, R. L. ., Cirpka, O. A., Nowak, W., & Neuweiler, I. (2008). Impact of sampling volume on the probability density function of steady state concentration. Water Resources Research, 44(W12433). https://doi.org/10.1029/2007WR006668
  12. 2007

    1. Oladyshkin, S., & Panfilov, M. (2007a). Limit thermodynamic model for compositional gas-liquid systems moving in a porous medium. Transport in Porous Media, 70(2), 147–165. https://doi.org/10.1007/s11242-006-9092-1
    2. Oladyshkin, S., & Panfilov, M. (2007b). Streamline splitting between thermodynamics and hydrodynamics in compositional gas-liquid flow through porous media. Comptes Rendus de l’Academie Des Sciences Mecanique, 335(1), 7–12. https://doi.org/10.1016/j.crme.2006.12.001
  13. 2006

    1. Nowak, W., & Cirpka, O. A. (2006). Geostatistical Inference of Hydraulic Conductivity and Dispersivities from Hydraulic Heads and Tracer Data. Water Resources Research, 42(W08416). https://doi.org/10.1029/2005WR004832
  14. 2005

    1. S. Oladyshkin, M. P. (2005). Modeling of two-phase macroflow with phase transitions and contract properties. Transactions of the Russian Academy of Engineering Sciences., 5, 34–36.
  15. 2003

    1. Nowak, W., Tenkleve, S., & Cirpka, O. A. (2003). Efficient computation of linearized cross-covariance and auto-covariance matrices of interdependent quantities. Mathematical Geology, 35(1), 53–66. https://doi.org/10.1023/A:1022365112368
  16. 2001

    1. S. Oladyshkin, N.N. Bobkov, Yu. P. G., & Kozyrev, O. R. (2001). The numerical algorithm development in the problem of thermocapillary convection under the Marangoni forces action. Transactions of the Russian Academy of Engineering Sciences, 2, 28–39.

PhD theses (last 50)

  1. 2018

    1. Beck, M. (2018). Conceptual approaches for the analysis of coupled hydraulic and geomechanical processes (Promotionsschrift, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart). https://doi.org/10.18419/opus-10418
    2. Schneider, M. (2018). Nonlinear finite volume schemes for complex flow processes and challenging grids (Promotionsschrift, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart). https://doi.org/10.18419/opus-10416
    3. Mejri, E. (2018). Modeling and Analysis of Salt Precipitation on Evaporation Processes in the Unsaturated Zone (Promotionsschrift). Université de Tunis El Manar, Ecole Nationale d´Ingenieurs de Tunis.
    4. Fetzer, T. (2018). Coupled Free and Porous-Medium Flow Processes Affected by Turbulence and Roughness - Models, Concepts and Analysis (Promotionsschrift; Vol. 259). Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung.
  2. 2017

    1. Grüninger, C. (2017). Numerical coupling of Navier-Stokes and Darcy flow for soil-water evaporation (Promotionsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung; Vol. 253). https://doi.org/10.18419/opus-9657
  3. 2016

    1. Kissinger, A. (2016). Basin-Scale Site Screening and Investigation of Possible Impacts of CO2 Storage on Subsurface Hydrosystems (Promotionsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung; Vol. 251). Retrieved from https://dx.doi.org/10.18419/opus-8998
  4. 2015

    1. Nuske, P. (2015). Beyond local equilibrium : relaxing local equilibrium assumptions in multiphase flow in porous media (Promotionsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung; Vol. 237). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2015/9796/pdf/thesisPhilippNuskeMerged.pdf
    2. Köppl, T. (2015). Multi-scale modeling of flow and transport processes in arterial networks and tissue (Promotionsschrift). TU München,.
  5. 2014

    1. Lauser, A. (2014). Theory and Numerical Applications of Compositional Multi-Phase Flow in Porous Media (Promotionsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung; Vol. 228). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2014/9074/pdf/lauser_thesis_2print.pdf
    2. Geiges, A. (2014). Efficient concepts for optimal experimental design in nonlinear environmental systems. Promotionsschrift Nr. 238, Mitteilungsheft des Instituts für Wasserbau Nr. 238 (Promotionsschrift) Institut für Wasserbau, Universität Stuttgart, 2014. ISBN: 978-3-942036-42-9, http://elib.uni-stuttgart.de/opus/volltexte/2015/9809/.
    3. Mosthaf, K. (2014). Modeling and Analysis of Coupled Porous - Medium and Free Flow with Application to Evaporation Processes (Promotionsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung; Vol. 223). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2014/9064/pdf/DISSERTATION_KlausMosthaf_final.pdf
    4. Koch, J. (2014). Simulation, identification and characterization of contaminant source architectures in the subsurface. Promotionsschrift Nr. 233, Mitteilungsheft des Instituts für Wasserbau Nr. 233 (Promotionsschrift) Institut für Wasserbau, Universität Stuttgart, 2014. ISBN: 978-3-942036-37-5, http://elib.uni-stuttgart.de/opus/volltexte/2014/9488/.
    5. Faigle, B. (2014). Adaptive modelling of compositional multi-phase flow with capillary pressure. (Promotionsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung; Vol. 230). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2014/9068/
    6. Oladyshkin, S. (2014). Efficient Modeling of Environmental Systems in the Face of Complexity and Uncertainty. Habilitationsschrift Nr. 231, Mitteilungsheft des Instituts für Wasserbau Nr. 231 (Habilitationsschrift) Institut für Wasserbau, Universität Stuttgart, 2014. ISBN: 978-3-942036-35-1, http://elib.uni-stuttgart.de/opus/volltexte/2015/9523/.
  6. 2013

    1. Enzenhöfer, R. (2013). Risk Quantification and Management in Water Production and Supply Systems. Promotionsschrift Nr. 229, Mitteilungsheft des Instituts für Wasserbau Nr. 229 (Promotionsschrift) Institut für Wasserbau, Universität Stuttgart, 2014. ISBN: 978-3-942036-33-7, http://elib.uni-stuttgart.de/opus/volltexte/2014/9015/.
    2. Flemisch, B. (2013). Tackling Coupled Problems in Porous Media: Development of Numerical Models and an Open Source Simulator (Habilitationsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung). Retrieved from https://www.iws.uni-stuttgart.de/publikationen/hydrosys/paper/2013/flemisch_habil.pdf
    3. Kröker, I. (2013). Stochastic models for nonlinear convection-dominated flows. Universität Stuttgart.
    4. Leube, P. (2013). Methods for Physically-Based Model Reduction in Time: Analysis, Comparison of Methods and Application. Promotionsschrift Nr. 224, Mitteilungsheft des Instituts für Wasserbau Nr. 224 (Promotionsschrift) Institut für Wasserbau, Universität Stuttgart, 2013. ISBN: 978-3-942036-28-3, http://elib.uni-stuttgart.de/opus/volltexte/2013/8801/.
  7. 2012

    1. Erbertseder, K. (2012). A multi-scale model for describing cancer-therapeutic transport in the human lung (Promotionsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung; Vol. 213). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2012/7200/
    2. Haas, T. (2012). Geistliche als Kreuzfahrer. Der Klerus im Konflikt zwischen Orient und Okzident 1095-1221 (Promotionsschrift). ,.
    3. Darcis, M. (2012). Coupling Models of Different Complexity for the Simulation of CO2 Storage in Deep Saline Aquifers (Promotionsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung; Vol. 218). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2013/8141/
  8. 2011

    1. Kuhlmann, A. (2011). Influence of soil structure and root water uptake on flow in the unsaturated zone (Promotionsschrift, Universität Stuttgart, Institut für Wasserbau; Vol. 209). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2012/7214/
  9. 2010

    1. Dogan, M. O. (2010). Coupling of porous media flow with pipe flow (Promotionsschrift, Universität Stuttgart, Institut für Wasserbau; Vol. 199). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2011/5942/
    2. Niessner, J. (2010). The Role of Interfacial Areas in Two-Phase Flow in Porous Media -- bridging scales and coupling models (Habilitationsschrift, Universität Stuttgart, Institut für Wasserbau). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2011/6305/
    3. Fritz, J. (2010). A decoupled model for compositional non-isothermal multiphase flow in porous media and multiphysics approaches for two-phase flow (Promotionsschrift, Universität Stuttgart, Institut für Wasserbau, Lehrstuhl für Hydromechanik und Hydrosystemmodellierung; Vol. 192). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2010/5683
    4. Cao, Y. (2010). Robust numerical algorithms based on corrected operator splitting for two-phase flow in porous media (Promotionsschrift, Universität Stuttgart, Universität Stuttgart). Retrieved from https://www.shaker.de/de/content/catalogue/index.asp?lang=de&ID=8&ISBN=978-3-8322-9237-9
  10. 2008

    1. Freeman, B. J. (2008). Modernization criteria assessment for water resources planning, Klamath Irrigation Project, U.S (Promotionsschrift, Universität Stuttgart, Institut für Wasserbau; Vol. 166). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2008/3635/
    2. Patil, S. (2008). Regionalization of an Event Based Nash Cascade Model for Flood Predictions in Ungauged Basins (Promotionsschrift, Universität Stuttgart, Institut für Wasserbau; Vol. 175). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2008/3653/pdf/doktorarbeit_patil_web.pdf
    3. Brommundt, J. (2008). Stochastische Generierung räumlich zusammenhängender Niederschlagszeitreihen (Promotionsschrift, Universität Stuttgart, Institut für Wasserbau; Vol. 170). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2008/3470/pdf/Brommundt_170_online.pdf
    4. Class, H. (2008). Models for non-isothermal compositional gas-liquid flow and transport in porous media (Habilitationsschrift, Universität Stuttgart, Institut für Wasserbau). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2009/3847/pdf/class_habil_version1.1.pdf
    5. Assteerawatt, A. (2008). Flow and Transport Modelling of Fractured Aquifers based on a Geostatistical Approach (Promotionsschrift, Universität Stuttgart, Institut für Wasserbau; Vol. 176). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2008/3639/
    6. Freiboth, S. (2008). A phenomenological model for the numerical simulation of multiphase multicomponent processes considering structural alternations of porous media (Promotionsschrift, Universität Stuttgart, Institut für Wasserbau; Vol. 184). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2009/4610/pdf/Dissertation_Freiboth_Sandra.pdf
    7. Wagner, S. (2008). Water balance in a poorly gauged basin in West Africa using atmospheric modelling and remote sensing information (Promotionsschrift, Universität Stuttgart, Institut für Wasserbau; Vol. 173). Retrieved from https://elib.uni-stuttgart.de/opus/frontdoor.php?source_opus=3615&la=de
    8. Papafotiou, A. (2008). Numerical Investigations on the Role of Hysteresis in Heterogeneous Two-Phase Flow Systems (Promotionsschrift, Universität Stuttgart, Institut für Wasserbau; Vol. 171). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2008/3567/
  11. 2007

    1. Yang, W. (2007). Discrete-continuous downscaling model for generating daily precipitation time series (Promotionsschrift, Universität Stuttgart, Institut für Wasserbau; Vol. 168). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2008/3515/
    2. Marx, A. (2007). Einsatz gekoppelter Modelle und Wetterrader zur Abschätzung von Niederschlagsintensitäten und zur Abflussvorhersage (Promotionsschrift, Universität Stuttgart, Institut für Wasserbau; Vol. 160). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2007/3016/
    3. Kebede Gurmessa, T. (2007). Numerical Investigation on Flow and Transport Characteristicsto Improve Long-Term Simulation of Reservoir Sedimentation (Promotionsschrift, Universität Stuttgart, Institut für Wasserbau; Vol. 162). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2007/3272/
    4. Trifkovic, A. (2007). Multi-objective and Risk-based Modelling Methodology forPlanning, Design and Operation of Water Supply Systems (Promotionsschrift, Universität Stuttgart, Institut für Wasserbau; Vol. 163). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2007/3251/
    5. Götzinger, J. (2007). Distributed Conceptual Hydrological Modelling - Simulation of Climate, Land Use Change Impact and Uncertainty Analysis (Promotionsschrift, Eigenverlag des Instituts für Wasserbau, Universität Stuttgart; Vol. 164). Retrieved from https://elib.uni-stuttgart.de/opus/frontdoor.php?source_opus=3349&la=de
    6. Bielinski, A. (2007). Numerical Simulation of CO2 Sequestration in Geological Formations (Promotionsschrift, Universität Stuttgart, Institut für Wasserbau; Vol. 155). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2007/2953/
    7. Hartmann, G. (2007). Investigation of Evapotranspiration Concepts in HydrologicalModelling for Climate Change Impact Assessment (Promotionsschrift, Universität Stuttgart, Institut für Wasserbau; Vol. 161). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2007/3086/
    8. Pozos Estrada, O. (2007). Investigation on the Effects of Entrained Air in Pipelines (Promotionsschrift, Universität Stuttgart, Institut für Wasserbau; Vol. 158). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2007/2942/
  12. 2006

    1. Das, T. (2006). The impact of spatial variability of precipitation on the predictive uncertainty of hydrological models (Promotionsschrift, Universität Stuttgart, Institut für Wasserbau; Vol. 154). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2006/2882/
    2. Flemisch, B. (2006). Non-matching triangulations of curvilinear interfaces applied to electro-mechanics and elasto-acoustics (Promotionsschrift, Universität Stuttgart, Institut für Wasserbau). Retrieved from https://www.iws.uni-stuttgart.de/publikationen/hydrosys/paper/flemisch_thesis.pdf
    3. Manthey, S. (2006). Two-phase flow processes with dynamic effects in porous media - parameter estimation and simulation (Promotionsschrift, Universität Stuttgart, Institut für Wasserbau; Vol. 157). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2007/2951/
    4. Mödinger, J. (2006). Entwicklung eines Bewertungs- und Entscheidungsunterstützungssystemsfür eine nachhaltige regionale Grundwasserbewirtschaftung (Promotionsschrift, Universität Stuttgart, Institut für Wasserbau; Vol. 156). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2007/3046/
    5. Manthey, S. (2006). Two-phase flow processes with dynamic effects in porous media - parameter estimation and simulation (Promotionsschrift, Universität Stuttgart, Institut für Wasserbau; Vol. 157). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2007/2951/
    6. Mödinger, J. (2006). Entwicklung eines Bewertungs- und Entscheidungsunterstützungssystemsfür eine nachhaltige regionale Grundwasserbewirtschaftung (Promotionsschrift, Universität Stuttgart, Institut für Wasserbau; Vol. 156). Retrieved from https://elib.uni-stuttgart.de/opus/volltexte/2007/3046/
  13. 2005

    1. Nowak, W. (2005). Geostatistical Methods for the Identification of Flow and Transport Parameters in Subsurface Flow. Promotionsschrift Nr. 134, Mitteilungsheft des Instituts für Wasserbau Nr. 134 (Promotionsschrift) Institut für Wasserbau, Universität Stuttgart, 2005. ISBN: 3-933761-37-9, http://elib.uni-stuttgart.de/opus/frontdoor.php?source extunderscoreopus=2275.
  14. 2004

    1. Dreher, T. (2004). Selektive Sedimentation von Feinstschwebstoffen in Wechselwirkung mit wandnahen turbulenten Strömungen (Promotionsschrift, Universität Stuttgart, Institut für Wasserbau; Vol. 167). Retrieved from https://www.iws.uni-stuttgart.de/publikationen/versuchsanstalt/167_Dreher_Thomas.pdf
To the top of the page