Publications

Journal publications, PhD theses, student theses and other publications from our institute

Journals (last 50)

  1. 2021

    1. Seitz, G., Mohammadi, F., & Class, H. (2021). Thermochemical Heat Storage in a Lab-Scale Indirectly Operated CaO/Ca(OH)2 Reactor - Numerical Modeling and Model Validation through Inverse Parameter Estimation. Applied Sciences, 11(2), 682. https://doi.org/10.3390/app11020682
    2. Kurgyis, K., Hommel, J., Flemisch, B., Helmig, R., & Ott, H. (2021). Explicit continuum scale modeling of low-salinity mechanisms. Journal of Petroleum Science and Engineering, 199, 108336. https://doi.org/10.1016/j.petrol.2020.108336
    3. Bastidas Olivares, M., Bringedal, C., & Pop, I. S. (2021). A two-scale iterative scheme for a phase-field model for precipitation and dissolution in porous media. Applied Mathematics and Computation, 396, 125933. https://doi.org/https://doi.org/10.1016/j.amc.2020.125933
    4. Bastidas, M., Bringedal, C., Pop, I. S., & Radu, F. A. (2021). Numerical homogenization of non-linear parabolic problems on adaptive meshes. Journal of Computational Physics, 425, 109903. https://doi.org/https://doi.org/10.1016/j.jcp.2020.109903
    5. Bárdossy, A., Seidel, J., & El Hachem, A. (2021). The use of personal weather station observations to improve precipitation estimation and interpolation. HESS, 25, 583–601. https://doi.org/10.5194/hess-25-583-2021
  2. 2020

    1. Emmert, S., Davis, K., Gerlach, R., & Class, H. (2020). The Role of Retardation, Attachment and Detachment Processes during Microbial Coal-Bed Methane Production after Organic Amendment. Water, 12(11), Article 11. https://doi.org/10.3390/w12113008
    2. Weishaupt, K., Terzis, A., Zarikos, I., Yang, G., Flemisch, B., de Winter, D. A. M., & Helmig, R. (2020). A Hybrid-Dimensional Coupled Pore-Network/Free-Flow Model Including Pore-Scale Slip and Its Application to a Micromodel Experiment. Transport in Porous Media, 135(1), 243--270. https://doi.org/10.1007/s11242-020-01477-y
    3. Ghosh, T., Bringedal, C., Helmig, R., & Sekhar, G. P. R. (2020). Upscaled equations for two-phase flow in highly heterogeneous porous media: Varying permeability and porosity. Advances in Water Resources, 145, 103716. https://doi.org/10.1016/j.advwatres.2020.103716
    4. Fraundorf, P., Lipp, M., Hundley, T., Silva, C., & Chrostoski, P. (2020). Fraction Crystalline from Electron Powder Patterns of Unlayered Graphene in Solidified Carbon Rain. Microscopy and Microanalysis, 1–4. https://doi.org/10.1017/S1431927620022953
    5. Bringedal, C., von Wolff, L., & Pop, I. S. (2020). Phase Field Modeling of Precipitation and Dissolution Processes in Porous Media: Upscaling and Numerical Experiments. Multiscale Modeling & Simulation, 18(2), 1076--1112. https://doi.org/10.1137/19M1239003
    6. Riegger, J. (2020). Quantification of drainable water storage volumes on landmasses and in river networks based on GRACE and river runoff using a cascaded storage approach - first application on the Amazon. https://doi.org/10.18419/OPUS-11225
    7. Sharmin, S., Bringedal, C., & Pop, I. S. (2020). On upscaling pore-scale models for two-phase flow with evolving interfaces. Advances in Water Resources, 142, 103646. https://doi.org/10.1016/j.advwatres.2020.103646
    8. Coltman, E., Lipp, M., Vescovini, A., & Helmig, R. (2020). Obstacles, Interfacial Forms, and Turbulence: A Numerical Analysis of Soil-Water Evaporation Across Different Interfaces. Transport in Porous Media, 134(2), 275--301. https://doi.org/10.1007/s11242-020-01445-6
    9. Emmert, S., Class, H., Davis, K. J., & Gerlach, R. (2020). Importance of specific substrate utilization by microbes in microbially enhanced coal-bed methane production: A modelling study. International Journal of Coal Geology, 229, 103567. https://doi.org/https://doi.org/10.1016/j.coal.2020.103567
    10. Velimirovic, M., Bianco, C., Ferrantello, N., Tosco, T., Casasso, A., Sethi, R., Schmid, D., Wagner, S., Miyajima, K., Klaas, N., Meckenstock, R. U., von der Kammer, F., & Hofmann, T. (2020). A Large-Scale 3D Study on Transport of Humic Acid-Coated Goethite Nanoparticles for Aquifer Remediation. Water, 12(4), Article 4. https://doi.org/10.3390/w12041207
    11. Bárdossy, A., Anwar, F., & Seidel, J. (2020). Hydrological Modelling in Data Sparse Environment: Inverse Modelling of a Historical Flood Event. Water, 12(11), 3242. https://doi.org/10.3390/w12113242
    12. Beckers, F., Inskeep, C., Haun, S., Schmid, G., Wieprecht, S., & Noack, M. (2020). High spatio-temporal resolution measurements of cohesive sediment erosion. Earth Surface Processes and Landforms - Wiley Online Library, 45(11), 2432–2449. https://doi.org/10.1002/esp.4889
    13. Ridolfi, E., Kumar, H., & Bárdossy, A. (2020). A methodology to estimate flow duration curves at partially ungauged basins. https://doi.org/10.5194/hess-24-2043-2020
    14. Heck, K., Coltman, E., Schneider, J., & Helmig, R. (2020). Influence of Radiation on Evaporation Rates: A Numerical Analysis. Water Resources Research, 56(10), e2020WR027332. https://doi.org/10.1029/2020WR027332
    15. Beck, M., Rinaldi, A. P., Flemisch, B., & Class, H. (2020). Accuracy of fully coupled and sequential approaches for modeling hydro- and geomechanical processes. Computational Geosciences, 24(4), 1707--1723. https://doi.org/10.1007/s10596-020-09987-w
    16. de Winter, M., Weishaupt, K., Scheller, S., Frey, S., Raoof, A., Hassanizadeh, M., & Helmig, R. (2020). The Complexity of Porous Media Flow Characterized in a Microfluidic Model Based on Confocal Laser Scanning Microscopy and Micro-PIV. Transport in Porous Media. https://doi.org/10.1007/s11242-020-01515-9
    17. Class, H., Weishaupt, K., & Trötschler, O. (2020). Experimental and Simulation Study on Validating a Numerical Model for CO2 Density-Driven Dissolution in Water. Water, 12(3), 738. https://doi.org/10.3390/w12030738
    18. Hauer, C., Holzapfel, P., Flödl, P., Wagner, B., Graf, W., Leitner, P., Haimann, M., Holzer, G., Haun, S., Habersack, H., & Schletterer, M. (2020). Controlled reservoir drawdown – Challenges for sediment management and integrative monitoring: An Austrian case study – Part B: Local Scale. Water.
    19. Bahlmann, L. M., Smits, K. M., Heck, K., Coltman, E., Helmig, R., & Neuweiler, I. (2020). Gas Component Transport Across the Soil-Atmosphere Interface for Gases of Different Density: Experiments and Modeling. Water Resources Research, 56(9), e2020WR027600. https://doi.org/10.1029/2020WR027600
    20. Ackermann, S., Bringedal, C., & Helmig, R. (2020). Multi-scale three-domain approach for coupling free flow and flow in porous media including droplet-related interface processes. Journal of Computational Physics, 109993. https://doi.org/https://doi.org/10.1016/j.jcp.2020.109993
    21. Koch, T., Gläser, D., Weishaupt, K., Ackermann, S., Beck, M., Becker, B., Burbulla, S., Class, H., Coltman, E., Emmert, S., Fetzer, T., Grüninger, C., Heck, K., Hommel, J., Kurz, T., Lipp, M., Mohammadi, F., Scherrer, S., Schneider, M., … Flemisch, B. (2020). DuMux 3 – an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling. Computers & Mathematics with Applications. https://doi.org/10.1016/j.camwa.2020.02.012
    22. Gal, G., Yael, G., Noam, S., Moshe, E., & Schlabing, D. (2020). Ensemble Modeling of the Impact of Climate Warming and Increased Frequency of Extreme Climatic Events on the Thermal Characteristics of a Sub-Tropical Lake. Water, 12(7), 1982. https://doi.org/10.3390/w12071982
    23. Oladyshkin, S., Mohammadi, F., Kroeker, I., & Nowak, W. (2020). Bayesian3 Active Learning for the Gaussian Process Emulator Using Information Theory. Entropy, 22(8), 890. https://doi.org/10.3390/e22080890
    24. Gläser, D., Flemisch, B., Class, H., & Helmig, R. (2020). Frackit: a framework for stochastic fracture network generation and analysis. Journal of Open Source Software, 5. https://doi.org/10.21105/joss.02291
    25. Shoarinezhad, V., Wieprecht, S., & Haun, S. (2020). Comparison of Local and Global Optimization Methods for Calibration of a 3D Morphodynamic Model of a Curved Channel. Water, 12, 1333. https://doi.org/10.3390/w12051333
  3. 2019

    1. Beck, M., & Class, H. (2019). Modelling fault reactivation with characteristic stress-drop terms. Advances in Geosciences, 49, 1--7. https://doi.org/10.5194/adgeo-49-1-2019
    2. Germer, K., & Braun, J. (2019). Multi-step outflow and evaporation experiments – Gaining large undisturbed samples and comparison of the two methods. Journal of Hydrology, Volume 577, Article Volume 577. https://doi.org/https://doi.org/10.1016/j.jhydrol.2019.123914
    3. Blöschl, G. et al. (2019). Twenty-three Unsolved Problems in Hydrology (UPH) – a community perspective. Hydrological Sciences Journal/Journal Des Sciences Hydrologiques, 64(10), 1141–1158.
    4. Fraundorf, P., Hundley, T., & Lipp, M. (2019). Synthese von ungeschichtetem Graphen aus Kohlenstofftröpfchen: In Sternen und im Labor. https://hal.archives-ouvertes.fr/hal-02238804
  4. 2018

    1. Beckers, F., Haun, S., Gerbersdorf, S. U., Noack, M., Dietrich, D. R., Martin-Creuzburg, D., Peeters, F., Hofmann, H., Glaser, R., & Wieprecht, S. (2018). CHARM – CHAllenges of Reservoir Management – Meeting environmental and social requirements. Hydrolink, 3, 80–82.
    2. Noack, M., Schmid, G., Beckers, F., Haun, S., & Wieprecht, S. (2018). PHOTOSED- PHOTOgrammetric Sediment Erosion Detection. Geosciences, 8, 243.
    3. Mohammadi, F., Kopmann, R., Guthke, A., Oladyshkin, S., & Nowak, W. (2018). Bayesian selection of hydro-morphodynamic models under computational time constraints. Advances in Water Resources, 117, 53–64. https://doi.org/10.1016/j.advwatres.2018.05.007
  5. 2017

    1. Haun, S., Camenen, B., & Sumi, T. (2017). Advances and approaches in river sediment research. International Journal of River Basin Management, 15(4), 385–386.
    2. Sadid, N., Haun, S., & Wieprecht, S. (2017). An overview of hydro-sedimentological characteristics of intermittent rivers in Kabul region of Kabul river basin. International Journal of River Basin Management, 15(4), 287–399.
    3. Esmaeili, T., Sumi, T., Kantoush, S. A., Kubota, Y., Haun, S., & Rüther, N. (2017). Three-Dimensional Numerical Study of Free-Flow Sediment Flushing to Increase the Flushing Efficiency: A Case-Study Reservoir in Japan. Water, 9, 1–22.
  6. 2016

    1. Esmaeili, T., Sumi, T., Kantoush, S. A., Haun, S., & Rüther, N. (2016). Three-dimensional numerical modelling of flow field in shallow reservoirs. Proceedings of the Institution of Civil Engineers - Water Management, 169, 229–244.
    2. Guerrero, M., Rüther, N., Szupiany, R., Haun, S., Baranya, S., & Latosinski, F. (2016). The Acoustic Properties of Suspended Sediment in Large Rivers: Consequences on ADCP Methods Applicability. Water, 8(1), 1–22.
    3. Haun, S., Weber, K., Costa, M., & Wieprecht, S. (2016). Sediment Matter(s) – A report from the ISRS Symposium 2016 – Stuttgart, September 19-22. Hydrolink, 1, 30–31.
  7. 2015

    1. Haun, S., Rüther, N., Baranya, S., & Guerrero, M. (2015). Comparison of real time suspended sediment transport measurements in river environment by LISST instruments in stationary and moving operation mode. Flow Measurement and Instrumentation, 41(1), 10–17.
    2. Esmaeili, T., Sumi, T., Kantoush, S. A., Kubota, Y., & Haun, S. (2015). Numerical study on flushing channel evolution, case study of Dashidaira reservoir, Kurobe river. Annual Journal of Hydraulic Engineering 2015; JSCE, 59.
  8. 2014

    1. Harb, G., Haun, S., Schneider, J., & Olsen, N. R. B. (2014). Numerical analysis of synthetic granulate deposition in a physical model study. International Journal of Sediment Research, 29, 110–117.
  9. 2013

    1. Haun, S., Kjærås, H., Løvfall, S., & Olsen, N. R. B. (2013). Three-dimensional measurements and numerical modelling of suspended sediments in a hydropower reservoir. Journal of Hydrology, 479, 180–188.
  10. 2012

    1. Haun, S., & Olsen, N. R. B. (2012). Three-dimensional numerical modelling of the flushing process of the Kali Gandaki Hydropower Reservoir. Lakes & Reservoirs: Research & Management, 17(1), 25–33.
    2. Haun, S., & Olsen, N. R. B. (2012). Three-dimensional numerical modelling of reservoir flushing in a prototype scale. International Journal of River Basin Management, 10(4), 341–349.
  11. 2011

    1. Haun, S., Olsen, N. R. B., & Feurich, R. (2011). Numerical modelling of flow over trapezoidal broad-crested weir. Journal of Engineering Applications of Computational Fluid Mechanics, 5(3), 397–405.

PhD theses (last 50)

  1. 2020

    1. Seitz, L. (2020). Development of new methods to apply a multiparameter approach - a first step towards the determination of colmation (Vol. 276) [Dissertation, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. https://doi.org/10.18419/OPUS-11249
    2. Koch, T. (2020). Mixed-dimension models for flow and transport processes in porous media with embedded tubular network systems [Dissertation, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung]. In Mitteilungen / Institut für Wasser- und Umweltsystemmodellierung, Universität Stuttgart (Vol. 274). https://doi.org/10.18419/opus-10975
    3. Wiekenkamp, I. (2020). Measuring and modelling spatiotemporal changes in hydrological response after partial deforestation [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-10908
    4. Weishaupt, K. (2020). Model concepts for coupling free flow with porous medium flow at the pore-network scale : from single-phase flow to compositional non-isothermal two-phase flow [Dissertation, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung]. In Mitteilungen / Institut für Wasser- und Umweltsystemmodellierung, Universität Stuttgart (Vol. 273). https://doi.org/10.18419/opus-10932
    5. Gläser, D. (2020). Discrete fracture modeling of multi-phase flow and deformation in fractured poroelastic media [Phdthesis, Stuttgart: Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. In Mitteilungen / Institut für Wasser- und Umweltsystemmodellierung, Universität Stuttgart (Vol. 275). https://doi.org/http://dx.doi.org/10.18419/opus-11040
  2. 2019

    1. Brogi, C. (2019). Geophysics-based soil mapping for improved modelling of spatial variability in crop growth and yield [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-10746
    2. Most, S. (2019). Analysis and simulation of anomalous transport in porous media (Vol. 268) [Promotionsschrift, Universität Stuttgart, Institut für Wasser- Umweltsystemmodellierung]. https://elib.uni-stuttgart.de/handle/11682/10511
    3. Schneider, M. (2019). Nonlinear finite volume schemes for complex flow processes and challenging grids [PhD Thesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. https://doi.org/http://dx.doi.org/10.18419/opus-10416
    4. Beck, M. (2019). Conceptual approaches for the analysis of coupled hydraulic and geomechanical processes [Phdthesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. https://doi.org/http://dx.doi.org/10.18419/opus-10418
    5. Haas, J. (2019). Optimal planning of hydropower and energy storage technologies for fully renewable power systems [Phdthesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. https://doi.org/http://dx.doi.org/10.18419/opus-10297
    6. Buchta, R. (2019). Entwicklung eines Ziel- und Bewertungssystems zur Schaffung nachhaltiger naturnaher Strukturen in großen sandgeprägten Flüssen des norddeutschen Tieflandes [Phdthesis, Stuttgart: Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. https://doi.org/http://dx.doi.org/10.18419/opus-10520
    7. Thom, M. (2019). Towards a better understanding of the biostabilization mechanisms of sediment beds. In Mitteilungen / Institut für Wasser- und Umweltsystemmodellierung, Universität Stuttgart (Dissertation No. 270, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung; Issue 270). https://doi.org/10.18419/opus-10808
  3. 2018

    1. Beck, M. (2018). Conceptual approaches for the analysis of coupled hydraulic and geomechanical processes [Promotionsschrift, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. In Mitteilungsheft (Vol. 265). https://doi.org/10.18419/opus-10418
    2. Schmidt, H. (2018). Microbial stabilization of lotic fine sediments [Phdthesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. https://doi.org/http://dx.doi.org/10.18419/opus-10015
    3. Schneider, M. (2018). Nonlinear finite volume schemes for complex flow processes and challenging grids [Promotionsschrift, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. In Mitteilungsheft (Vol. 267). https://doi.org/10.18419/opus-10416
    4. Mejri, E. (2018). Modeling and Analysis of Salt Precipitation on Evaporation Processes in the Unsaturated Zone [Promotionsschrift]. Université de Tunis El Manar, Ecole Nationale d´Ingenieurs de Tunis.
    5. Bode, F. (2018). Early-warning monitoring systems for improved drinking water resource protection [Phdthesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. https://doi.org/http://dx.doi.org/10.18419/opus-10268
    6. Gebler, T. (2018). Statistische Auswertung von simulierten Talsperrenüberwachungsdaten zur Identifikation von Schadensprozessen an Gewichtsstaumauern [Phdthesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung]. https://doi.org/http://dx.doi.org/10.18419/opus-10196
    7. Yan, J. (2018). Nonlinear estimation of short time precipitation using weather radar and surface observations [Phdthesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. https://doi.org/http://dx.doi.org/10.18419/opus-10270
    8. Fetzer, T. (2018). Coupled free and porous-medium flow processes affected by turbulence and roughness : models, concepts and analysis [Phdthesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. https://doi.org/http://dx.doi.org/10.18419/opus-10016
    9. Fenrich, E. K. (2018). Entwicklung eines ökologisch-ökonomischen Vernetzungsmodells für Wasserkraftanlagen und Mehrzweckspeicher [Phdthesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. https://doi.org/http://dx.doi.org/10.18419/opus-10112
    10. Schröder, H. C. (2018). Large-scale high head pico hydropower potential assessment [Phdthesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. https://doi.org/http://dx.doi.org/10.18419/opus-10236
    11. Harten, M. von. (2018). Analyse des Zuppinger-Wasserrades : hydraulische Optimierungen unter Berücksichtigung ökologischer Aspekte [Phdthesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. https://doi.org/http://dx.doi.org/10.18419/opus-10322
  4. 2017

    1. Sinsbeck, M. (2017). Uncertainty quantification for expensive simulations : optimal surrogate modeling under time constraints [Promotionsschrift, Universität Stuttgart, Institut für Wasser- Umweltsystemmodellierung]. https://elib.uni-stuttgart.de/handle/11682/9223
    2. Grüninger, C. (2017). Numerical coupling of Navier-Stokes and Darcy flow for soil-water evaporation (Vol. 253) [Promotionsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung]. https://doi.org/10.18419/opus-9657
    3. Mosthaf, T. (2017). New concepts for regionalizing temporal distributions of precipitation and for its application in spatial rainfall simulation [Phdthesis, Stuttgart: Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. https://doi.org/http://dx.doi.org/10.18419/opus-9709
    4. Müller, T., Mosthaf, T., Gunzenhauser, S., Seidel, J., & Bárdossy, A. (2017). Grundlagenbericht Niederschlags-Simulator (NiedSim3) (No. 255; Issue 255). Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart. https://doi.org/http://dx.doi.org/10.18419/opus-9347
  5. 2016

    1. Kissinger, A. (2016). Basin-Scale Site Screening and Investigation of Possible Impacts of CO2 Storage on Subsurface Hydrosystems (Vol. 251) [Promotionsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung]. https://dx.doi.org/10.18419/opus-8998
  6. 2015

    1. Köppl, T. (2015). Multi-scale modeling of flow and transport processes in arterial networks and tissue [Promotionsschrift]. TU München,.
  7. 2014

    1. Lauser, A. (2014). Theory and Numerical Applications of Compositional Multi-Phase Flow in Porous Media (Vol. 228) [Promotionsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung]. https://elib.uni-stuttgart.de/opus/volltexte/2014/9074/pdf/lauser_thesis_2print.pdf
    2. Geiges, A. (2014). Efficient concepts for optimal experimental design in nonlinear environmental systems. Promotionsschrift Nr. 238, Mitteilungsheft des Instituts für Wasserbau Nr. 238 (Promotionsschrift) Institut für Wasserbau, Universität Stuttgart, 2014. ISBN: 978-3-942036-42-9.
    3. Mosthaf, K. (2014). Modeling and Analysis of Coupled Porous - Medium and Free Flow with Application to Evaporation Processes (Vol. 223) [Promotionsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung]. https://elib.uni-stuttgart.de/opus/volltexte/2014/9064/pdf/DISSERTATION_KlausMosthaf_final.pdf
    4. Koch, J. (2014). Simulation, identification and characterization of contaminant source architectures in the subsurface. Promotionsschrift Nr. 233, Mitteilungsheft des Instituts für Wasserbau Nr. 233 (Promotionsschrift) Institut für Wasserbau, Universität Stuttgart, 2014. ISBN: 978-3-942036-37-5.
    5. Faigle, B. (2014). Adaptive modelling of compositional multi-phase flow with capillary pressure. (Vol. 230) [Promotionsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung]. https://elib.uni-stuttgart.de/opus/volltexte/2014/9068/
    6. Oladyshkin, S. (2014). Efficient Modeling of Environmental Systems in the Face of Complexity and Uncertainty. Habilitationsschrift Nr. 231, Mitteilungsheft des Instituts für Wasserbau Nr. 231 (Habilitationsschrift) Institut für Wasserbau, Universität Stuttgart, 2014. ISBN: 978-3-942036-35-1.
  8. 2013

    1. Enzenhöfer, R. (2013). Risk Quantification and Management in Water Production and Supply Systems. Promotionsschrift Nr. 229, Mitteilungsheft des Instituts für Wasserbau Nr. 229 (Promotionsschrift) Institut für Wasserbau, Universität Stuttgart, 2014. ISBN: 978-3-942036-33-7.
    2. Flemisch, B. (2013). Tackling Coupled Problems in Porous Media: Development of Numerical Models and an Open Source Simulator [Habilitationsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung]. https://www.iws.uni-stuttgart.de/publikationen/hydrosys/paper/2013/flemisch_habil.pdf
    3. Kröker, I. (2013). Stochastic models for nonlinear convection-dominated flows. Universität Stuttgart.
    4. Leube, P. (2013). Methods for Physically-Based Model Reduction in Time: Analysis, Comparison of Methods and Application. Promotionsschrift Nr. 224, Mitteilungsheft des Instituts für Wasserbau Nr. 224 (Promotionsschrift) Institut für Wasserbau, Universität Stuttgart, 2013. ISBN: 978-3-942036-28-3.
  9. 2012

    1. Haas, T. (2012). Geistliche als Kreuzfahrer. Der Klerus im Konflikt zwischen Orient und Okzident 1095-1221 [Promotionsschrift]. ,.
    2. Darcis, M. (2012). Coupling Models of Different Complexity for the Simulation of CO2 Storage in Deep Saline Aquifers (Vol. 218) [Promotionsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung]. https://elib.uni-stuttgart.de/opus/volltexte/2013/8141/
  10. 2011

    1. Kuhlmann, A. (2011). Influence of soil structure and root water uptake on flow in the unsaturated zone (Vol. 209) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://elib.uni-stuttgart.de/opus/volltexte/2012/7214/
  11. 2008

    1. Patil, S. (2008). Regionalization of an Event Based Nash Cascade Model for Flood Predictions in Ungauged Basins (Vol. 175) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://elib.uni-stuttgart.de/opus/volltexte/2008/3653/pdf/doktorarbeit_patil_web.pdf
    2. Brommundt, J. (2008). Stochastische Generierung räumlich zusammenhängender Niederschlagszeitreihen (Vol. 170) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://elib.uni-stuttgart.de/opus/volltexte/2008/3470/pdf/Brommundt_170_online.pdf
    3. Papafotiou, A. (2008). Numerical Investigations on the Role of Hysteresis in Heterogeneous Two-Phase Flow Systems (Vol. 171) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://elib.uni-stuttgart.de/opus/volltexte/2008/3567/
  12. 2007

    1. Kebede Gurmessa, T. (2007). Numerical Investigation on Flow and Transport Characteristicsto Improve Long-Term Simulation of Reservoir Sedimentation (Vol. 162) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://elib.uni-stuttgart.de/opus/volltexte/2007/3272/
    2. Trifkovic, A. (2007). Multi-objective and Risk-based Modelling Methodology forPlanning, Design and Operation of Water Supply Systems (Vol. 163) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://elib.uni-stuttgart.de/opus/volltexte/2007/3251/
    3. Hartmann, G. (2007). Investigation of Evapotranspiration Concepts in HydrologicalModelling for Climate Change Impact Assessment (Vol. 161) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://elib.uni-stuttgart.de/opus/volltexte/2007/3086/
  13. 2006

    1. Flemisch, B. (2006). Non-matching triangulations of curvilinear interfaces applied to electro-mechanics and elasto-acoustics [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://www.iws.uni-stuttgart.de/publikationen/hydrosys/paper/flemisch_thesis.pdf
  14. 2005

    1. Nowak, W. (2005). Geostatistical Methods for the Identification of Flow and Transport Parameters in Subsurface Flow. Promotionsschrift Nr. 134, Mitteilungsheft des Instituts für Wasserbau Nr. 134 (Promotionsschrift) Institut für Wasserbau, Universität Stuttgart, 2005. ISBN: 3-933761-37-9.
To the top of the page