Publications at LH2

Department of Hydromechanics and Modelling of Hydrosystems

PhD-Theses and Professoral Dissertations

  1. 2023

    1. Veyskarami, M. (2023). Coupled free-flow-porous media flow processes including drop formation (Vol. 303) [Promotionsschrift, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. http://dx.doi.org/10.18419/opus-13894
    2. Mohammadi, F. (2023). A surrogate-assisted Bayesian framework for uncertainty-aware validation benchmarks (Dissertation No. 299, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart). https://doi.org/10.18419/opus-13285
  2. 2022

    1. Michalkowski, C. (2022). Modeling water transport at the interface between porous GDL and gas distributor of a PEM fuel cell cathode (Dissertation No. 286, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung). https://doi.org/10.18419/opus-12106
    2. Weinhardt, F. (2022). Porosity and permeability alterations in processes of biomineralization in porous media - microfluidic investigations and their interpretation (Dissertation No. 297, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart). https://doi.org/10.18419/opus-12822
  3. 2021

    1. Ackermann, S. (2021). A multi-scale approach for drop/porous-medium interaction (Vol. 281) [Promotionsschrift, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. https://doi.org/10.18419/opus-11577
    2. Becker, B. (2021). Development of efficient multiscale multiphysics models accounting for reversible flow at various subsurface energy storage sites (Dissertation No. 284, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart). https://doi.org/10.18419/opus-11753
    3. Seitz, G. (2021). Modeling fixed-bed reactors for thermochemical heat storage with the reaction system CaO/Ca(OH)2 (Dissertation No. 278, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung). https://doi.org/10.18419/opus-11522
    4. Emmert, S. (2021). Developing and calibrating a numerical model for microbially enhanced coal-bed methane production (Vol. 279) [Promotionsschrift, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. https://doi.org/10.18419/opus-11631
    5. Heck, K. (2021). Modelling and analysis of multicomponent transport at the interface between free- and porous-medium flow - influenced by radiation and roughness (Vol. 280) [Promotionsschrift, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. https://doi.org/10.18419/opus-11635
  4. 2020

    1. Weishaupt, K. (2020). Model concepts for coupling free flow with porous medium flow at the pore-network scale : from single-phase flow to compositional non-isothermal two-phase flow (Vol. 273) [Dissertation, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung]. https://doi.org/10.18419/opus-10932
    2. Koch, T. (2020). Mixed-dimension models for flow and transport processes in porous media with embedded tubular network systems (Vol. 274) [Dissertation, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung]. https://doi.org/10.18419/opus-10975
    3. Gläser, D. (2020). Discrete fracture modeling of multi-phase flow and deformation in fractured poroelastic media (Vol. 275) [Phdthesis, Stuttgart: Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. http://dx.doi.org/10.18419/opus-11040
  5. 2019

    1. Haas, J. (2019). Optimal planning of hydropower and energy storage technologies for fully renewable power systems [Phdthesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. http://dx.doi.org/10.18419/opus-10297
    2. Beck, M. (2019). Conceptual approaches for the analysis of coupled hydraulic and geomechanical processes [Phdthesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. http://dx.doi.org/10.18419/opus-10418
    3. Schneider, M. (2019). Nonlinear finite volume schemes for complex flow processes and challenging grids [PhD Thesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. http://dx.doi.org/10.18419/opus-10416
  6. 2018

    1. Fetzer, T. (2018). Coupled Free and Porous-Medium Flow Processes Affected by Turbulence and Roughness - Models, Concepts and Analysis (Vol. 259) [Promotionsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung]. https://doi.org/10.18419/opus-10016
    2. Beck, M. (2018). Conceptual approaches for the analysis of coupled hydraulic and geomechanical processes (Vol. 265) [Promotionsschrift, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. https://doi.org/10.18419/opus-10418
    3. Fetzer, T. (2018). Coupled free and porous-medium flow processes affected by turbulence and roughness : models, concepts and analysis [Phdthesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. http://dx.doi.org/10.18419/opus-10016
    4. Mejri, E. (2018). Modeling and Analysis of Salt Precipitation on Evaporation Processes in the Unsaturated Zone [Promotionsschrift]. Université de Tunis El Manar, Ecole Nationale d´Ingenieurs de Tunis.
    5. Bode, F. (2018). Early-warning monitoring systems for improved drinking water resource protection [Phdthesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. http://dx.doi.org/10.18419/opus-10268
  7. 2017

    1. Grüninger, C. (2017). Numerical Coupling of Navier-Stokes and Darcy Flow for Soil-Water Evaporation (Vol. 253) [Promotionsschrift, Universität Stuttgart,]. https://elib.uni-stuttgart.de/handle/11682/9674
    2. Grüninger, C. (2017). Numerical coupling of Navier-Stokes and Darcy flow for soil-water evaporation (Vol. 253) [Promotionsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung]. https://doi.org/10.18419/opus-9657
  8. 2016

    1. Hommel, J. (2016). Modeling biogeochemical and mass transport processes in the subsurface: Investigation of microbially induced calcite precipitation (Vol. 244) [Promotionsschrift, Universität Stuttgart, TASK]. https://elib.uni-stuttgart.de/handle/11682/8787
    2. Kissinger, A. (2016). Basin-Scale Site Screening and Investigation of Possible Impacts of CO2 Storage on Subsurface Hydrosystems (Vol. 251) [Promotionsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung]. https://dx.doi.org/10.18419/opus-8998
  9. 2015

    1. Baber, K. (2015). Coupling free flow and flow in porous media in biological and technical applications: From a simple to a complex interface description (Vol. 236) [Promotionsschrift, Universität Stuttgart, TASK]. https://elib.uni-stuttgart.de/opus/volltexte/2015/9770/
    2. Nuske, P. (2015). Beyond local equilibrium : relaxing local equilibrium assumptions in multiphase flow in porous media (Vol. 237) [Promotionsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung]. https://elib.uni-stuttgart.de/opus/volltexte/2015/9796/pdf/thesisPhilippNuskeMerged.pdf
    3. Schwenck, N. (2015). An XFEM-Based Model for Fluid Flow in Fractured Porous Media (Vol. 239) [Promotionsschrift, Universität Stuttgart, TASK]. https://elib.uni-stuttgart.de/opus/volltexte/2015/10017/
    4. Nuske, P. (2015). Beyond local equilibrium : relaxing local equilibrium assumptions in multiphase flow in porous media (Vol. 237) [Promotionsschrift, Universität Stuttgart, TASK]. https://elib.uni-stuttgart.de/opus/volltexte/2015/9796/
  10. 2014

    1. Koch, J. (2014). Simulation, identification and characterization of contaminant source architectures in the subsurface (Vol. 233) [Promotionsschrift, Universität Stuttgart, Institut für Wasser- Umweltsystemmodellierung]. https://elib.uni-stuttgart.de/opus/volltexte/2014/9488/
    2. Faigle, B. (2014). Adaptive modelling of compositional multi-phase flow with capillary pressure. (Vol. 230) [Promotionsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung]. https://elib.uni-stuttgart.de/opus/volltexte/2014/9068/
    3. Lauser, A. (2014). Theory and Numerical Applications of Compositional Multi-Phase Flow in Porous Media (Vol. 228) [Promotionsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung]. https://elib.uni-stuttgart.de/opus/volltexte/2014/9074/pdf/lauser_thesis_2print.pdf
    4. Oladyshkin, S. (2014). Efficient modeling of environmental systems in the face of complexity and uncertainty (Vol. 231) [Habilitationsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung]. https://elib.uni-stuttgart.de/opus/volltexte/2015/9523/pdf/Oladyshkin_HabilitationThesis.pdf
    5. Lauser, A. (2014). Theory and numerical applications of compositional multi-phase flow in porous media (Vol. 228) [Promotionsschrift, Universität Stuttgart, TASK]. https://elib.uni-stuttgart.de/opus/volltexte/2014/9074/
    6. Eder, M. (2014). Climate sensitivity of a large lake (Vol. 226) [Promotionsschrift, Universität Stuttgart, Institut für Wasser- Umweltsystemmodellierung]. https://elib.uni-stuttgart.de/opus/volltexte/2014/8885/
    7. Faigle, B. (2014). Adaptive modelling of compositional multi-phase flow with capillary pressure (Vol. 230) [Promotionsschrift, Universität Stuttgart, TASK]. https://elib.uni-stuttgart.de/opus/volltexte/2014/9068/
    8. Mosthaf, K. (2014). Modeling and Analysis of Coupled Porous - Medium and Free Flow with Application to Evaporation Processes (Vol. 223) [Promotionsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung]. https://elib.uni-stuttgart.de/opus/volltexte/2014/9064/pdf/DISSERTATION_KlausMosthaf_final.pdf
    9. Mosthaf, K. (2014). Modeling and analysis of coupled porous-medium and free flow with application to evaporation processes (Vol. 223) [Promotionsschrift, Universität Stuttgart, TASK]. https://elib.uni-stuttgart.de/opus/volltexte/2014/9064/
    10. Enzenhöfer, R. (2014). Risk quantification and management in water production and supply systems (Vol. 229) [Promotionsschrift, Universität Stuttgart, Institut für Wasser- Umweltsystemmodellierung]. https://elib.uni-stuttgart.de/opus/volltexte/2014/9015/
  11. 2013

    1. Leube, P. (2013). Methods for physically-based model reduction in time: analysis, comparison of methods and application (Vol. 224) [Promotionsschrift, Universität Stuttgart, TASK]. https://elib.uni-stuttgart.de/opus/volltexte/2013/8801/
    2. Tatomir, A. (2013). From discrete to continuum concepts of flow in fractured porous media (Vol. 212) [Promotionsschrift, Universität Stuttgart, Institut für Wasser- Umweltsystemmodellierung]. https://elib.uni-stuttgart.de/opus/volltexte/2013/8047/
    3. Greiner, P. (2013). Alkoholinjektion zur In-situ-Sanierung von CKW-Schadensherden in Grundwasserleitern: Charakterisierung der relevanten Prozesse auf unterschiedlichen Skalen (Vol. 227) [Promotionsschrift, Universität Stuttgart, Institut für Wasser-und Umweltsystemmodellierung]. http://dx.doi.org/10.18419/opus-521
    4. Flemisch, B. (2013). Tackling Coupled Problems in Porous Media: Development of Numerical Models and an Open Source Simulator [Habilitationsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung]. https://www.iws.uni-stuttgart.de/publikationen/hydrosys/paper/2013/flemisch_habil.pdf
    5. Walter, L. (2013). Uncertainty Studies and Risk Assessment for CO2 Storage in Geological Formations (Vol. 221) [Promotionsschrift, Universität Stuttgart, TASK]. https://elib.uni-stuttgart.de/opus/volltexte/2013/8830/
    6. Wolff, M. (2013). Multi-Scale Modeling of Two-Phase Flow in Porous Media Including Capillary Pressure Effects (Vol. 222) [Promotionsschrift, Universität Stuttgart, TASK]. https://elib.uni-stuttgart.de/opus/volltexte/2013/8661/
    7. Leube, P. (2013). Methods for Physically-Based Model Reduction in Time: Analysis, Comparison of Methods and Application (Vol. 224) [Promotionsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung]. https://elib.uni-stuttgart.de/opus/volltexte/2013/8801/pdf/diss_final_Leube_bib_v2.pdf
  12. 2012

    1. de Boer, C. (2012). Transport of nano sized zero valent iron colloids during injection into the subsurface (Vol. 215) [Promotionsschrift, Universität Stuttgart, Institut für Wasser- Umweltsystemmodellierung]. http://dx.doi.org/10.18419/opus-486
    2. Erbertseder, K. (2012). A multi-scale model for describing cancer-therapeutic transport in the human lung (Vol. 213) [Promotionsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung]. https://elib.uni-stuttgart.de/opus/volltexte/2012/7200/
    3. Darcis, M. (2012). Coupling Models of Different Complexity for the Simulation of CO2 Storage in Deep Saline Aquifers (Vol. 218) [Promotionsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung]. https://elib.uni-stuttgart.de/opus/volltexte/2013/8141/
  13. 2011

    1. Kuhlmann, A. (2011). Influence of soil structure and root water uptake on flow in the unsaturated zone (Vol. 209) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://elib.uni-stuttgart.de/opus/volltexte/2012/7214/
  14. 2010

    1. Cao, Y. (2010). Robust numerical algorithms based on corrected operator splitting for two-phase flow in porous media [Promotionsschrift, Universität Stuttgart, Universität Stuttgart]. https://www.shaker.de/de/content/catalogue/index.asp?lang=de&ID=8&ISBN=978-3-8322-9237-9
    2. Niessner, J. (2010). The Role of Interfacial Areas in Two-Phase Flow in Porous Media -- bridging scales and coupling models [Habilitationsschrift, Universität Stuttgart, Institut für Wasserbau]. In Universität Stuttgart, Stuttgart. https://elib.uni-stuttgart.de/opus/volltexte/2011/6305/
    3. Fritz, J. (2010). A decoupled model for compositional non-isothermal multiphase flow in porous media and multiphysics approaches for two-phase flow (Vol. 192) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau, Lehrstuhl für Hydromechanik und Hydrosystemmodellierung]. https://elib.uni-stuttgart.de/opus/volltexte/2010/5683
    4. Vasin, M. (2010). Influence of the soil structure and property contrast on flow and transport in the unsaturated zone (Vol. 186) [Promotionsschrift, ,]. https://elib.uni-stuttgart.de/opus/volltexte/2010/5169/
    5. Fritz, J. (2010). A decoupled model for compositional non-isothermal multiphase flow in porous media and multiphysics approaches for two-phase flow (Vol. 192) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau, Lehrstuhl für Hydromechanik und Hydrosystemmodellierung]. https://elib.uni-stuttgart.de/opus/volltexte/2010/5683/pdf/diss_complete.pdf
    6. Dogan, M. O. (2010). Coupling of porous media flow with pipe flow (Vol. 199) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://elib.uni-stuttgart.de/opus/volltexte/2011/5942/
  15. 2009

    1. Kopp, A. (2009). Evaluation of CO2 injection processes in geological formations for site screening (Vol. 182) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. http://elib.uni-stuttgart.de/opus/volltexte/2009/4518/pdf/Dissertation_AndreasKopp.pdf
    2. Ebigbo, A. (2009). Modelling of biofilm growth and its influence on CO2 and water (two-phase) flow in porous media (Vol. 183) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. http://elib.uni-stuttgart.de/opus/volltexte/2009/4489/pdf/Ebigbo_DISS_OPUS.pdf
  16. 2008

    1. Papafotiou, A. (2008). Numerical Investigations on the Role of Hysteresis in Heterogeneous Two-Phase Flow Systems (Vol. 171) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://elib.uni-stuttgart.de/opus/volltexte/2008/3567/
    2. Freiboth, S. (2008). A phenomenological model for the numerical simulation of multiphase multicomponent processes considering structural alternations of porous media (Vol. 184) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://elib.uni-stuttgart.de/opus/volltexte/2009/4610/pdf/Dissertation_Freiboth_Sandra.pdf
    3. Assteerawatt, A. (2008). Flow and Transport Modelling of Fractured Aquifers based on a Geostatistical Approach (Vol. 176) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://elib.uni-stuttgart.de/opus/volltexte/2008/3639/
    4. Class, H. (2008). Models for non-isothermal compositional gas-liquid flow and transport in porous media [Habilitationsschrift, Universität Stuttgart, Institut für Wasserbau]. https://elib.uni-stuttgart.de/opus/volltexte/2009/3847/pdf/class_habil_version1.1.pdf
  17. 2007

    1. Bielinski, A. (2007). Numerical Simulation of CO2 Sequestration in Geological Formations (Vol. 155) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://elib.uni-stuttgart.de/opus/volltexte/2007/2953/
    2. Ochs, S. O. (2007). Steam injection into saturated porous media - process analysis including experimental and numerical investigations - (Vol. 159) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://elib.uni-stuttgart.de/opus/volltexte/2007/2971/
  18. 2006

    1. Manthey, S. (2006). Two-phase flow processes with dynamic effects in porous media - parameter estimation and simulation (Vol. 157) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://elib.uni-stuttgart.de/opus/volltexte/2007/2951/
    2. Niessner, J. (2006). Multi-Scale Modeling of Multi-Phase - Multi-Component Processesin Heterogeneous Porous Media (Vol. 151) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://elib.uni-stuttgart.de/opus/volltexte/2006/2769/
    3. Flemisch, B. (2006). Non-matching triangulations of curvilinear interfaces applied to electro-mechanics and elasto-acoustics [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://www.iws.uni-stuttgart.de/publikationen/hydrosys/paper/flemisch_thesis.pdf
    4. Breiting, T. (2006). Techniken und Methoden der Hydroinformatik - Modellierung von komplexen Hydrosystemen im Untergrund (Vol. 144) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://elib.uni-stuttgart.de/opus/volltexte/2006/2646/pdf/PROMO_PDF.pdf
  19. 2005

    1. Rahman, A. Md. (2005). Experimental Investigations on Transverse Dispersive Mixing in Heterogeneous Porous Media (Vol. 140) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://elib.uni-stuttgart.de/opus/volltexte/2005/2284
    2. Jose Chackiath, S. (2005). Experimental Investigations on Longitudinal Dispersive Mixing in Heterogeneous Aquifers (Vol. 136) [Promotionsschrift]. Universität Stuttgart, Institut für Wasserbau.
    3. Nowak, W. (2005). Geostatistical Methods for the Identification of Flow and Transport Parameters in the Subsurface (Vol. 134) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://elib.uni-stuttgart.de/opus/volltexte/2005/2275
    4. Kobayashi, K. (2005). Optimization Methods for Multiphase Systems in the Subsurface - Application to Methane Migration in Coal Mining Areas (Vol. 139) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://elib.uni-stuttgart.de/opus/volltexte/2005/2297
    5. Jabir, A. K. (2005). Finite Volume Models for Multiphase Multicomponent Flow through Porous Media (Vol. 132) [Promotionsschrift]. Universität Stuttgart, Institut für Wasserbau.
    6. Süß, M. (2005). Analysis of the influence of structures and boundaries on flow and transport processes in fractured porous media (Vol. 135) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://elib.uni-stuttgart.de/opus/volltexte/2005/2229
  20. 2004

    1. Jakobs, H. (2004). Simulation nicht-isothermer Gas-Wasser-Prozesse in komplexen Kluft-Matrix-Systemen (Vol. 128) [Promotionsschrift]. Universität Stuttgart, Institut für Wasserbau.
  21. 2003

    1. Hinkelmann, R. (2003). Efficient Numerical Methods and Information-Processing Techniques in Environment Water (Vol. 117) [Habilitationsschrift]. Universität Stuttgart, Institut für Wasserbau.
    2. Appt, J. (2003). Analysis of Basin-Scale Internal Waves in Upper Lake Constance (Vol. 123) [Promotionsschrift]. Universität Stuttgart, Institut für Wasserbau.
    3. Neunhäuserer, L. (2003). Diskretisierungsansätze zur Modellierung von Strömungs- und Transportprozessen in geklüftet-porösen Medien (Vol. 119) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://elib.uni-stuttgart.de/opus/volltexte/2003/1477/
    4. Paul, M. (2003). Simulation of Two-Phase Flow Processes in Heterogeneous Porous Media with Adaptive Methods (Vol. 120) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://elib.uni-stuttgart.de/opus/volltexte/2005/2435/pdf/promo_paul.pdf
  22. 2002

    1. Silberhorn-Hemminger, A. (2002). Modellierung von Kluftaquifersystemen: Geostatistische Analyse und deterministisch-stochastische Kluftgenerierung (Vol. 114) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://elib.uni-stuttgart.de/opus/volltexte/2003/1278/
  23. 2001

    1. Class, H. (2001). Theorie und numerische Modellierung nichtisothermer Mehrphasenprozesse in NAPL-kontaminierten porösen Medien (Vol. 105) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://elib.uni-stuttgart.de/opus/volltexte/2005/2436/pdf/promo_holle.pdf
    2. Lang, S. (2001). Parallele numerische Simulation instationärer Probleme mit adaptiven Methoden auf unstrukturierten Gittern (Vol. 110) [Promotionsschrift]. Universität Stuttgart, Institut für Wasserbau.
  24. 2000

    1. Huber, R. U. (2000). Compositional Multiphase Flow and Transport in Heterogeneous Porous Media (Vol. 102) [Promotionsschrift]. Universität Stuttgart, Institut für Wasserbau.
    2. Braun, C. (2000). Ein Upscaling-Verfahren für Mehrphasenströmungen in porösen Medien (Vol. 103) [Promotionsschrift]. Universität Stuttgart, Institut für Wasserbau.
  25. 1999

    1. Sheta, H. (1999). Simulation von Mehrphasenvorgängen in porösen Medien unter Einbeziehung von Hystereseeffekten (Vol. 100) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://elib.uni-stuttgart.de/opus/volltexte/2005/2437/pdf/promo_sheta.pdf
  26. 1998

    1. Betz, C. (1998). Wasserdampfdestillation von Schadstoffen im porösen Medium: Entwicklung einer thermischen In-situ-Sanierungstechnologie (Vol. 97) [Promotionsschrift]. Universität Stuttgart, Institut für Wasserbau.
  27. 1997

    1. Helmig, R. (1997). Gekoppelte Strömungs- und Transportprozesse im Untergrund: Ein Beitrag zur Hydrosystemmodellierung (Vol. 91) [Habilitationsschrift]. Universität Stuttgart, Institut für Wasserbau.
    2. Emmert, M. (1997). Numerische Modellierung nichtisothermer Gas-Wasser Systeme in porösen Medien (Vol. 92) [Promotionsschrift]. Universität Stuttgart, Institut für Wasserbau.
    3. Cirpka, O. A. (1997). Numerische Methoden zur Simulation des reaktiven Mehrkomponententransports im Grundwasser (Vol. 95) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://www.iws.uni-stuttgart.de/publikationen/hydrosys/paper/095_Cirpka_Olaf_Diss.pdf

Scientific Publications of the LH2 group

  1. 2025

    1. Vahabzadeh, E., Buntic, I., Nazari, F., Flemisch, B., Helmig, R., & Niasar, V. (2025). Applicability of the Vertical Equilibrium model to underground hydrogen injection and withdrawal. International Journal of Hydrogen Energy, 106, 790–805. https://doi.org/10.1016/j.ijhydene.2025.01.201
    2. Keim, L., & Class, H. (2025). Rayleigh Invariance Allows the Estimation of Effective CO2 Fluxes Due To Convective Dissolution Into Water-Filled Fractures. Water Resources Research, 61, Article 2. https://doi.org/10.1029/2024WR037778
    3. Krach, D., Weinhardt, F., Wang, M., Schneider, M., Class, H., & Steeb, H. (2025). A novel geometry-informed drag term formulation for pseudo-3D Stokes simulations with varying apertures. Advances in Water Resources, 195, 104860. https://doi.org/10.1016/j.advwatres.2024.104860
  2. 2024 (submitted)

    1. Kohlhaas, R., Hommel, J., Weinhardt, F., Class, H., Oladyshkin, S., & Flemisch, B. (n.d.). Numerical Investigation of Preferential Flow Paths in Enzymatically Induced Calcite Precipitation Supported by Bayesian Model Analysis. Transport in Porous Media.
  3. 2024

    1. Coltman, E., Schneider, M., & Helmig, R. (2024). Data-Driven Closure Parametrizations with Metrics: Dispersive Transport. https://arxiv.org/abs/2311.13975
    2. Aricò, C., Helmig, R., Puleo, D., & Schneider, M. (2024). A new numerical mesoscopic scale one-domain approach solver for free fluid/porous medium interaction. Computer Methods in Applied Mechanics and Engineering, 419, 116655. https://doi.org/10.1016/j.cma.2023.116655
    3. Boon, M., Buntic, I., Ahmed, K., Dopffel, N., Peters, C., & Hajibeygi, H. (2024). Microbial induced wettability alteration with implications for Underground Hydrogen Storage. Scientific Reports, 14, Article 1. https://doi.org/10.1038/s41598-024-58951-6
    4. Buntic, I., Schneider, M., Flemisch, B., & Helmig, R. (2024). A fully-implicit solving approach to an adaptive multi-scale model -- coupling a vertical-equilibrium and full-dimensional model for compressible, multi-phase flow in porous media. https://arxiv.org/abs/2405.18285
    5. Shokri, J., Schollenberger, T., An, S., Flemisch, B., Babaei, M., & Niasar, V. (2024). Upscaling the reaction rates in porous media from pore- to Darcy-scale. Chemical Engineering Journal, 493, 152000. https://doi.org/10.1016/j.cej.2024.152000
    6. Veyskarami, M., Bringedal, C., & Helmig, R. (2024). Modeling and Analysis of Droplet Evaporation at the Interface of a Coupled Free-Flow--Porous Medium System. Transport in Porous Media. https://doi.org/10.1007/s11242-024-02123-7
    7. Schneider, J., Kiemle, S., Heck, K., Rothfuss, Y., Braud, I., Helmig, R., & Vanderborght, J. (2024). Analysis of experimental and simulation data of evaporation-driven isotopic fractionation in unsaturated porous media. Vadose Zone Journal, 23, Article 5. https://doi.org/10.1002/vzj2.20363
    8. Schneider, M., & Koch, T. (2024). Stable and locally mass- and momentum-conservative control-volume finite-element schemes for the Stokes problem. Computer Methods in Applied Mechanics and Engineering, 420, 116723. https://doi.org/10.1016/j.cma.2023.116723
    9. Chen, Z., Tian, Y., & Hu, L. (2024). Experimental investigation on heat and moisture transfer of propylene glycol-mixed steam in porous media. Journal of Contaminant Hydrology, 104468. https://doi.org/10.1016/j.jconhyd.2024.104468
    10. Schollenberger, T., von Wolff, L., Bringedal, C., Pop, I. S., Rohde, C., & Helmig, R. (2024). Investigation of Different Throat Concepts for Precipitation Processes in Saturated Pore-Network Models. Transport in Porous Media, 151, Article 14. https://doi.org/10.1007/s11242-024-02125-5
    11. Boon, W. M., Gläser, D., Helmig, R., Weishaupt, K., & Yotov, I. (2024). A mortar method for the coupled Stokes-Darcy problem using the MAC scheme for Stokes and mixed finite elements for Darcy. Computational Geosciences, 28, Article 3. https://doi.org/10.1007/s10596-023-10267-6
  4. 2023

    1. Tatomir, A., Gao, H., Abdullah, H., Pötzl, C., Karadimitriou, N., Steeb, H., Licha, T., Class, H., Helmig, R., & Sauter, M. (2023). Estimation of Capillary-Associated NAPL-Water Interfacial Areas for Unconsolidated Porous Media by Kinetic Interface Sensitive (KIS) Tracer Method. Water Resources Research, 59, Article 12. https://doi.org/10.1029/2023WR035387
    2. Class, H., Keim, L., Schirmer, L., Strauch, B., Wendel, K., & Zimmer, M. (2023). Seasonal Dynamics of Gaseous CO2 Concentrations in a Karst Cave Correspond with Aqueous Concentrations in a Stagnant Water Column. Geosciences, 13, 51. https://doi.org/10.3390/geosciences13020051
    3. Veyskarami, M., Michalkowski, C., Bringedal, C., & Helmig, R. (2023). Droplet Formation, Growth and Detachment at the Interface of a Coupled Free-FLow--Porous Medium System: A New Model Development and Comparison. Transport in Porous Media, 149, 389–419. https://doi.org/10.1007/s11242-023-01944-2
    4. Wu, H., Veyskarami, M., Schneider, M., & Helmig, R. (2023). A New Fully Implicit Two-Phase Pore-Network Model by Utilizing Regularization Strategies. Transport in Porous Media. https://doi.org/10.1007/s11242-023-02031-2
    5. Kiemle, S., Heck, K., Coltman, E., & Helmig, R. (2023). Stable Water Isotopologue Fractionation During Soil-Water Evaporation: Analysis Using a Coupled Soil-Atmosphere Model. Water Resources Research, 59, Article 2. https://doi.org/10.1029/2022WR032385
    6. Mohammadi, F., Eggenweiler, E., Flemisch, B., Oladyshkin, S., Rybak, I., Schneider, M., & Weishaupt, K. (2023). A surrogate-assisted uncertainty-aware Bayesian validation framework and its application to coupling free flow and porous-medium flow. Computational Geosciences, 27, Article 4. https://doi.org/10.1007/s10596-023-10228-z
    7. Lee, D., Weinhardt, F., Hommel, J., Piotrowski, J., Class, H., & Steeb, H. (2023). Machine learning assists in increasing the time resolution of X-ray computed tomography applied to mineral precipitation in porous media. Scientific Reports, 13, 10529. https://doi.org/10.1038/s41598-023-37523-0
    8. Ackermann, S., Fest-Santini, S., Veyskarami, M., Helmig, R., & Santini, M. (2023). Experimental validation of a coupling concept for drop formation and growth onto porous materials by high-resolution X-ray imaging technique. International Journal of Multiphase Flow, 160. https://doi.org/10.1016/j.ijmultiphaseflow.2022.104371
    9. Gläser, D., Koch, T., & Flemisch, B. (2023). GridFormat: header-only C++-library for grid file I/O. Journal of Open Source Software, 8, Article 90. https://doi.org/10.21105/joss.05778
    10. Schneider, M., Gläser, D., Weishaupt, K., Coltman, E., Flemisch, B., & Helmig, R. (2023). Coupling staggered-grid and vertex-centered finite-volume methods for coupled porous-medium free-flow problems. Journal of Computational Physics, 482, 112042. https://doi.org/10.1016/j.jcp.2023.112042
    11. Kohlhaas, R., Kröker, I., Oladyshkin, S., & Nowak, W. (2023). Gaussian active learning on multi-resolution arbitrary polynomial chaos emulator: concept for bias correction, assessment of surrogate reliability and its application to the carbon dioxide benchmark. Computational Geosciences, 27, Article 3. https://doi.org/10.1007/s10596-023-10199-1
    12. Chen, Z., Wang, Y., & Hu, L. (2023). Thermal desorption mechanism of n-dodecane on unsaturated clay: Experimental study and molecular dynamics simulation. Environmental Pollution, 323, 121228. https://doi.org/10.1016/j.envpol.2023.121228
    13. Boon, W. M., Gläser, D., Helmig, R., & Yotov, I. (2023). Flux-mortar mixed finite element methods with multipoint flux approximation. Computer Methods in Applied Mechanics and Engineering, 405, 115870. https://doi.org/10.1016/j.cma.2022.115870
    14. Nissler, E., Scherrer, S., Class, H., Müller, T., Hermannspan, M., Osmancevic, E., & Haslauer, C. (2023). Heat transport from atmosphere through the subsurface to drinking-water supply pipes. Vadose Zone Journal. https://doi.org/10.1002/vzj2.20286
    15. Chen, Z., & Hu, L. (2023). Adsorption behavior of benzene on clay mineral surfaces at different temperatures and air humidity based on molecular simulation. Applied Clay Science, 243, 107068. https://doi.org/10.1016/j.clay.2023.107068
    16. Wu, Z., Chen, Z., Hu, L., Wang, R., & Zhang, X. (2023). Effect of conditioning schemes on mechanical properties of EPB shield soil. Transportation Geotechnics, 42, 101058. https://doi.org/10.1016/j.trgeo.2023.101058
    17. Wang, Y., Chen, Z., & Hu, L. (2023). Determining the geometric surface area of mesoporous materials. The Journal of Physical Chemistry C, 127, Article 9. https://doi.org/10.1021/acs.jpcc.3c00162
  5. 2022

    1. Lunowa, S. B., Mascini, A., Bringedal, C., Bultreys, T., Cnudde, V., & Pop, I. S. (2022). Dynamic Effects during the Capillary Rise of Fluids in Cylindrical Tubes. Langmuir, 38, Article 5. https://doi.org/10.1021/acs.langmuir.1c02680
    2. Scholz, L., & Bringedal, C. (2022). A Three-Dimensional Homogenization Approach for Effective Heat Transport in Thin Porous Media. Transport in Porous Media, 141, Article 3. https://doi.org/10.1007/s11242-022-01746-y
    3. Bringedal, C., Schollenberger, T., Pieters, G. J. M., van Duijn, C. J., & Helmig, R. (2022). Evaporation-Driven Density Instabilities in Saturated Porous Media. Transport in Porous Media, 143, Article 2. https://doi.org/10.1007/s11242-022-01772-w
    4. Michalkowski, C., Weishaupt, K., Schleper, V., & Helmig, R. (2022). Modeling of Two Phase Flow in a Hydrophobic Porous Medium Interacting with a Hydrophilic Structure. Transport in Porous Media, 144, Article 2. https://doi.org/10.1007/s11242-022-01816-1
    5. Weinhardt, F., Deng, J., Hommel, J., Vahid Dastjerdi, S., Gerlach, R., Steeb, H., & Class, H. (2022). Spatiotemporal Distribution of Precipitates and Mineral Phase Transition During Biomineralization Affect Porosity–Permeability Relationships. Transport in Porous Media, 143, Article 2. https://doi.org/10.1007/s11242-022-01782-8
    6. Ghosh, T., Gujjala, Y. K., Deb, D., & Raja Sekhar, G. P. (2022). Numerical investigation of spontaneous imbibition in an anisotropic reservoir. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 8, Article 3. https://doi.org/10.1007/s40948-022-00411-4
    7. Boon, W. M., Gläser, D., Helmig, R., & Yotov, I. (2022). Flux-Mortar Mixed Finite Element Methods on NonMatching Grids. SIAM Journal on Numerical Analysis, 60, Article 3. https://doi.org/10.1137/20M1361407
    8. Younes, A., Hoteit, H., Helmig, R., & Fahs, M. (2022). A robust upwind mixed hybrid finite element method for transport in variably saturated porous media. Hydrology and Earth System Sciences, 26, Article 20. https://doi.org/10.5194/hess-26-5227-2022
    9. Tsinober, A., Rosenzweig, R., Class, H., Helmig, R., & Shavit, U. (2022). The Role of Mixed Convection and Hydrodynamic Dispersion During CO2 Dissolution in Saline Aquifers: A Numerical Study. Water Resources Research, 58, Article 3. https://doi.org/10.1029/2021WR030494
    10. Hommel, J., Gehring, L., Weinhardt, F., Ruf, M., & Steeb, H. (2022). Effects of Enzymatically Induced Carbonate Precipitation on Capillary Pressure-Saturation Relations. Minerals, 12, Article 10. https://doi.org/10.3390/min12101186
    11. Wang, W., Lozano-Durán, A., Helmig, R., & Chu, X. (2022). Spatial and spectral characteristics of information flux between turbulent boundary layers and porous media. Journal of Fluid Mechanics, 949. https://doi.org/10.1017/jfm.2022.770
    12. Becker, B., Guo, B., Buntic, I., Flemisch, B., & Helmig, R. (2022). An Adaptive Hybrid Vertical Equilibrium/Full-Dimensional Model for Compositional Multiphase Flow. Water Resources Research, 58, Article 1. https://doi.org/10.1029/2021WR030990
    13. Koch, T., Wu, H., & Schneider, M. (2022). Nonlinear mixed-dimension model for embedded tubular networks with application to root water uptake. Journal of Computational Physics, 450, 110823. https://doi.org/10.1016/j.jcp.2021.110823
    14. Winter, R., Valsamidou, A., Class, H., & Flemisch, B. (2022). A Study on Darcy versus Forchheimer Models for Flow through Heterogeneous Landfills including Macropores. Water, 14, Article 4. https://doi.org/10.3390/w14040546
    15. Younes, A., Hoteit, H., Helmig, R., & Fahs, M. (2022). A robust fully mixed finite element model for flow and transport in unsaturated fractured porous media. Advances in Water Resources, 166, 104259. https://doi.org/10.1016/j.advwatres.2022.104259
    16. Kelm, M., Gärttner, S., Bringedal, C., Flemisch, B., Knabner, P., & Ray, N. (2022). Comparison study of phase-field and level-set method for three-phase systems including two minerals. Computational Geosciences, 26, Article 3. https://doi.org/10.1007/s10596-022-10142-w
    17. Ahmadi, N., Muniruzzaman, M., Sprocati, R., Heck, K., Mosthaf, K., & Rolle, M. (2022). Coupling soil/atmosphere interactions and geochemical processes: A multiphase and multicomponent reactive transport approach. Advances in Water Resources, 169, 104303. https://doi.org/10.1016/j.advwatres.2022.104303
    18. Lei, H., Chen, Z., & Kang, X. (2022). Examination of particle shape on the shear behaviours of granules using 3D printed soil. European Journal of Environmental and Civil Engineering, 26, Article 9. https://doi.org/10.1080/19648189.2020.1845983
    19. Gläser, D., Schneider, M., Flemisch, B., & Helmig, R. (2022). Comparison of cell- and vertex-centered finite-volume schemes for flow in fractured porous media. Journal of Computational Physics, 448, 110715. https://doi.org/10.1016/j.jcp.2021.110715
    20. Michalkowski, C., Veyskarami, M., Bringedal, C., Helmig, R., & Schleper, V. (2022). Two-phase Flow Dynamics at the Interface Between GDL and Gas Distributor Channel Using a Pore-Network Model. Transport in Porous Media, 144, Article 2. https://doi.org/10.1007/s11242-022-01813-4
    21. Eller, J., Sauerborn, T., Becker, B., Buntic, I., Gross, J., & Helmig, R. (2022). Modeling Subsurface Hydrogen Storage With Transport Properties From Entropy Scaling Using the PC-SAFT Equation of State. Water Resources Research, 58, Article 4. https://doi.org/10.1029/2021WR030885
    22. Weishaupt, K., Koch, T., & Helmig, R. (2022). A fully implicit coupled pore-network/free-flow model for the pore-scale simulation of drying processes. Drying Technology, 40, Article 4. https://doi.org/10.1080/07373937.2021.1955706
    23. Chen, Z., & Hu, L. (2022). Adsorption of naphthalene on clay minerals: a molecular dynamics simulation study. Materials, 15, Article 15. https://doi.org/10.3390/ma15155120
  6. 2021

    1. von Wolff, L., Weinhardt, F., Class, H., Hommel, J., & Rohde, C. (2021). Investigation of Crystal Growth in Enzymatically Induced Calcite Precipitation by Micro-Fluidic Experimental Methods and Comparison with Mathematical Modeling. Transport in Porous Media, 137, Article 2. https://doi.org/10.1007/s11242-021-01560-y
    2. Kurgyis, K., Hommel, J., Flemisch, B., Helmig, R., & Ott, H. (2021). Explicit continuum scale modeling of low-salinity mechanisms. Journal of Petroleum Science and Engineering, 199, 108336. https://doi.org/10.1016/j.petrol.2020.108336
    3. Weishaupt, K., Koch, T., & Helmig, R. (2021). A fully implicit coupled pore-network/free-flow model for the pore-scale simulation of drying processes. Drying Technology, 0, Article 0. https://doi.org/10.1080/07373937.2021.1955706
    4. Scheurer, S., Schäfer Rodrigues Silva, A., Mohammadi, F., Hommel, J., Oladyshkin, S., Flemisch, B., & Nowak, W. (2021). Surrogate-based Bayesian comparison of computationally expensive models: application to microbially induced calcite precipitation. Computational Geosciences. https://doi.org/10.1007/s10596-021-10076-9
    5. Koch, T., Gläser, D., Weishaupt, K., Ackermann, S., Beck, M., Becker, B., Burbulla, S., Class, H., Coltman, E., Emmert, S., Fetzer, T., Grüninger, C., Heck, K., Hommel, J., Kurz, T., Lipp, M., Mohammadi, F., Scherrer, S., Schneider, M., et al. (2021). DuMux 3 – an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling. Computers & Mathematics with Applications. https://doi.org/10.1016/j.camwa.2020.02.012
    6. Wang, W. (., Yang, G. (., Evrim, C., Terzis, A., Helmig, R., & Chu, X. (. (2021). An assessment of turbulence transportation near regular and random permeable interfaces. Physics of Fluids, 33, Article 11. https://doi.org/10.1063/5.0069311
    7. Schneider, J., Groh, J., Pütz, T., Helmig, R., Rothfuss, Y., Vereecken, H., & Vanderborght, J. (2021). Prediction of soil evaporation measured with weighable lysimeters using the FAO Penman–Monteith method in combination with Richards’ equation. Vadose Zone Journal, 20, Article 1. https://doi.org/10.1002/vzj2.20102
    8. Berre, I., Boon, W. M., Flemisch, B., Fumagalli, A., Gläser, D., Keilegavlen, E., Scotti, A., Stefansson, I., Tatomir, A., Brenner, K., Burbulla, S., Devloo, P., Duran, O., Favino, M., Hennicker, J., Lee, I.-H., Lipnikov, K., Masson, R., Mosthaf, K., et al. (2021). Verification benchmarks for single-phase flow in three-dimensional fractured porous media. Advances in Water Resources, 147, 103759. https://doi.org/10.1016/j.advwatres.2020.103759
    9. Wagner, A., Eggenweiler, E., Weinhardt, F., Trivedi, Z., Krach, D., Lohrmann, C., Jain, K., Karadimitriou, N., Bringedal, C., Voland, P., Holm, C., Class, H., Steeb, H., & Rybak, I. (2021). Permeability Estimation of Regular Porous Structures: A Benchmark for Comparison of Methods. Transport in Porous Media, 138, Article 1. https://doi.org/10.1007/s11242-021-01586-2
    10. Weinhardt, F., Class, H., Dastjerdi, S. V., Karadimitriou, N., Lee, D., & Steeb, H. (2021). Experimental Methods and Imaging for Enzymatically Induced Calcite Precipitation in a microfluidic cell. Water Resources Research, 57, e2020WR029361. https://doi.org/doi.org/10.1029/2020WR029361
    11. Lunowa, S. B., Bringedal, C., & Pop, I. S. (2021). On an averaged model for immiscible two-phase flow with surface tension and dynamic contact angle in a thin strip. Studies in Applied Mathematics, 147, Article 1. https://doi.org/10.1111/sapm.12376
    12. Chu, X., Wang, W., Yang, G., Terzis, A., Helmig, R., & Weigand, B. (2021). Transport of Turbulence Across Permeable Interface in a Turbulent Channel Flow: Interface-Resolved Direct Numerical Simulation. Transport in Porous Media, 136, Article 1. https://doi.org/10.1007/s11242-020-01506-w
    13. Anzt, H., Bach, F., Druskat, S., Löffler, F., Loewe, A., Renard, B., Seemann, G., Struck, A., Achhammer, E., Aggarwal, P., Appel, F., Bader, M., Brusch, L., Busse, C., Chourdakis, G., Dabrowski, P., Ebert, P., Flemisch, B., Friedl, S., et al. (2021). An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action version 2; peer review: 2 approved. F1000Research, 9, Article 295. https://doi.org/10.12688/f1000research.23224.2
    14. Ackermann, S., Bringedal, C., & Helmig, R. (2021). Multi-scale three-domain approach for coupling free flow and flow in porous media including droplet-related interface processes. Journal of Computational Physics, 429, 109993. https://doi.org/10.1016/j.jcp.2020.109993
    15. Gao, B., Coltman, E., Farnsworth, J., Helmig, R., & Smits, K. M. (2021). Determination of Vapor and Momentum Roughness Lengths Above an Undulating Soil Surface Based on PIV-Measured Velocity Profiles. Water Resources Research, 57, Article 7. https://doi.org/10.1029/2021WR029578
    16. Seitz, G., Mohammadi, F., & Class, H. (2021). Thermochemical Heat Storage in a Lab-Scale Indirectly Operated CaO/Ca(OH)2 Reactor - Numerical Modeling and Model Validation through Inverse Parameter Estimation. Applied Sciences, 11, Article 2. https://doi.org/10.3390/app11020682
    17. Bastidas, M., Bringedal, C., Pop, I. S., & Radu, F. A. (2021). Numerical homogenization of non-linear parabolic problems on adaptive meshes. Journal of Computational Physics, 425, 109903. https://doi.org/10.1016/j.jcp.2020.109903
    18. Wang, W., Chu, X., Lozano-Durán, A., Helmig, R., & Weigand, B. (2021). Information transfer between turbulent boundary layers and porous media. Journal of Fluid Mechanics, 920, A21. https://doi.org/10.1017/jfm.2021.445
    19. Koch, T., Weishaupt, K., Müller, J., Weigand, B., & Helmig, R. (2021). A (Dual) Network Model for Heat Transfer in Porous Media. Transport in Porous Media, 140, Article 1. https://doi.org/10.1007/s11242-021-01602-5
    20. Ahmadi, N., Heck, K., Rolle, M., Helmig, R., & Mosthaf, K. (2021). On multicomponent gas diffusion and coupling concepts for porous media and free flow: a benchmark study. Computational Geosciences, 25, Article 5. https://doi.org/10.1007/s10596-021-10057-y
    21. Bastidas Olivares, M., Bringedal, C., & Pop, I. S. (2021). A two-scale iterative scheme for a phase-field model for precipitation and dissolution in porous media. Applied Mathematics and Computation, 396, 125933. https://doi.org/10.1016/j.amc.2020.125933
    22. Class, H., Bürkle, P., Sauerborn, T., Trötschler, O., Strauch, B., & Zimmer, M. (2021). On the Role of Density-Driven Dissolution of CO2 in Phreatic Karst Systems. Water Resources Research, 57, Article 12. https://doi.org/10.1029/2021WR030912
  7. 2020

    1. Seitz, G., Helmig, R., & Class, H. (2020). A numerical modeling study on the influence of porosity changes during thermochemical heat storage. Applied Energy, 259, 114152. https://doi.org/10.1016/j.apenergy.2019.114152
    2. Schneider, M., Weishaupt, K., Gläser, D., Boon, W. M., & Helmig, R. (2020). Coupling staggered-grid and MPFA finite volume methods for free flow/porous-medium flow problems. Journal of Computational Physics, 401. https://doi.org/10.1016/j.jcp.2019.109012
    3. Schneider, M., Flemisch, B., Frey, S., Hermann, S., Iglezakis, D., Ruf, M., Schembera, B., Seeland, A., & Steeb, H. (2020). Datenmanagement im SFB 1313. Bausteine Forschungsdatenmanagement, 3, Article 1. https://doi.org/10.17192/bfdm.2020.1.8085
    4. Ghosh, T., Bringedal, C., Helmig, R., & Sekhar, G. P. R. (2020). Upscaled equations for two-phase flow in highly heterogeneous porous media: Varying permeability and porosity. Advances in Water Resources, 145, 103716. https://doi.org/10.1016/j.advwatres.2020.103716
    5. de Winter, M., Weishaupt, K., Scheller, S., Frey, S., Raoof, A., Hassanizadeh, M., & Helmig, R. (2020). The Complexity of Porous Media Flow Characterized in a Microfluidic Model Based on Confocal Laser Scanning Microscopy and Micro-PIV. Transport in Porous Media. https://doi.org/10.1007/s11242-020-01515-9
    6. Beck, M., Rinaldi, A. P., Flemisch, B., & Class, H. (2020). Accuracy of fully coupled and sequential approaches for modeling hydro- and geomechanical processes. Computational Geosciences, 24, Article 4. https://doi.org/10.1007/s10596-020-09987-w
    7. Emmert, S., Davis, K., Gerlach, R., & Class, H. (2020). The Role of Retardation, Attachment and Detachment Processes during Microbial Coal-Bed Methane Production after Organic Amendment. Water, 12, Article 11. https://doi.org/10.3390/w12113008
    8. Emmert, S., Class, H., Davis, K. J., & Gerlach, R. (2020). Importance of specific substrate utilization by microbes in microbially enhanced coal-bed methane production: A modelling study. International Journal of Coal Geology, 229, 103567. https://doi.org/10.1016/j.coal.2020.103567
    9. Hommel, J., Akyel, A., Frieling, Z., Phillips, A. J., Gerlach, R., Cunningham, A. B., & Class, H. (2020). A Numerical Model for Enzymatically Induced Calcium Carbonate Precipitation. Applied Sciences, 10, Article 13. https://doi.org/10.3390/app10134538
    10. Heck, K., Coltman, E., Schneider, J., & Helmig, R. (2020). Influence of Radiation on Evaporation Rates: A Numerical Analysis. Water Resources Research, 56, Article 10. https://doi.org/10.1029/2020WR027332
    11. Sharmin, S., Bringedal, C., & Pop, I. S. (2020). On upscaling pore-scale models for two-phase flow with evolving interfaces. Advances in Water Resources, 142, 103646. https://doi.org/10.1016/j.advwatres.2020.103646
    12. Koch, T., Flemisch, B., Helmig, R., Wiest, R., & Obrist, D. (2020). A multi-scale sub-voxel perfusion model to estimate diffusive capillary wall conductivity in multiple sclerosis lesions from perfusion MRI data. International Journal for Numerical Methods in Biomedical Engineering, 36, Article 2. https://doi.org/10.1002/cnm.3298
    13. Class, H., Weishaupt, K., & Trötschler, O. (2020). Experimental and Simulation Study on Validating a Numerical Model for CO2 Density-Driven Dissolution in Water. Water, 12, Article 3. https://doi.org/10.3390/w12030738
    14. Koch, T., Helmig, R., & Schneider, M. (2020). A new and consistent well model for one-phase flow in anisotropic porous media using a distributed source model. Journal of Computational Physics, 410, 109369. https://doi.org/10.1016/j.jcp.2020.109369
    15. Koch, T., Schneider, M., Helmig, R., & Jenny, P. (2020). Modeling tissue perfusion in terms of 1d-3d embedded mixed-dimension coupled problems with distributed sources. Journal of Computational Physics, 410, 109370. https://doi.org/10.1016/j.jcp.2020.109370
    16. Oladyshkin, S., Mohammadi, F., Kroeker, I., & Nowak, W. (2020). Bayesian3 Active Learning for the Gaussian Process Emulator Using Information Theory. Entropy, 22, Article 8. https://doi.org/10.3390/e22080890
    17. Coltman, E., Lipp, M., Vescovini, A., & Helmig, R. (2020). Obstacles, Interfacial Forms, and Turbulence: A Numerical Analysis of Soil-Water Evaporation Across Different Interfaces. Transport in Porous Media, 134, Article 2. https://doi.org/10.1007/s11242-020-01445-6
    18. Weishaupt, K., Terzis, A., Zarikos, I., Yang, G., Flemisch, B., de Winter, D. A. M., & Helmig, R. (2020). A Hybrid-Dimensional Coupled Pore-Network/Free-Flow Model Including Pore-Scale Slip and Its Application to a Micromodel Experiment. Transport in Porous Media, 135, Article 1. https://doi.org/10.1007/s11242-020-01477-y
    19. Agélas, L., Schneider, M., Enchéry, G., & Flemisch, B. (2020). Convergence of nonlinear finite volume schemes for two-phase porous media flow on general meshes. IMA Journal of Numerical Analysis. https://doi.org/10.1093/imanum/draa064
    20. Gläser, D., Flemisch, B., Class, H., & Helmig, R. (2020). Frackit: a framework for stochastic fracture network generation and analysis. Journal of Open Source Software, 5. https://doi.org/10.21105/joss.02291
    21. Bahlmann, L. M., Smits, K. M., Heck, K., Coltman, E., Helmig, R., & Neuweiler, I. (2020). Gas Component Transport Across the Soil-Atmosphere Interface for Gases of Different Density: Experiments and Modeling. Water Resources Research, 56, Article 9. https://doi.org/10.1029/2020WR027600
    22. Bringedal, C., von Wolff, L., & Pop, I. S. (2020). Phase Field Modeling of Precipitation and Dissolution Processes in Porous Media: Upscaling and Numerical Experiments. Multiscale Modeling & Simulation, 18, Article 2. https://doi.org/10.1137/19M1239003
    23. Shokri-Kuehni, S. M. S., Raaijmakers, B., Kurz, T., Or, D., Helmig, R., & Shokri, N. (2020). Water Table Depth and Soil Salinization: From Pore-Scale Processes to Field-Scale Responses. Water Resources Research, 56, Article 2. https://doi.org/10.1029/2019WR026707
  8. 2019

    1. Weishaupt, K., Joekar-Niasar, V., & Helmig, R. (2019). An efficient coupling of free flow and porous media flow using the pore-network modeling approach. Journal of Computational Physics: X, 1, 100011. https://doi.org/10.1016/j.jcpx.2019.100011
    2. Yang, G., Terzis, A., Zarikos, I., Hassanizadeh, S. M., Weigand, B., & Helmig, R. (2019). Internal flow patterns of a droplet pinned to the hydrophobic surfaces of a confined microchannel using micro-PIV and VOF simulations. Chemical Engineering Journal, 370, 444–454. https://doi.org/10.1016/j.cej.2019.03.191
    3. Bilke, L., Flemisch, B., Kalbacher, T., Kolditz, O., Helmig, R., & Nagel, T. (2019). Development of Open-Source Porous Media Simulators: Principles and Experiences. Transport in Porous Media, 130, Article 1. https://doi.org/10.1007/s11242-019-01310-1
    4. Gläser, D., Flemisch, B., Helmig, R., & Class, H. (2019). A hybrid-dimensional discrete fracture model for non-isothermal two-phase flow in fractured porous media. GEM - International Journal on Geomathematics, 10, Article 1. https://doi.org/10.1007/s13137-019-0116-8
    5. Cunningham, A. B., Class, H., Ebigbo, A., Gerlach, R., Phillips, A., & Hommel, J. (2019). Field-scale modeling of microbially induced calcite precipitation. Computational Geosciences, tbd. https://doi.org/10.1007/s10596-018-9797-6
    6. Yang, G., Coltman, E., Weishaupt, K., Terzis, A., Helmig, R., & Weigand, B. (2019). On the Beavers-Joseph interface condition for non-parallel coupled channel flow over a porous structure at high Reynolds numbers. Transport in Porous Media. https://doi.org/10.1007/s11242-019-01255-5
    7. Ghosh, T., Raja Sekhar, G. P., & Deb, D. (2019). Modeling of Co-current Spontaneous Imbibition Oil Recovery from Partially Covered Homogeneous Hydrocarbon Reservoir. Transport in Porous Media, 130, Article 3. https://doi.org/10.1007/s11242-019-01349-0
    8. Zhuang, L., Hassanizadeh, S. M., van Duijn, C. J., Zimmermann, S., Zizina, I., & Helmig, R. (2019). Experimental and Numerical Studies of Saturation Overshoot during Infiltration into a Dry Soil. Vadose Zone Journal, 18, Article 1. https://doi.org/10.2136/vzj2018.09.0167
    9. Mitra, K., Köppl, T., Duijn, H. v., Pop, I. S., & Helmig, R. (2019). Fronts in two-phase porous media flow problems: the effects of hysteresis and dynamic capillarity. Studies in Applied Mathematics, 1906. https://research.tue.nl/en/publications/fronts-in-two-phase-porous-media-flow-problems-the-effects-of-hys
    10. Beck, M., & Class, H. (2019). Modelling fault reactivation with characteristic stress-drop terms. Advances in Geosciences, 49, 1–7. https://doi.org/10.5194/adgeo-49-1-2019
    11. Vidotto, Ettore., Koch, Timo., Köppl, Tobias., Helmig, Rainer., & Wohlmuth, Barbara. (2019). Hybrid Models for Simulating Blood Flow in Microvascular Networks. Multiscale Modeling & Simulation, 17, Article 3. https://doi.org/10.1137/18M1228712
    12. Yang, G., Vaikuntanathan, V., Terzis, A., Cheng, X., Weigand, B., & Helmig, R. (2019). Impact of a linear array of hydrophilic and superhydrophobic spheres on a deep water pool. Colloids and Interfaces. https://doi.org/10.3390/colloids3010029
    13. Terzis, A., Zarikos, I., Weishaupt, K., Yang, G., Chu, X., Helmig, R., & Weigand, B. (2019). Microscopic velocity field measurements inside a regular porous medium adjacent to a low Reynolds number channel flow. Physics of Fluids, 31, Article 4. https://doi.org/10.1063/1.5092169
  9. 2018

    1. Gao, B., Davarzani, H., Helmig, R., & Smits, K. M. (2018). Experimental and numerical study of evaporation from wavy surfaces by coupling free flow and porous media flow. Water Resources Research. https://doi.org/10.1029/2018WR023423
    2. Schneider, M., Köppl, T., Helmig, R., Steinle, R., & Hilfer, R. (2018). Stable propagation of saturation overshoots for two-phase flow in porous media. Transport in Porous Media, 121, Article 3. https://doi.org/10.1007/s11242-017-0977-y
    3. Praditia, T., Helmig, R., & Hajibeygi, H. (2018). Multiscale formulation for coupled flow-heat equations arising from single-phase flow in fractured geothermal reservoirs. Computational Geosciences. https://doi.org/10.1007/s10596-018-9754-4
    4. Schneider, M., Gläser, D., Flemisch, B., & Helmig, R. (2018). Comparison of finite-volume schemes for diffusion problems. Oil & Gas Science and Technology – Revue d’IFP Energies Nouvelles, 73. https://ogst.ifpenergiesnouvelles.fr/articles/ogst/pdf/2018/01/ogst180050.pdf
    5. Vidotto, E., Helmig, R., Schneider, M., & Wohlmuth, B. (2018). Streamline method for resolving sharp fronts for complex two-phase flow in porous media. Computational Geosciences, 22, Article 6. https://doi.org/10.1007/s10596-018-9767-z
    6. Schneider, M., Flemisch, B., Helmig, R., Terekhov, K., & Tchelepi, H. (2018). Monotone nonlinear finite-volume method for challenging grids. Computational Geosciences. https://doi.org/10.1007/s10596-017-9710-8
    7. Mohammadi, F., Kopmann, R., Guthke, A., Oladyshkin, S., & Nowak, W. (2018). Bayesian selection of hydro-morphodynamic models under computational time constraints. Advances in Water Resources, 117, 53–64. https://doi.org/10.1016/j.advwatres.2018.05.007
    8. Köppl, T., Fedoseyev, M., & Helmig, R. (2018). Simulation of surge reduction systems using dimensionally reduced models. Journal of Hydraulic Engineering. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001553
    9. Becker, B., Guo, B., Bandilla, K., Celia, M. A., Flemisch, B., & Helmig, R. (2018). An adaptive multiphysics model coupling vertical equilibrium and full multidimensions for multiphase flow in porous media. Water Resources Research, 54. https://doi.org/10.1029/2017WR022303
    10. Köppl, T., Vidotto, E., Wohlmuth, B. I., & Zunino, P. (2018). Mathematical modeling, analysis and numerical approximation of second order elliptic problems with inclusions. Mathematical Models and Methods in Applied Sciences, 28, Article 5. https://doi.org/10.1142/S0218202518500252
    11. Koch, T., Gläser, D., Weishaupt, K., Ackermann, S., Beck, M., Becker, B., Burbulla, S., Class, H., Coltman, E., Fetzer, T., Flemisch, B., Grüninger, C., Heck, K., Hommel, J., Kurz, T., Lipp, M., Mohammadi, F., Schneider, M., Seitz, G., et al. (2018). DuMuX 3.0.0. https://doi.org/10.5281/zenodo.2479595
    12. Köppl, T., Santin, G., Haasdonk, B., & Helmig, R. (2018). Numerical modelling of a peripheral arterial stenosis using dimensionally reduced models and machine learning techniques. International Journal for Numerical Methods in Biomedical Engineering. https://doi.org/10.1002/cnm.3095
    13. Koch, T., Heck, K., Schröder, N., Class, H., & Helmig, R. (2018). A new simulation framework for soil-root interaction, evaporation, root growth, and solute transport. Vadose Zone Journal. https://doi.org/10.2136/vzj2017.12.0210
    14. Hommel, J., Coltman, E., & Class, H. (2018). Porosity-Permeability Relations for Evolving Pore Space: A Review with a Focus on (Bio-)geochemically Altered Porous Media. Transport in Porous Media, 2, Article 124. https://doi.org/10.1007/s11242-018-1086-2
  10. 2017

    1. Gläser, D., Helmig, R., Flemisch, B., & Class, H. (2017). A discrete fracture model for two-phase flow in fractured porous media. Advances in Water Resources, 110. https://doi.org/10.1016/j.advwatres.2017.10.031
    2. Terzis, A., Roumeli, E., Weishaupt, K., Brack, S., Aslannejad, H., Groß, J., Hassanizadeh, S. M., Helmig, R., & Weigand, B. (2017). Heat release at the wetting front during capillary filling of cellulosic micro-substrates. Journal of Colloid and Interface Science. https://doi.org/10.1016/j.jcis.2017.06.027
    3. Kleinknecht, S., Class, H., & Braun, J. (2017). Experimental study on retardation of a heavy NAPL vapor in partially saturated porous media. Hydrol. Earth Syst. Sci. Discuss., 21.
    4. Jabbari, M., Shojaee Nasirabadi, P., Jambhekar, V. A., Hattel, J. H., & Helmig, R. (2017). Drying of a tape-cast layer: Numerical investigation of influencing parameters. International Journal of Heat and Mass Transfer, 108. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.074
    5. Sander, O., Koch, T., Schröder, N., & Flemisch, B. (2017). The Dune FoamGrid implementation for surface and network grids. Archive of Numerical Software, 5. https://dx.doi.org/10.11588/ans.2017.1.28490
    6. Gupta, S., Deusner, C., Haeckel, M., Helmig, R., & Wohlmuth, B. I. (2017). Testing a thermo-chemo-hydro-geomechanical model for gas hydrate bearing sediments using triaxial compression lab experiments. https://doi.org/10.1002/2017GC006901
    7. Becker, B., Guo, B., Bandilla, K., Celia, M. A., Flemisch, B., & Helmig, R. (2017). A pseudo-vertical equilibrium model for slow gravity drainage dynamics. Water Resources Research, 53. https://doi.org/10.1002/2017WR021644
    8. Yang, G., Weigand, B., Terzis, A., Weishaupt, K., & Helmig, R. (2017). Numerical simulation of turbulent flow and heat transfer in a three-dimensional channel coupled with flow through porous structures. Transport in Porous Media, 120. https://doi.org/10.1007/s11242-017-0995-9
    9. Schneider, M., Agélas, L., Enchery, G., & Flemisch, B. (2017). Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes. 351. https://doi.org/10.1016/j.jcp.2017.09.003
    10. Mejri, E., Bouhlila, R., & Helmig, R. (2017). Heterogeneity effects on evaporation-induced halite and gypsum co-precipitation in porous media. Transport in Porous Media. https://doi.org/10.1007/s111242-017-0846-8
    11. Neuweiler, I., & Helmig, R. (2017). Debates - Hypothesis testing in hydrology: a subsurface perspective. Water Resources Research, 53. https://doi.org/1002/2016WR020047
    12. Trautz, A., Illangasekare, T., Rodriguez-Iturbe, I., Heck, K., & Helmig, R. (2017). Development of an experimental approach to study coupled soil-plant-atmosphere processes using plant analogs. Water Resources Research, 53.
    13. Fetzer, T., Vanderborght, J., Mosthaf, K., Smits, K. M., & Helmig, R. (2017). Heat and water transport in soils and across the soil-atmosphere interface: 2. Numerical analysis. Water Resources Research, 53, Article 2. https://doi.org/10.1002/2016WR019983
    14. Vanderborght, J., Fetzer, T., Mosthaf, K., Smits, K. M., & Helmig, R. (2017). Heat and water transport in soils and across the soil-atmosphere interface: 1. Theory and different model concepts. Water Resources Research, 53, Article 2. https://doi.org/10.1002/2016WR019982
    15. Kempf, D., & Koch, T. (2017). System testing in scientific numerical software frameworks using the example of DUNE. Archive of Numerical Software, 5. https://dx.doi.org/10.11588/ans.2017.1.27447
    16. Schneider, M., Flemisch, B., & Helmig, R. (2017). Monotone nonlinear finite-volume method for nonisothermal two-phase two-component flow in porous media. International Journal for Numerical Methods in Fluids, 84, Article 6. https://doi.org/10.1002/fld.4352
  11. 2016

    1. Fattahi, E., Waluga, C., Wohlmuth, B. I., Rüde, U., Manhard, M., & Helmig, R. (2016). Lattice Boltzmann methods in porous media simulations: laminar to turbulent flow. Computers and Fluids, 140.
    2. Hommel, J., Ebigbo, A., Gerlach, R., Cunningham, A. B., Helmig, R., & Class, H. (2016). Finding a balance between accuracy and effort for modeling biomineralization. Energy Procedia, 97. https://doi.org/10.1016/j.egypro.2016.10.028
    3. Gupta, S., Wohlmuth, B. I., & Helmig, R. (2016). Multi-rate time stepping schemes for hydro-geomechanical model for subsurface methane hydrate reservoirs. Advances in Water Resources, 91. https://doi.org/10.1016/j.advwatres.2016.02.013
    4. Lindner, F., Nuske, P., Weishaupt, K., Helmig, R., Mundt, C., & Pfitzner, M. (2016). Transpiration cooling with local thermal nonequilibrium: Model comparison in multiphase flow in porous media. Journal of Porous Media, 19. https://doi.org/10.1615/JPorMedia.v19.i2.30
    5. Jambhekar, V. A., Mejri, E., Schröder, N., Helmig, R., & Shokri, N. (2016). Kinetic Approach to Model Reactive Transport and Mixed Salt Precipitation in a Coupled Free-Flow–Porous-Media System. Transport in Porous Media. https://doi.org/10.1007/s11242-016-0665-3
    6. Gläser, D., Dell’Oca, A., Tatomir, A., Bensabat, J., Class, H., Guadagnini, A., Helmig, R., McDermott, C., Riva, M., & Sauter, M. (2016). An Approach Towards a FEP-based Model for Risk Assessment for Hydraulic Fracturing Operations. Energy Procedia, 97, 387–394. https://doi.org/10.1016/j.egypro.2016.10.030
    7. Baber, K., Flemisch, B., & Helmig, R. (2016). Modelling drop dynamics at the interface between free and porous-medium flow using the mortar method. International Journal of Heat and Mass Transfer. https://www.iws.uni-stuttgart.de/publikationen/hydrosys/paper/2014/SimTech_Preprint_Baber2014.pdf
    8. Schmid, K. S., Alyafei, N., Geiger, S., & Blunt, M. (2016). Analytical Solutions for Spontaneous Imbibition: Fractional-Flow Theory and Experimental Analysis. SPE Journal. https://doi.org/10.2118/184393-PA
    9. Hommel, J., Lauchnor, E., Gerlach, R., Cunningham, A. B., Ebigbo, A., Helmig, R., & Class, H. (2016). Investigating the influence of the initial biomass distribution and injection strategies on biofilm-mediated calcite precipitation in porous media. Transport in Porous Media, 114, Article 2. https://doi.org/10.1007/s11242-015-0617-3
    10. Drzisga, D., Köppl, T., Pohl, U., Helmig, R., & Wohlmuth, B. I. (2016). Numerical modeling of compensation mechanisms for peripheral arterial stenoses. Computers in Biology and Medicine, Article 70.
    11. Weishaupt, K., Bordenave, A., Atteia, O., & Class, H. (2016). Numerical Investigation on the Benefits of Preheating for an Increased Thermal Radius of Influence During Steam Injection in Saturated Soil. Transport in Porous Media. https://doi.org/10.1007/s11242-016-0624-z
    12. Kissinger, A., Noack, V., Knopf, S., Konrad, W., Scheer, D., & Class, H. (2016). Regional-scale brine migration along vertical pathways due to CO2 injection - Part 2: a simulated case study in the North German Basin. Hydrology and Earth System Sciences (HESS).
    13. Fetzer, T., Smits, K. M., & Helmig, R. (2016). Effect of Turbulence and Roughness on Coupled Porous-Medium/Free-Flow Exchange Processes. Transport in Porous Media, 114, Article 2. https://doi.org/10.1007/s11242-016-0654-6
    14. Scheer, D., Konrad, W., Class, H., Kissinger, A., Knopf, S., & Noack, V. (2016). Regional-scale brine migration along vertical pathways due to CO2 injection - Part 1: the participatory modeling approach. Hydrology and Earth System Sciences (HESS).
    15. Jabbari, M., Jambhekar, V. A., Hattel, J. H., & Helmig, R. (2016). Drying of a tape-cast layer: Numerical modelling of the evaporation process in a graded/layered material. International Journal of Heat and Mass Transfer, 103. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.073
    16. Helmig, R., Hassanizadeh, S. M., & Dahle, H. K. (2016). Foreword. NUPUS: Porous media research has got a brand name. Transport in Porous Media, 114. https://doi.org/10.1007/s11242-016-0736-5
    17. Szymanska, P., Tisler, W., Schütz, C., Szymkiewicz, A., Neuweiler, I., & Helmig, R. (2016). Experimental and numerical analysis of air trapping in a porous medium with coarse textured inclusions. Acta Geophysica, 64.
    18. Fraundorf, P., & Lipp, M. (2016). Molar standards & information units in the ‘new-SI’. https://hal.archives-ouvertes.fr/hal-01381003/file/MolarStandardsAndInformationUnits.pdf
    19. Blatt, M., Burchardt, A., Dedner, A., Engwer, C., Fahlke, J., Flemisch, B., Gersbacher, C., Gräser, C., Gruber, F., Grüninger, C., Kempf, D., Klöfkorn, R., Malkmus, T., Müthing, S., Nolte, M., Piatkowski, M., & Sander, O. (2016). The Distributed and Unified Numerics Environment, Version 2.4. Archive of Numerical Software, 4, Article 100. https://doi.org/10.11588/ans.2016.100.26526
    20. Beck, M., Seitz, G., & Class, H. (2016). Volume-Based Modelling of Fault Reactivation in Porous Media Using a Visco-Elastic Proxy Model. Transport in Porous Media.
    21. Kissinger, A., Noack, V., Knopf, S., Konrad, W., Scheer, D., & Class, H. (2016). Brine migration along vertical pathways due to CO2 injection - a simulated case study in the North German Basin with stakeholder involvement. https://doi.org/10.5194/hess-2016-281
  12. 2015

    1. Scheer, D., Konrad, W., Class, H., Kissinger, A., Knopf, S., & Noack, V. (2015). Expert involvement in science development: (re-)evaluation of an early screening tool for carbon storage site characterization. International Journal of Greenhouse Gas Control, 37.
    2. Hommel, J., Lauchnor, E., Phillips, A., Gerlach, R., Cunningham, A. B., Helmig, R., Ebigbo, A., & Class, H. (2015). A revised model for microbially induced calcite precipitation: Improvements and new insights based on recent experiments. Water Resources Research, 51, Article 5. https://doi.org/10.1002/2014WR016503
    3. Class, H., Mahl, L., Ahmed, W., Norden, B., Kühn, M., & Kempka, T. (2015). Matching Pressure Measurements and Observed CO2 Arrival Times with Static and Dynamic Modelling at the Ketzin Storage site. Energy Procedia, 76.
    4. Kleinknecht, S., Class, H., & Braun, J. (2015). Density-Driven Migration of Heavy NAPL Vapor in the Unsaturated Zone. Vadose Zone Journal, 14.
    5. Rybak, I., Magiera, J., Helmig, R., & Rohde, C. (2015). Multirate time integration for coupled saturated/unsaturated porous medium and free flow systems. Computational Geosciences. https://doi.org/10.1007/s10596-015-9469-8
    6. Schwenck, N., Flemisch, B., Helmig, R., & Wohlmuth, B. I. (2015). Dimensionally reduced flow models in fractured porous media: crossings and boundaries. Computational Geosciences, 19, Article 6. https://doi.org/10.1007/s10596-015-9536-1
    7. Nuske, P., Ronneberger, O., Karadimitriou, N., Helmig, R., & Hassanizadeh, S. M. (2015). Modelling Multi-Phase Flow in a Micro-Model with Local Thermal Non-Equilibrium on the Darcy Scale. International Journal of Heat and Mass Transfer, 88.
    8. Enzenhöfer, R., Nowak, W., & Binning, P. J. (2015). Stakeholder-Objective Risk Model (STORM): Assessing the risk of multiple contaminant sources in groundwater catchments for pumping well management. Advances in Water Resources, 83. https://doi.org/10.1016/j.advwatres.2015.05.015
    9. Kaulmann, S., Flemisch, B., Haasdonk, B., Lie, K.-A., & Ohlberger, M. (2015). The localized reduced basis multiscale method for two-phase flows in porous media. International Journal of Numerical Methods in Engineering, 102. https://onlinelibrary.wiley.com/doi/10.1002/nme.4773/full
    10. Gerbersdorf, S. U., Cimatoribus, C., Class, H., Engesser, K.-H., Helbich, S., Hollert, H., Lange, C., Kranert, M., Metzger, J. W., Nowak, W., Seiler, T.-B., Steger, K., Steinmetz, H., & Wieprecht, S. (2015). Anthropogenic Trace Compounds (ATCs) in aquatic habitats - Research needs on sources, fate, detection and toxicity to ensure timely elimination strategies and risk management. Environment International, Vol.79.2015. https://doi.org/10.1016/j.envint.2015.03.011
    11. Faigle, B., Elfeel, M. A., Helmig, R., Becker, B., Flemisch, B., & Geiger, S. (2015). Multi-physics modeling of non-isothermal compositional flow on adaptive grids. Computational Methods in Applied Mechanical Engineering, 292. https://doi.org/10.1016/j.cma.2014.11.030
    12. Tatomir, A., Schaffer, M., Kissinger, A., Hommel, J., Nuske, P., Licha, T., Helmig, R., & Sauter, M. (2015). Novel approach for modeling kinetic interface-sensitive (KIS) tracers with respect to time-dependent interfacial area change for the optimization of supercritical carbon dioxide injection into deep saline aquifers. International Journal of Greenhouse Gas Control, 33. https://doi.org/10.1016/j.ijggc.2014.11.020
  13. 2014

    1. Enzenhöfer, R., Bunk, T., & Nowak, W. (2014). Nine steps to risk-informed wellhead protection and management: A case study. Ground Water, 52. https://doi.org/10.1111/gwat.12161
    2. Lindner, F., Nuske, P., Helmig, R., Mundt, C., & Pfitzner, M. (2014). Transpiration Cooling with Local Thermal Non-Equilibrium: Model Comparison in Multiphase Flow in Porous Media. Journal of Porous Media.
    3. Schaedle, P., Hubschwerlen, N., & Class, H. (2014). Optimizing the modeling performance for safety assessments of nuclear waste repositories by approximating two-phase flow and transport by single-phase transport simulations. Nuclear Technology, 187.
    4. Huber, K., Vanderborght, J., Javaux, M., Schröder, N., Dodd, I. C., & Vereecken, H. (2014). Modelling the impact of heterogeneous rootzone water distribution on the regulation of transpiration by hormone transport and/or hydraulic pressures. Plant and Soil, 384. https://www.iws.uni-stuttgart.de/publikationen/hydrosys/paper/2015/PS_Huber_2014.pdf
    5. Schmid, K. S., Groß, J., & Helmig, R. (2014). Chemical osmosis in two-phase flow and salinity-dependent capillary pressures in rocks with microporosity. Water Resources Research. https://doi.org/10.1002/2013WR013848
    6. Kröker, I., Nowak, W., & Rohde, C. (2014). A stochastically and spatially adaptive parallel scheme for uncertain and non-linear two-phase flow problems. Computational Geosciences.
    7. Maier, C., Schmid, K. S., Ahmed, M., & Geiger, S. (2014). Multi-Rate Mass-Transfer Dual-Porosity Modelling Using the Exact Analytical Solution for Spontaneous Imbibition. Society of Petroleum Engineers. https://doi.org/0.2118/164926-MS
    8. Mosthaf, K., Helmig, R., & Or, D. (2014). Modeling and analysis of evaporation processes from porous media on the REV scale. Water Resources Research, 50. https://doi.org/10.1002/2013WR014442
    9. Faigle, B., Helmig, R., Aavatsmark, I., & Flemisch, B. (2014). Efficient multiphysics modelling with adaptive grid-refinement using an MPFA method. Computational Geosciences, 18, Article 5. https://doi.org/10.1007/s10596-014-9407-1
    10. Schöniger, A., Wöhling, T., Samaniego, L., & Nowak, W. (2014). Model selection on solid ground: rigorous comparison of nine ways to evaluate Bayesian evidence. Water Resources Research.
    11. Nowak, W., Bode, F., & Loschko, M. (2014). A multi-objective optimization concept for risk-based early-warning monitoring networks in well catchments.
    12. Wöhling, T., Schöniger, A., & Nowak, W. (2014). Bayesian model averaging to explore the worth of data for maximum-confidence soil-plant model selection and prediction. Water Resources Research.
    13. Nuske, P., Joekar-Niasar, V., & Helmig, R. (2014). Non-Equilibrium in Multiphase Multicomponent Flow in Porous Media: An Evaporation Example. International Journal of Heat and Mass Transfer. https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.011
    14. Koch, J., & Nowak, W. (2014). A method for implementing Dirichlet and third-type boundary conditions in PTRW simulations. Water Resources Research, 50, Article 2. https://doi.org/10.1002/2013WR013796
    15. Karadimitriou, N., Nuske, P., Kleingeld, P., Hassanizadeh, S. M., & Helmig, R. (2014). Simultaneous thermal and optical imaging of two-phase flow in a micro-model. https://doi.org/10.1039/c4lc00321g
    16. Köppl, T., Schneider, M., Pohl, U., & Wohlmuth, B. I. (2014). The influence of an unilateral carotid artery stenosis on brain oxygenation. Medical Engineering and Physics, 36(7).
    17. Szymkiewicz, A., Neuweiler, I., & Helmig, R. (2014). Influence of heterogeneous air entry pressure on large scale unsaturated flow in porous media. Computers in Biology and Medicine, 62. https://doi.org/10.2478/s11600-014-0224-7
    18. Kissinger, A., Noack, V., Knopf, S., Scheer, D., Konrad, W., & Class, H. (2014). Characterization of reservoir conditions for CO2 storage using a dimensionless Gravitational Number applied to the North German Basin. Sustainable Energy Technologies and Assessments, 7. https://doi.org/10.1016/j.seta.2014.06.003
  14. 2013

    1. Kissinger, A., Helmig, R., Ebigbo, A., Class, H., Lange, T., Sauter, M., Heitfeld, M., Klünker, J., & Jahnke, W. (2013). Hydraulic fracturing in unconventional gas reservoirs: risks in the geological system, part 2. Environmental Earth Sciences. https://doi.org/10.1007/s12665-013-2578-6
    2. Nowak, W., & Litvinenko, A. (2013). Kriging accelerated by orders of magnitude: combining low-rank covariance approximations with FFT-techniques. Mathematical Geosciences, 45, Article 4. https://doi.org/10.1007/s11004-013-9453-6
    3. Helmig, R., Flemisch, B., Wolff, M., Ebigbo, A., & Class, H. (2013). Model coupling for multiphase flow in porous media. Advances in Water Resources, 51. https://doi.org/10.1016/j.advwatres.2012.07.003
    4. Hommel, J., Cunningham, A. B., Helmig, R., Ebigbo, A., & Class, H. (2013). Numerical Investigation of Microbially Induced Calcite Precipitation as a Leakage Mitigation Technology. Energy Procedia, 40,2013. https://doi.org/10.1016/j.egypro.2013.08.045
    5. Walter, L., Binning, P. J., & Class, H. (2013). Predicting salt intrusion into freshwater aquifers resulting from CO2 injection - a study on the influence of conservative assumptions. Advances in Water Resources, 62.
    6. Kempka, T., Class, H., Görke, U.-J., Norden, B., Kolditz, O., Kühn, M., Walter, L., Wang, W., & Zehner, B. (2013). A dynamic flow simulation code intercomparison based on the revised static model of the Ketzin pilot site. Energy Procedia, 40.
    7. Pracht, U. S., Heintze, E., Clauss, C., Hafner, D., Bek, R., Werner, D., Gelhorn, S., Scheffler, M., Dressel, M., Sherman, D., Gorshunov, B., Il’in, K. S., Henrich, D., & Siegel, M. (2013). Electrodynamics of the Superconducting State in Ultra-Thin Films at THz Frequencies. IEEE Transactions on Terahertz Science and Technology, 3, Article 3. https://doi.org/10.1109/TTHZ.2013.2255047
    8. Köppl, T., Wohlmuth, B. I., & Helmig, R. (2013). Reduced one-dimensional modelling and numerical simulation for mass transport in fluids. International Journal for Numerical Methods in Fluids, 72. https://doi.org/10.1002/fld.3728
    9. Wolff, M., Flemisch, B., & Helmig, R. (2013). An adaptive multi-scale approach for modeling two-phase flow in porous media including capillary pressure. Water Resources Research, 49, Article 12. https://onlinelibrary.wiley.com/doi/10.1002/2013WR013800/full
    10. Juanes, R., & Class, H. (2013). Special issue on computational methods in geologic CO2 sequestration. Advances in Water Resources, 62. https://doi.org/10.1016/j.advwatres.2013.10.012
    11. Schmid, K. S., & Geiger, S. (2013). Universal Scaling of Spontaneous Imbibition for Arbitrary Petrophysical Properties: Water-Wet and Mixed-Wet States and Handy’s Conjecture. Journal of Petroleum Science and Engineering, 101. https://doi.org/10.1016/j.petrol.2012.11.015
    12. Grathwohl, P., Rügner, H., Wöhling, T., Osenbrück, K., Schwientek, M., Gayler, S., Wollschläger, U., Selle, B., Pause, M., Delfs, J.-O., Grzeschik, M., Weller, U., Ivanov, M., Cirpka, O. A., Maier, A., Kuch, B., Nowak, W., Wulfmeyer, V., Warrach-Sagi, K., et al. (2013). Catchments as Reactors: A comprehensive approach for water fluxes and solute turn-over. Environmental Earth Sciences, 69.
    13. Oladyshkin, S., Schröder, P., Class, H., & Nowak, W. (2013). Chaos expansion based Bootstrap filter to calibrate CO2 injection models. Energy Procedia, Article 40. https://doi.org/10.1016/j.egypro.2013.08.046
    14. Ashraf, M., Oladyshkin, S., & Nowak, W. (2013). Geological storage of CO2: global sensitivity analysis and risk assessment using arbitrary polynomial chaos expansion. International Journal of Greenhouse Gas Control, 19. https://doi.org/10.1016/j.ijggc.2013.03.023
    15. Wöhling, T., Geiges, A., Nowak, W., Gayler, S., Högy, P., & Wizemann, H. D. (2013). Towards optimizing experiments for maximum-confidence model selection between different soil-plant models. 19. https://doi.org/10.1016/j.proenv.2013.06.058
    16. Leube, P., de Barros, F. P. J., Nowak, W., & Rajagopal, R. (2013). Towards optimal allocation of computer resources: trade-offs between uncertainty quantification, discretization and model reduction. Environmental Modelling & Software, 50. https://doi.org/10.1016/j.envsoft.2013.08.008
    17. Oladyshkin, S., Class, H., & Nowak, W. (2013). Bayesian updating via Bootstrap filtering combined with data-driven polynomial chaos expansions: methodology and application to history matching for carbon dioxide storage in geological formations. Computational Geosciences, 17, Article 4. https://doi.org/10.1007/s10596-013-9350-6
    18. Lange, T., Sauter, M., Heitfeld, M., Schetelig, K., Brosig, K., Jahnke, W., Kissinger, A., Helmig, R., Ebigbo, A., & Class, H. (2013). Hydraulic fracturing in unconventional gas reservoirs: risks in the geological system, part 1. Environmental Earth Sciences. https://doi.org/10.1007/s12665-013-2803-3
    19. Schröder, N., Lazarovitch, N., Vanderborght, J., Vereecken, H., & Javaux, M. (2013). Linking transpiration reduction to rhizosphere salinity using a 3D coupled soil-plant model. Plant and Soil, 377. https://www.iws.uni-stuttgart.de/publikationen/hydrosys/paper/2015/PS_Schroeder_2013.pdf
  15. 2012

    1. Stoverud, K. H., Darcis, M., Helmig, R., & Hassanizadeh, S. M. (2012). Modeling concentration distribution and deformation during convection-enhanced drug delivery into brain tissue. Transport in Porous Media, 92, Article 1.
    2. Oladyshkin, S., & Nowak, W. (2012). Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion. Reliability Engineering & System Safety, 106. https://doi.org/10.1016/j.ress.2012.05.002
    3. Leube, P., Nowak, W., & Schneider, G. (2012). Temporal Moments revisited: Why there is there no better way for physically-based model reduction in time. Water Resources Research, 48. https://doi.org/10.1029/2012WR011973
    4. de Barros, F. P. J., Dentz, M., Koch, J., & Nowak, W. (2012). Flow topology and scalar mixing in spatially heterogeneous flow fields. Geophysical Research Letters, 39, Article L08404. https://doi.org/10.1029/2012GL051302
    5. Schmid, K. S., Geiger, S., & Sorbie, K. S. (2012). Analytical solutions for co- and countercurrent imbibition of sorbing, dispersive solutes in immiscible two-phase flow. Computational Geosciences, 16. https://www.iws.uni-stuttgart.de/publikationen/hydrosys/paper/2012/Schmid_etal_AnalyticalSolutionsAdsorbing_COmpGEosc.pdf
    6. Geiger, S., Schmid, K. S., & Zaretskiy, Y. (2012). Mathematical analysis and numerical simulation of multi-phase multi-component flow in heterogeneous porous media. Cambridge University Press, 17. https://www.iws.uni-stuttgart.de/publikationen/hydrosys/paper/2012/geiger_etal2012_CurrOpinionReview.pdf
    7. Schmid, K. S., Geiger, S., & Sorbie, K. S. (2012). Higher Order FE-FV Methods on Unstructured Grids for Transport and Two-Phase Flow with Variable Viscosity in Heterogeneous Porous Media. Journal of Computational Physics, 241. https://doi.org/10.1016/j.jcp.2012.12.017
    8. Bauer, S., Class, H., Ebert, M., Feeser, V., Götze, H., Holzheid, A., Kolditz, O., Rosenbaum, S., Rabbel, W., Schäfer, D., & Dahmke, A. (2012). Modeling, parameterization and evaluation of monitoring methods for CO2 storage in deep saline formations: the CO2-MoPa project. Environmental Earth Sciences, 67. https://doi.org/10.1007/s12665-012-1707-y
    9. Wolff, M., Flemisch, B., Helmig, R., & Aavatsmark, I. (2012). Treatment of tensorial relative permeabilities with multipoint flux approximation. International Journal of Numerical Analysis & Modeling, 9, Article 3. https://www.math.ualberta.ca/ijnam/Volume-9-2012/No-3-12/2012-03-14.pdf
    10. Oladyshkin, S., de Barros, F. P. J., & Nowak, W. (2012). Global sensitivity analysis: a flexible and efficient framework with an example from stochastic hydrogeology. Advances in Water Resources, 37. https://doi.org/10.1016/j.advwatres.2011.11.001
    11. Erbertseder, K., Reichold, J., Helmig, R., Jenny, P., & Flemisch, B. (2012). A coupled discrete / continuum model for describing cancer therapeutic transport in the lung. PloS ONE (Public Library of Science Online Journal), 7, Article 3. https://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0031966
    12. Nowak, W., Rubin, Y., & de Barros, F. P. J. (2012). A Hypothesis-Driven Approach to Optimal Site Investigation. Water Resources Research. https://doi.org/10.1029/2011WR011016
    13. Jackson, A. S., Rybak, I., Helmig, R., Gray, W. G., & Miller, C. T. (2012). Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 9. Transition region model. Advances in Water Resources, 42. https://doi.org/10.1016/j.advwatres.2012.01.006
    14. Schmid, K. S., & Geiger, S. (2012). Universal Scaling of Spontaneous Imbibition for Water Wet Rocks. Water Resources Research, 48. https://doi.org/10.1029/2011WR011566
    15. Sauter, M., Helmig, R., & Klünker, J. (2012). Risiken im Geologischen System bei der Fracking-Technologie: Abschätzung der Auswirkungen auf Grundwasservorkmmen. Wasser Und Abfall, Boden, Altlasten, Umweltschutz, 14.
    16. Richter, T., Rudlof, S., Adjibadji, B., Bernlöhr, H., Grüninger, C., Munz, C.-D., Stock, A., Rohde, C., & Helmig, R. (2012). ViPLab - A Virtual Programming Laboratory for Mathematics and Engineering. Interactive Technology and Smart Education, 9, Article 4. https://doi.org/10.1108/17415651211284039
    17. Drewes, J., Geist, J., Hegerl, G., Helmig, R., Huber, H., Jekel, M., Keller, J., Kinzelbach, W., Kögel-Knabner, I., Liebl, W., Manhard, M., Mauser, W., Meckenstock, R., Menzel, A., Mok, B., Nießner, R., Rutschmann, P., Schmidt, T., Wegener, J., et al. (2012). Integrierter Ansatz zur Wasserforschung und Technologieentwicklung. Korrespondenz Abwasser, 59.
    18. Oladyshkin, S., & Panfilov, M. (2012). Open thermodynamic model for compressible multicomponent two-phase flow in porous media. Journal of Petroleum Science and Engineering, 81. https://doi.org/10.1016/j.petrol.2011.12.001
    19. Troldborg, M., Nowak, W., Lange, I., Santos, M., Binning, P. J., & Bjerg, P. L. (2012). Application of Bayesian geostatistics for evaluation of mass discharge uncertainty at contaminated sites. Water Resources Research, 48, Article W09535. https://doi.org/10.1029/2011WR011785
    20. Nordbotten, J. M., Flemisch, B., Gasda, S. E., Nilsen, H. M., Fan, Y., Pickup, G. E., Wiese, B., Celia, M. A., Dahle, H. K., Eigestad, G. T., & Pruess, K. (2012). Uncertainties in practical simulation of CO2 storage. International Journal of Greenhouse Gas Control, 9. https://www.sciencedirect.com/science/article/pii/S1750583612000655
    21. Schröder, N., Javaux, M., Vanderborght, J., Steffen, B., & Vereecken, H. (2012). Effect of Root Water and Solute Uptake on Apparent Soil Dispersivity: A Simulation Study. Vadose Zone Journal, 11. https://doi.org/10.2136/vzj2012.0009
    22. Leube, P., Geiges, A., & Nowak, W. (2012). Bayesian assessment of the expected data impact on prediction confidence in optimal sampling design. Water Resources Research, 48. https://doi.org/10.1029/2010WR010137
    23. Schöniger, A., Nowak, W., & Hendricks Franssen, H.-J. (2012). Parameter estimation by ensemble Kalman filters with transformed data: Approach and application to hydraulic tomography. Water Resources Research, 48, Article W04502. https://doi.org/10.1029/2011WR010462
    24. Baber, K., Mosthaf, K., Flemisch, B., Helmig, R., Müthing, S., & Wohlmuth, B. I. (2012). Numerical scheme for coupling two-phase compositional porous-media flow and one-phase compositional free flow. IMA Journal of Applied Mathematics, 77. https://doi.org/10.1093/imamat/hxs048
    25. Enzenhöfer, R., Nowak, W., & Helmig, R. (2012). Probabilistic exposure risk assessment with advective-dispersive well vulnerability criteria. Advances in Water Resources, 36. https://doi.org/10.1016/j.advatres.2011.04.018
    26. Cirpka, O. A., Rolle, M., Chiogna, G., de Barros, F. P. J., & Nowak, W. (2012). Stochastic Evaluation of Mixing-Controlled Steady-State Plume Lengths in Two-Dimensional Heterogeneous Domains. Journal of Contaminant Hydrology, 138-139. https://doi.org/10.1016/j.jconhyd.2012.05.007
    27. Tartakovsky, D. M., Nowak, W., & Bolster, D. (2012). Introduction to the special issue on uncertainty quantification and risk assessment. Advances in Water Resources, 36.
    28. Kuhlmann, A., Neuweiler, I., van der Zee, S. E. A. T. M., & Helmig, R. (2012). Influence of soil structure and root water uptake strategy on steady state unsaturated flow in heterogeneous media. Water Resources Research, 48, Article 2. https://doi.org/10.1029/2011WR010651
    29. Walter, L., Binning, P. J., Oladyshkin, S., Flemisch, B., & Class, H. (2012). Brine migration resulting from CO2 injection into saline aquifers - An approach to risk estimation including various levels of uncertainty. International Journal of Greenhouse Gas Control, 9. https://www.sciencedirect.com/science/article/pii/S1750583612001077
    30. Flemisch, B., Kaltenbacher, M., Triebenbacher, S., & Wohlmuth, B. I. (2012). Non-matching grids for a flexible discretization in computational acoustics. 11. https://doi.org/10.4208/cicp.141209.280810s
  16. 2011

    1. Flemisch, B., Darcis, M., Erbertseder, K., Faigle, B., Lauser, A., Mosthaf, K., Müthing, S., Nuske, P., Tatomir, A., Wolff, M., & Helmig, R. (2011). DUMUX: DUNE for multi-phase, component, scale, physics, ... flow and transport in porous media. Advances in Water Resources, 34, Article 9. https://doi.org/10.1016/j.advwaters.2011.03.007
    2. Oladyshkin, S., Class, H., Helmig, R., & Nowak, W. (2011). A concept for data-driven uncertainty quantification and its application to carbon dioxide storage in geological formations. Advances in Water Resources, 34. https://doi.org/10.1016/j.advwatres.2011.08.005
    3. Lauser, A., Hager, C., Helmig, R., & Wohlmuth, B. I. (2011). A new approach for phase transitions in miscible multi-phase flow in porous media. Advances in Water Resources, 34, Article 8. https://doi.org/10.1016, j.advwaters.2011.04.021
    4. Schäfer, F., Walter, L., Class, H., & Müller, C. (2011). The regional pressure impact of CO2 storage: a showcase study from the North German Basin. Environmental Earth Sciences. https://doi.org/10.1007/s12665-011-1184-8
    5. Cao, Y., Helmig, R., & Wohlmuth, B. I. (2011). A two-scale operator-splitting method for two-phase flow in porous media. Advances in Water Resources, 34, Article 12. https://doi.org/10.1016/j.advwatres.2011.07.002
    6. Szymkiewicz, A., Helmig, R., & Neuweiler, I. (2011). Upscaling unsaturated flow in binary porous media with air entry pressure effects. Water Resources Research, 48. https://doi.org/10.1029/2011WR010893
    7. Fritz, J., Flemisch, B., & Helmig, R. (2011). Decoupled and multiphysics models for non-isothermal compositional two-phase flow in porous media. International Journal of Numerical Analysis & Modeling, 9, Article 1. https://www.math.ualberta.ca/ijnam/Volume-9-2012/No-1-12/2012-01-02.pdf
    8. Oladyshkin, S., Class, H., Helmig, R., & Nowak, W. (2011). An integrative approach to robust design and probabilistic risk assessment for CO2 storage in geological formations. Computational Geosciences, 15, Article 3. https://doi.org/10.1007/s10596-011-9224-8
    9. Cirpka, O. A., de Barros, F. P. J., Chiogna, G., & Nowak, W. (2011). Probability Density Function of Steady-State Concentration in Two-Dimensional Heterogeneous Porous Media. Water Resources Research, 47, Article W11523. https://doi.org/10.1029/2011WR010750
    10. Neuweiler, I., Papafotiou, A., Class, H., & Helmig, R. (2011). Estimation of effective parameters for a two-phase flow problem in non-Gaussian heterogeneous porous media. Journal of Contaminant Hydrology, 120-121, Article 1. https://doi.org/10.1016/j.jconhyd.2010.08.001
    11. Tatomir, A., Szymkiewicz, A., Class, H., & Helmig, R. (2011). Modeling two phase flow in large scale fractured porous media with an extended multiple interacting continua method. Computer Modeling in Engineering & Sciences.
    12. Ahrenholz, B., Niessner, J., Helmig, R., & Krafczyk, M. (2011). Pore-scale determination of parameters for macro-scale modeling of evaporation processes in porous media. Water Resources Research, 47. https://doi.org/10.1029/2010WR009519
    13. Cao, Y., Helmig, R., & Wohlmuth, B. I. (2011). Convergence of the multipoint flux approximation L-method for homogeneous media on uniform grids. Numerical Methods for Partial Differential Equations, 27, Article 2. https://doi.org/10.1002/num.20525
    14. Oladyshkin, S., & Panfilov, M. (2011). Hydrogen penetration in water through porous medium: application to a radioactive waste storage site. Environmental Earth Sciences, 64, Article 4. https://doi.org/10.1007/s12665-011-0916-0
    15. Szymkiewicz, A., & Helmig, R. (2011). Comparison of conductivity averaging methods for one-dimensional unsaturated flow in layered soils. Advances in Water Resources, 34, Article 8. https://doi.org/10.1016/j.advwatres.2011.05.011
    16. de Barros, F. P. J., Bolster, D., Sanchez-Vila, X., & Nowak, W. (2011). A Divide and Conquer Approach to Cope with Uncertainties, Human Health Risk and Decision Making in Contaminant Hydrology. Water Resources Research, 47, Article W05508. https://doi.org/10.1029/2010WR009954
    17. Darcis, M., Class, H., Flemisch, B., & Helmig, R. (2011). Sequential model coupling for feasibility studies of CO2 storage in deep saline aquifers. Oil & Gas Science and Technology-Revue de l’IFP, 66, Article 1. https://doi.org/10.2516/ogst/2010037
    18. Heiss, V., Neuweiler, I., Ochs, S. O., & Färber, A. (2011). Experimental investigation on front morphology for two-phase flow in heterogeneous porous media. Water Resources Research, Article W10528. https://doi.org/10.1029/2011WR010612
    19. Niessner, J., Berg, S., & Hassanizadeh, S. M. (2011). Comparison of two-phase Darcy’s law with a thermodynamically consistent approach. Transport in Porous Media.
    20. Mosthaf, K., Baber, K., Flemisch, B., Helmig, R., Leijnse, T., Rybak, I., & Wohlmuth, B. I. (2011). A coupling concept for two-phase compositional porous-medium and single-phase compositional free flow. Water Resources Research, 47. https://onlinelibrary.wiley.com/doi/10.1029/2011WR010685/abstract
    21. Hlawatsch, M., Leube, P., Nowak, W., & Weiskopf, D. (2011). Flow Radar Glyphs - Static Visualization of Unsteady Flow with Uncertainty. IEEE Transactions on Visualization and Computer Graphics, 17, Article 12. https://doi.org/10.1109/TVCG.2011.203
    22. Walter, L., Oladyshkin, S., Class, H., Darcis, M., & Helmig, R. (2011). A study on pressure evolution in a sand channel system during CO2 injection. Energy Procedia, 4.
    23. Szymkiewicz, A., Helmig, R., & Kuhnke, H. (2011). Two phase flow in heterogeneous porous media with non-wetting phase trapping. Transport in Porous Media, 86, Article 1. https://doi.org/10.1007/s11242-010-9604-x
    24. Cirpka, O. A., de Barros, F. P. J., Chiogna, G., Rolle, M., & Nowak, W. (2011). Stochastic Flux-Related Analysis of Transverse Mixing in Two-Dimensional Heterogeneous Porous Media. Water Resources Research, 47, Article W06515. https://doi.org/10.1029/2010WR010279
    25. Schmid, K. S., Geiger, S., & Sorbie, K. S. (2011). Semianalytical solutions for cocurrent and countercurrent imbibitionand dispersion of solutes in immiscible two-phase flow. Water Resources Research, 47. https://doi.org/10.1029/2010WR009686
  17. 2010

    1. Nowak, W., de Barros, F. P. J., & Rubin, Y. (2010). Bayesian Geostatistical Design: Task-driven optimal Site Investigation When the Geostatistical Model is Uncertain. Water Resources Research, 46, Article W03535. https://doi.org/10.1029/2009WR008312
    2. de Barros, F. P. J., & Nowak, W. (2010). On the Link Between Contaminant Source Release Conditions and Plume Prediction Uncertainty. Journal of Contaminant Hydrology, 116. https://doi.org/10.1016/j.jconhyd.2010.05.004
    3. van Noorden, T. L., Pop, I. S., Ebigbo, A., & Helmig, R. (2010). An upscaled model for biofilm growth in a thin strip. Water Resources Research, 46. https://doi.org/10.1029/2009WR008217
    4. Flemisch, B., Kaltenbacher, M., Triebenbacher, S., & Wohlmuth, B. I. (2010). The equivalence of standard and mixed finite element methods in applications to elasto-acoustic interaction. SIAM Journal on Scientific Computing, 32, Article 4. https://epubs.siam.org/doi/abs/10.1137/090758507
    5. Papafotiou, A., Sheta, H., & Helmig, R. (2010). Numerical modeling of two-phase hysteresis combined with an interface condition for heterogeneous porous media. Computational Geosciences, 14, Article 2. https://doi.org/10.1007/s10596-009-9151-0
    6. Triebenbacher, S., Kaltenbacher, M., Wohlmuth, B. I., & Flemisch, B. (2010). Applications of the Mortar Finite Element Method in Vibroacoustics and Flow Induced Noise Computations. Acustica, 96. https://www.ingentaconnect.com/content/dav/aaua/2010/00000096/00000003/art00013
    7. Kopp, A., Binning, P. J., Johannsen, K., Helmig, R., & Class, H. (2010). A contribution to risk analysis for leakage through abandoned wells in geological CO2 storage. Advances in Water Resources, 33, Article 8. https://doi.org/10.1016/j.advwatres.2010.05.001
    8. Ochs, S. O., Class, H., Färber, A., & Helmig, R. (2010). Methods for predicting the spreading of steam below the water table during subsurface remediation. Water Resources Research, 46. https://doi.org/10.1029/2007WR006401
    9. Skjælaaen, I., Ebigbo, A., Espedal, M., & Helmig, R. (2010). A model for transport of hydrogen sulfide in oil- and water-saturated porous media. Computing and Visualization in Science, 13, Article 6. https://doi.org/10.1007/s00791-010-0143-3
    10. Nuske, P., Faigle, B., Helmig, R., Niessner, J., & Neuweiler, I. (2010). Modeling gas-water processes in fractures with fracture flow properties obtained through upscaling. Water Resources Research, 46. https://doi.org/10.1029/2009WR008076
    11. Kempka, T., Kühn, M., Class, H., Frykman, P., Kopp, A., Nielsen, C. M., & Probst, P. (2010). Modelling of CO2 arrival time at Ketzin - Part I. International Journal of Greenhouse Gas Control, 4. https://doi.org/10.1016/j.ijggc.2010.07.005
    12. Troldborg, M., Nowak, W., Tuxen, N., Bjerg, P. L., Helmig, R., & Binning, P. J. (2010). Uncertainty evaluation of mass discharge estimates from a contaminated site using a fully Bayesian framework. Water Resources Research, 46, Article W12552. https://doi.org/10.1029/2010WR009227
    13. Nowak, W. (2010). Measures of Parameter Uncertainty in Geostatistical Estimation and Geostatistical Optimal Design. Mathematical Geosciences, 42, Article 2. https://doi.org/10.1007/s11004-009-9245-1
    14. Ebigbo, A., Helmig, R., Cunningham, A. B., Class, H., & Gerlach, R. (2010). Modelling biofilm growth in the presence of carbon dioxide and water flow in the subsurface. Advances in Water Resources, 33, Article 7. https://doi.org/10.1016/j.advwatres.2010.04.004
  18. 2009

    1. Niessner, J., & Hassanizadeh, S. M. (2009). Modeling kinetic interphase mass transfer for two-phase flow in porous media including fluid - fluid interfacial area. Transport in Porous Media. https://doi.org/10.1007/s11242-009-9
    2. Ernst, R., Flemisch, B., & Wohlmuth, B. I. (2009). A multiplicative Schwarz method and its application to nonlinear acoustic-structure interaction. Mathematical Modelling and Numerical Analysis, Article 43. https://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8194552&fileId=S0764583X09000107
    3. Niessner, J., & Hassanizadeh, S. M. (2009). Non-equilibrium interphase heat and mass transfer during two-phase flow in porous media-theoretical considerations and modeling. Advances in Water Resources, 32.
    4. Helmig, R., Weiss, A., & Wohlmuth, B. I. (2009). Variational inequalities for modeling flow in heterogeneous porous media with entry pressure. Computational Geosciences, 13, Article 3. https://doi.org/10.1007/s10596-008-9125-7
    5. Kurz, S., Auchmann, B., & Flemisch, B. (2009). Dimensional reduction of field problems in a differential-forms framework. Compel, 28, Article 4. https://www.emeraldinsight.com/doi/abs/10.1108/03321640910959008
    6. Darcis, M., Class, H., & Flemisch, B. (2009). Coupling Models of Different Complexity for the Simulation of CO2 Storage in Saline Aquifers. Energy Procedia, 1. https://www.sciencedirect.com/science/article/pii/S187661020900232X
    7. Class, H., Ebigbo, A., Helmig, R., Dahle, H. K., Nordbotten, J. M., Celia, M. A., Audigane, P., Darcis, M., Ennis-King, J., Fan, Y., Flemisch, B., Gasda, S. E., Jin, M., Krug, S., Labregere, D., Naderi Beni, A., Pawar, R. J., Sbai, A., Thomas, S. G., et al. (2009). A benchmark study on problems related to CO2 storage in geologic formations: Summary and discussion of the results. Computational Geosciences, 13, Article 4. https://doi.org/10.1007/s10596-009-9146-x
    8. Sudharsan, N. M., Jambhekar, V. A., & Babu, V. (2009). A validation study of OpenFOAM using the supersonic flow in a mixed compression intake. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 224(6). https://www.iws.uni-stuttgart.de/publikationen/hydrosys/paper/2012/JAER0651_Final_Accepted.pdf
    9. Kopp, A., Ebigbo, A., Bielinski, A., Class, H., & Helmig, R. (2009). Numerical simulation of temperature changes caused by CO2 injection in geological reservoirs. Carbon Dioxide Sequestration in Geological Media - State of the Science, Article 59.
    10. Kopp, A., Class, H., & Helmig, R. (2009). Investigations on CO2 storage capacity in saline aquifers - Part 1: Dimensional analysis of flow processes and reservoir characteristics. International Journal of Greenhouse Gas Control, 3, Article 3. https://doi.org/10.1016/j.ijggc.2008.10.002
    11. Geiger, S., Matthäi, S., Niessner, J., & Helmig, R. (2009). Black-oil simulations for three-component - three-phase flow in fractured porous media. SPE Journal, 14, Article 2. https://doi.org/10.2118/107485-PA
    12. Nowak, W. (2009). Best Unbiased Ensemble Linearization and the Quasi-Linear Kalman Ensemble Generator. Water Resources Research, 45, Article W04431. https://doi.org/10.1029/2008WR007328
    13. Kopp, A., Class, H., & Helmig, R. (2009). Investigations on CO2 storage capacity in saline aquifers - Part 2: Estimation of storage capacity coefficients. International Journal of Greenhouse Gas Control, 3, Article 3. https://doi.org/10.1016/j.ijggc.2008.10.001
    14. Fritz, J., Nowak, W., & Neuweiler, I. (2009). Application of FFT-based Algorithms for Large-Scale Universal Kriging Problems. Mathematical Geosciences, Article 41. https://doi.org/10.1007/s11004-009-9220-x
    15. Kopp, A., Probst, P., Class, H., Hurter, S., & Helmig, R. (2009). Estimation of CO2 storage capacity coefficients in geologic formations. Energy Procedia, 1, Article 1. https://doi.org/10.1016/j.egypro.2009.02.060
    16. Class, H., Dahle, H. K., & Helmig, R. (2009). Preface (to the Special Issue). Computational Geosciences, 13. https://doi.org/10.1007/s10596-009-9160-z
    17. Freiboth, S., Class, H., Helmig, R., Graf, T., Ehlers, W., Schwarz, V., & Vrettos, C. (2009). A model for multiphase flow and transport in porous media including a phenomenological approach to account for deformation - a model concept and its validation within a code intercomparison study (No. 3). 13, Article 3. https://doi.org/10.1007/s10596-008-9118-6
    18. Pop, I. S., van Duijn, C. J., Niessner, J., & Hassanizadeh, S. M. (2009). Horizontal redistribution of fluids in a porous medium: the role of interfacial area in modeling hysteresis. Advances in Water Resources, 32, Article 3. https://doi.org/10.1016/j.advwatres.2008.12.006
    19. Cao, Y., Helmig, R., & Wohlmuth, B. I. (2009). Geometrical interpretation of the multipoint flux approximation L-method. International Journal for Numerical Methods in Fluids, 60, Article 11. https://doi.org/10.1002/fld.1926
    20. Niessner, J., & Helmig, R. (2009). Multi-physics modeling of flow and transport in porous media using a downscaling approach. Advances in Water Resources, 32, Article 6. https://doi.org/10.1016/j.advwatres.2009.02.007
    21. Dogan, M. O., Class, H., & Helmig, R. (2009). Different concepts for the coupling of porous-media flow with lower-dimensional pipe flow. Computer Modeling in Engineering & Sciences, 53, Article 3. https://doi.org/10.3970/cmes.2009.053.207
    22. Haegland, H., Assteerawatt, A., Dahle, H. K., Eigestad, G. T., & Helmig, R. (2009). Comparison of cell- and vertex-centered discretization methods for flow in a two-dimensional discrete-fracture-matrix system. Advances in Water Resources, 32.
  19. 2008

    1. Papafotiou, A., Helmig, R., Schaap, J., Lehmann, P., Kaestner, A., Flühler, H., Neuweiler, I., Hassanein, R., Ahrenholz, B., Tölke, J., Peters, A., & Durner, W. (2008). From the pore scale to the lab scale: 3D lab experiment and numerical simulation of drainage in heterogeneous porous media. Advances in Water Resources, 31, Article 9. https://doi.org/10.1016/j.advwatres.2007.09.006
    2. Class, H., Helmig, R., & Neuweiler, I. (2008). Sequential coupling of models for contaminant spreading in the vadose zone. Vadose Zone Journal, 7, Article 2. https://doi.org/10.2136/vzj2007.0056
    3. Oladyshkin, S., Royer, J.-J., & Panfilov, M. (2008). Effective solution through the streamline technique and HT-splitting for the 3D dynamic analysis of the compositional flows in oil reservoirs. Transport in Porous Media, 74,No.3.
    4. Manthey, S., Hassanizadeh, S. M., Helmig, R., & Hilfer, R. (2008). Dimensional analysis of two-phase flow including a rate-dependent capillary pressure-saturation relationship. Advances in Water Resources, 31, Article 9. https://doi.org/10.1016/j.advwatres.2008.01.021
    5. Schwede, R., Cirpka, O. A., Nowak, W., & Neuweiler, I. (2008). Impact of Sampling Volume on the Probability Density Function of Steady-State Concentration. Water Resources Research, 44, Article W12433. https://doi.org/10.1029/2007WR006668
    6. Nowak, W., Schwede, R., Cirpka, O. A., & Neuweiler, I. (2008). Probability density functions of hydraulic head and velocity in three-dimensional heterogeneous porous media. Water Resources Research, 44, Article W08452. https://doi.org/10.1029/2007WR006383
    7. Bielinski, A., Kopp, A., Schütt, H., & Class, H. (2008). Monitoring of CO2 plumes during storage in geological formations using temperature signals: numerical investigation (No. 2). Article 2. https://doi.org/10.1016/j.ijggc.2008.02.008
    8. Niessner, J., & Hassanizadeh, S. M. (2008). A model for two-phase flow in porous media including fluid-fluid interfacial area. Water Resources Research, 44, Article W08439. https://doi.org/10.1029/2007WR006721
    9. Vasin, M., Lehmann, P., Kaestner, A., Hassanein, R., Nowak, W., Helmig, R., & Neuweiler, I. (2008). Drainage in heterogeneous sand columns with different geometric structures. Advances in Water Resources, 31, Article 9. https://doi.org/10.1016/j.advwatres.2008.01.004
    10. Johannsen, K., Kopp, A., Tourunen, O., & Kleist, J. (2008). Studying CO2 Sequestration with the Power of Supercomputing. European Research Consortium for Informatics and Mathematics (ERCIM), 74.
    11. Eder, M., Kobus, H., & Helmig, R. (2008). Dreidimensionale Modellierung der Hydrodynamik im Bodensee. Wasserwirtschaft, 98,1.
  20. 2007

    1. Oladyshkin, S., & Panfilov, M. (2007). Limit thermodynamic model for compositional gas-liquid systems moving in a porous medium. Transport in Porous Media, 70,No.2.
    2. Niessner, J., & Helmig, R. (2007). Multi-scale modeling of three-phase--three-component processes in heterogeneous porous media. Advances in Water Resources, 30, Article 11. https://doi.org/10.1016/j.advwatres.2007.05.008
    3. Neuweiler, I., & Vogel, H.-J. (2007). Upscaling for unsaturated flow for non-Gaussian heterogeneous porous media. Water Resources Research, 43.
    4. Oladyshkin, S., Skachkov, S., Panfilova, I., & Panfilov, M. (2007). Upscaling fractured media and streamline HT-splitting in compositional reservoir simulation. Oil & Gas Science and Technology-Revue de l’IFP, 62,No.2.
    5. Helmig, R., Weiss, A., & Wohlmuth, B. I. (2007). Dynamic capillary effects in heterogeneous porous media (No. 3). 11, Article 3. https://doi.org/10.1007/s10596-007-9050-1
    6. Hurter, S., Garnett, A., Bielinski, A., & Kopp, A. (2007). Thermal Signature of Free-Phase CO2 in Porous Rocks: Detectability of CO2 by Temperature Logging (No. SPE109007). Article SPE109007.
    7. Kobayashi, K., Hinkelmann, R., Helmig, R., Takara, K., & Tamai, N. (2007). A numerical experiment with two-phase and two-phase/three-component models for the methane migration in the subsurface aquifer (No. 2). 63, Article 2.
    8. Oladyshkin, S., & Panfilov, M. (2007). Streamline splitting between thermodynamics and hydrodynamics in compositional gas-liquid flow through porous media. 335,No.1.
    9. Ebigbo, A., Class, H., & Helmig, R. (2007). CO2 leakage through an abandoned well: Problem-oriented benchmarks (No. 2). 11, Article 2. https://doi.org/10.1007/s10596-006-9033-7
    10. van Duijn, C. J., Eichel, H., Helmig, R., & Pop, I. S. (2007). Effective equations for two-phase flow in porous media: the effect of trapping on the microscale. Transport in Porous Media, 69, Article 3. https://doi.org/10.1007/s11242-006-9089-9
    11. Flemisch, B., & Wohlmuth, B. I. (2007). Stable Lagrange multipliers for quadrilateral meshes of curved interfaces in 3D. Computational Methods in Applied Mechanical Engineering, 196. https://doi.org/10.1016/j.cma.2006.03.022
  21. 2006

    1. Nowak, W., & Cirpka, O. A. (2006). Geostatistical inference of hydraulic conductivity and dispersivities from hydraulic heads and tracer data (No. W08416). 42, Article W08416. https://doi.org/10.1029/2005WR004832
    2. Reichenberger, V., Jakobs, H., Bastian, P., & Helmig, R. (2006). A mixed-dimensional finite volume method for two-phase flow in fractured porous media. Advances in Water Resources, 29, Article 7. https://doi.org/10.1016/j.advwatres.2005.09.001
    3. Acosta, M., Merten, C., Eigenberger, G., Class, H., Helmig, R., Thoben, B., & Müller-Steinhagen, H. (2006). Modeling non-isothermal two-phase multicomponent flow in the cathode of PEM fuel cells (No. 2). Article 2. https://doi.org/10.1016/j.jpowsour.2005.12.068
    4. Neuweiler, I., & Vogel, H.-J. (2006). Upscaling of unsaturated flow considering connectivity.
    5. Niessner, J., & Helmig, R. (2006). Multi-scale modeling of two-phase - two-component processes in heterogeneous porous media. Numerical Linear Algebra with Applications, 13, Article 9. https://doi.org/10.1002/nla.497
    6. Kopp, A., & Sheta, H. (2006). Grid Generation for Complex Geological Systems in Mining Areas. https://www.iws.uni-stuttgart.de/publikationen/hydrosys/paper/kopp21-AB.pdf
    7. Flemisch, B., Kaltenbacher, M., & Wohlmuth, B. I. (2006). Elasto-acoustic and acoustic-acoustic coupling on nonmatching grids. International Journal of Numerical Methods in Engineering, 67. https://doi.org/10.1002/nme.1669
    8. Neuweiler, I., & Eichel, H. (2006). Effective parameter functions for Richards equation in layered porous media (No. 5). Article 5.
    9. Helmig, R., Sheta, H., Meiners, H., & Kunz, E. (2006). Numerische Simulation von Gasströmen im Grubengebäude und im Gebirge (No. 01_02). 142, Article 01_02.
    10. Class, H., Bielinski, A., Helmig, R., Kopp, A., & Ebigbo, A. (2006). Numerische Simulation der Speicherung von CO2 in geologischen Formationen (No. 4). 78, Article 4.
    11. Helmig, R., Niessner, J., & Class, H. (2006). Recent advances in finite element methods for multi-phase flow processes in porous media (No. 03_04). 20, Article 03_04. https://doi.org/10.1080/00036810600792154
  22. 2005

    1. Flemisch, B., Melenk, J. M., & Wohlmuth, B. I. (2005). Mortar methods with curved interfaces. Applied Numerical Mathematics, 54. https://doi.org/10.1016/j.apnum.2004.09.007
    2. Niessner, J., Helmig, R., Jakobs, H., & Roberts, J. (2005). Interface condition and linearization schemes in the Newton iterations for two-phase flow in heterogeneous porous media (No. 7). 28, Article 7. https://doi.org/10.1016/j.advwatres.2005.01.006
    3. Li, W., Nowak, W., & Cirpka, O. A. (2005). Geostatistical inverse modeling of transient pumping tests using temporal moments of drawdown (No. W08403). 41, Article W08403. https://doi.org/10.1029/2004WR003874
    4. Braun, C., Helmig, R., & Manthey, S. (2005). Macro-scale effective constitutive relationships for two-phase flow processes in heterogeneous porous media with emphasis on the relative permeability-saturation-relationship (No. 01_02). 76, Article 01_02. https://doi.org/10.1016/j.jconhyd.2004.07.009
    5. Flemisch, B., Puso, M. A., & Wohlmuth, B. I. (2005). A new dual mortar method for curved interfaces: 2D elasticity. International Journal of Numerical Methods in Engineering, 63. https://doi.org/10.1002/nme.1300
    6. Neuweiler, I., & Cirpka, O. A. (2005). Homogenization of Richards Equation in Permeability Fields with Different Connectivities (No. 2). 41, Article 2. https://doi.org/10.1029/2004WR003329
    7. Rahman, A. Md., Jose Chackiath, S., Nowak, W., & Cirpka, O. A. (2005). Experiments on vertical transverse mixing in a large-scale heterogeneous model aquifer (No. 80). 03_04, Article 80. https://doi.org/10.1016/j.jconhyd.2005.06.010
    8. Mödinger, J., & Kobus, H. (2005). Approach and Methods for the Assessment of Sustainable Groundwater Management in the Rhine-Neckar-Region, Germany (No. 3). 21, Article 3.
    9. Flemisch, B., Maday, Y., Rapetti, F., & Wohlmuth, B. I. (2005). Scalar and vector potentials’ coupling on nonmatching grids for the simulation of an electromagnetic brake. Compel, 24. https://doi.org/10.1108/03321640510571246
    10. Haas, T. (2005). Wir sind nun Orientalen geworden. Die Anfänge der Kreuzfahrerherrschaften. 11_05.
    11. Manthey, S., Hassanizadeh, S. M., & Helmig, R. (2005). Macro-scale dynamic effects in homogeneous and heterogeneous porous media (No. 01_02). 58, Article 01_02. https://doi.org/10.1007/s11242-004-5472-6
  23. 2004

    1. Cirpka, O. A., & Nowak, W. (2004). First-Order Variance of Travel Time in Non-Stationary Formations (No. W03507(3)). 40, Article W03507(3). https://doi.org/10.1029/2003WR002851
    2. Nowak, W., & Cirpka, O. A. (2004). A Modified Levenberg-Marquardt Algorithm for Quasi-Linear Geostatistical Inversing (No. 27). 7, Article 27. https://www.iws.uni-stuttgart.de/publikationen/hydrosys/paper/Nowak_Cirpka_2004_LM.pdf
    3. Hilfer, R., & Helmig, R. (2004). Dimensional analysis and upscaling of two-phase flow in porous media with piecewise constant heterogeneities (No. 10). 27, Article 10. https://doi.org/10.1016/j.advwatres.2004.07.003
    4. Mödinger, J., Kobus, H., Schnitzler, S., & Lehn, H. (2004). Ansätze für eine nachhaltige Grundwasserbewirtschaftung und -nutzung im Rhein-Neckar-Raum bei konkurrierenden Interessen. 94.
    5. Hazra, S. B., Class, H., Helmig, R., & Schulz, V. (2004). Forward and inverse problems in modeling of multiphase flow and transport through porous media (No. 1). 8, Article 1. https://doi.org/10.1023/B:COMG.0000024445.39048.21
    6. Cirpka, O. A., Bürger, C. M., Nowak, W., & Finkel, M. (2004). Uncertainty and data worth analysis for the hydraulic design of funnel-and-gate systems in heterogeneous aquifers (No. 40). W11502, Article 40. https://doi.org/10.1029/2004WR003352
    7. Findikatis, A., Helmig, R., Kitanidis, P. K., Nimmo, J., Pruess, K., Rubin, Y., Stauffer, F., & Tsang, C.-F. (2004). Summary of a panel discussion at the International Groundwater Symposium held onMarch 25-28. 2002 Berkeley, Califorina, USA (No. 03_04). 42, Article 03_04.
    8. Jose Chackiath, S., Rahman, A. Md., & Cirpka, O. A. (2004). Large-scale sandbox experiment on longitudinal effective dispersion in heterogeneous porous media. https://onlinelibrary.wiley.com/doi/10.1029/2004WR003363/full
    9. Benekos, I., Cirpka, O. A., Rahman, A. Md., & Kitanidis, P. K. (2004). Experimental determination of transverse dispersion parameters in a helical device.
    10. Neuweiler, I., Sorensen, I., & Kinzelbach, W. (2004). Experimental and theoretical investigations of drainage in horizontal rough-walled fractures with different correlation structures (No. 12). 27, Article 12.
    11. Cirpka, O. A., Olsson, Ĺ., Ju, Q., Rahman, A. Md., & Grathwohl, P. (2004). Length of Reactive Plumes Controlled by Transverse Dispersion. https://www.ncbi.nlm.nih.gov/pubmed/16556203
    12. Flemisch, B., Maday, Y., Rapetti, F., & Wohlmuth, B. I. (2004). Coupling scalar and vector potentials on non-matching grids for eddy currents modelling in a moving conductor. Journal of Computational and Applied Mathematics, 168. https://doi.org/10.1016/j.cam.2003.05.017
    13. Flemisch, B., & Wohlmuth, B. I. (2004). A domain decomposition method on nested domains and nonmatching grids. Numerical Methods for Partial Differential Equations, 20. https://doi.org/10.1002/num.10095
    14. Hinkelmann, R., Paul, M., Helmig, R., & Breiting, T. (2004). New media in environmental and water-related engineering education (No. 2). 13, Article 2.
    15. Jose Chackiath, S., & Cirpka, O. A. (2004). Measurement of Mixing-Controlled Reactive Transport in Homogeneous Porous Media and its Prediction from Conservative Tracer Test Data (No. 38). 7, Article 38.
  24. 2003

    1. Neuweiler, I., Attinger, S., Kinzelbach, W., & King, P. (2003). Large scale mixing for immiscible displacement in heterogeneous porous media. 51.
    2. Nowak, W., Tenkleve, S., & Cirpka, O. A. (2003). Efficient Computation of Linearized Cross-Covariance and Auto-Covariance Matrices of Interdependent Quantities (No. 1). 35, Article 1. https://www.iws.uni-stuttgart.de/publikationen/hydrosys/paper/Nowak_Tenkleve_Cirpka_2003MG_Spectral_Methods.pdf
    3. Cirpka, O. A., & Nowak, W. (2003). Dispersion on kriged hydraulic conductivity fields (No. 2). 39, Article 2. https://doi.org/10.1029/2001WR000598
    4. Ochs, S. O., Hodges, R. A., Falta, R. W., Kmetz, T. F., Kupar, J. J., Brown, N. N., & Parkinson, D. L. (2003). Predicted Heating Patterns During Steam Flooding of Coastal Plain Sediments at the Savannah River Site. 1.
    5. Neuweiler, I., Sorensen, I., & Kinzelbach, W. (2003). Impact of correlation structure on drainage in open rough-walled fractures (No. 3). 1, Article 3.
    6. Cirpka, O. A., & Attinger, S. (2003). Effective Dispersion in Heterogeneous Media under Random Transient Flow Conditions (No. 9). 39, Article 9. https://doi.org/10.1029/2002WR001931
  25. 2002

    1. Class, H., & Helmig, R. (2002). Numerical simulation of nonisothermal multiphase multicomponent processes in porous media - 2. Applications for the injection of steam and air (No. 5). 25, Article 5. https://doi.org/10.1016/S0309-1708(02)00015-5
    2. Class, H., Helmig, R., & Bastian, P. (2002). Numerical simulation of nonisothermal multiphase multicomponent processes in porous media - 1. An efficient solution technique (No. 5). 25, Article 5. https://doi.org/10.1016/S0309-1708(02)00014-3
    3. Cirpka, O. A. (2002). Choice of Dispersion Coefficients in Reactive Transport Calculations on Smoothed Fields (No. 03_04). 58, Article 03_04.
    4. King, P., & Neuweiler, I. (2002). Probability upscaling. 6.
    5. Burchardi, F., & Memminger, B. (2002). Monetarisierung von umweltrelevanten Sachverhalten bei der Verkehrswertermittlung eines aktiven Produktionsstandortes - ein Praxisfall (No. 4). Article 4.
    6. Cirpka, O. A., & Kitanidis, P. K. (2002). Numerical evaluation of solute dispersion and dilution in unsaturated heterogeneous media (No. 11). 38, Article 11. https://doi.org/10.1029/2001WR001262
  26. 2001

    1. Neuweiler, I., Attinger, S., & Kinzelbach, W. (2001). Macrodispersion in a radially diverging flow field with finite Peclet numbers, 1.: Perturbation theory approach (No. 3). 37, Article 3.
    2. Attinger, S., Neuweiler, I., & Kinzelbach, W. (2001). Macrodispersion in a radially diverging flow field with finite Peclet numbers, 2.: Homogenization theory approach (No. 3). 37, Article 3.
    3. Cirpka, O. A., & Kitanidis, P. K. (2001). Theoretical basis for the measurement of local transverse dispersion in isotropic porous media (No. 2). 37, Article 2.
    4. Cirpka, O. A., & Kitanidis, P. K. (2001). Transport of volatile compounds in porous media in the presence of a trapped gas phase (No. 03_04). 49, Article 03_04.
    5. Schlicher, T., Schrenk, V., & Barczewski, B. (2001). Projekt “EDV Tool”. Entwicklung einer EDV gestützten Bewertungsmatrix und Datenbank zur Ableitung übertragbarer Kriterien für ein systematisiertes Flächenrecycling in Baden Württemberg (BWC 99003).
    6. Schrenk, V., Schlicher, T., & Barczewski, B. (2001). Arbeitsgruppe FIGURA stellt sich vor. Flächenrecycling, Industriebrachen, Grundwasserschutz - Umweltgerechte Revitalisierung von Altstandorten.
    7. Cirpka, O. A., & Kitanidis, P. K. (2001). Travel-time based model of bioremediation using circulation wells (No. 3). 39, Article 3.
    8. Kobus, H. (2001). Forschungsbericht 1994 - 2002 des Lehrstuhls für Hydraulik und Grundwasser.
    9. Schrenk, V., Schlicher, T., & Barczewski, B. (2001). Interdisciplinary Research Activities in Brownfield Redevelopment in the Federal State of Baden Württemberg, Germany. Brownfields 2001.
  27. 2000

    1. Barczewski, B., Batereau, K., Juckenack, C. C., Klaas, N., Schlicher, T., & Schrenk, V. (2000). Strukturierung von Flächenrecycling in Baden-Württemberg. Erste Vorhaben des Projektverbundes FIGURA starten.
    2. Juckenack, C. C., Barczewski, B., & Schrenk, V. (2000). Flächenressourcen-Management in Baden-Württemberg (No. 5). Article 5.
    3. Cirpka, O. A., & Kitanidis, P. K. (2000). Sensitivities of temporal moments calculated by the adjoint-state method and joint inversing of head and tracer data (No. 1). 24, Article 1.
    4. Juckenack, C. C., Barczewski, B., & Schrenk, V. (2000). Recycling Derelict Land and Site Management in Agglomerations - the Cooperative FIGURA.
    5. Cirpka, O. A., & Kitanidis, P. K. (2000). Impact of Biomass-Decay Terms on the Simulation of Pulsed Bioremediation (No. 2). 38, Article 2.
    6. Cirpka, O. A., & Kitanidis, P. K. (2000). An advective-dispersive streamtube approach for the transfer of conservative tracer data to reactive transport (No. 5). 36, Article 5.
    7. Cirpka, O. A., & Kitanidis, P. K. (2000). Characterization of mixing and dilution in heterogeneous aquifers by means of local temporal moments (No. 5). 36, Article 5.
  28. 1999

    1. Schrenk, V., & Juckenack, C. C. (1999). Flächenrecycling in Baden-Württemberg. Foschungsprojekte der Arbeitsgruppe FIGURA gestartet.
    2. Cirpka, O. A., Windfuhr, C., Bisch, G., Granzow, S., Scholz-Muramatsu, H., & Kobus, H. (1999). Microbial Reductive Dechlorination in Large-Scale Sandbox Model (No. 9). 125, Article 9.
    3. Juckenack, C. C., Barczewski, B., & Schrenk, V. (1999). Flächenrecycling und Flächenmanagement in Ballungsräumen. Ein Ansatz zur Strukturierung: der Projektverbund “FIGURA” in Baden-Württemberg (No. 5). Article 5.
    4. Schulz, V., Bárdossy, A., & Helmig, R. (1999). Conditional statistical inverse modeling in groundwater flow by multigrid methods (No. 1). 3, Article 1.
    5. Cirpka, O. A., Frind, E. O., & Helmig, R. (1999). Streamline-oriented grid-generation of transport modelling in two-dimensional domains including wells (No. 7). 22, Article 7. https://doi.org/10.1016/S0309-1708(98)00050-5
    6. Metzger, D., Kinzelbach, H., Neuweiler, I., & Kinzelbach, W. (1999). Asymptotic transport parameters in a heterogeneous porous medium: Comparison of two ensemble-averaging procedures. 13.
    7. Cirpka, O. A., Frind, E. O., & Helmig, R. (1999). Numerical simulation of biodegradation controlled by transverse mixing (No. 2). 40, Article 2. https://doi.org/10.1016/S0169-7722(99)00044-3
    8. Cirpka, O. A., Helmig, R., & Frind, E. O. (1999). Numerical methods for reactive transport on rectangular and streamline-oriented grids (No. 7). 22, Article 7. https://doi.org/10.1016/S0309-1708(98)00051-7
  29. 1998

    1. Helmig, R., Class, H., Färber, A., & Emmert, M. (1998). Heat transport in the unsaturated zone - comparison of experimental results and numerical simulations (No. 6). 36, Article 6.

Student Assignments Supervised at the LH2

  1. 2023

    1. Investigation of the influence of heterogeneities on evaporation-driven density instabilities for two-phase flow. (2023). (Bachelorarbeit).
    2. Untersuchung naturnaher Flockungshilfsmittel als Alternative zu Polyacrylamid bei der Trinkwasseraufbereitung unter Berücksichtigung des Wiederverkeimungspotentials. (2023). (Masterarbeit).
  2. 2022

    1. Analysis of the Stefan flow problem and comparison to an advection-diffusion formulation. (2022). (Masterarbeit).
    2. Thermodynamic Analysis of Carbon Dioxide Mass Transport in a Stagnant Water Column. (2022). (Bachelorarbeit).
    3. Coupled Turbulent Free- and Porous Media Flows: Investigations of Interfacial Roughness. (2022). (mastersthesis).
    4. Numerical Modeling of Biocement Production. (2022). (Masterarbeit).
    5. Coupling between a detailed model and a large-scale model for exchanging density-dependent salt fluxes. (2022). (Masterarbeit).
    6. Combining a monolithic implementation of a locally-refined finite-volume staggered-grid method for the incompressible Navier-Stokes equations with an implementation of a SIMPLE-type solution algorithm. (2022). (Bachelorarbeit und Propädeutikum).
    7. Modeling of mechanical response to microbially induced calcite precipitation in porous media. (2022). (Masterarbeit).
    8. Untersuchung einer modifizierten Allen-Cahn-Gleichung ohne krümmungsbedingte Bewegung. (2022). (Bachelorarbeit).
    9. Biofilm-Visualisierung in mikrofluidischen Zellen. (2022). (Bachelorarbeit).
    10. Coupled Free-Flow and Porous Media Flow Systems: Analysis of Turbulent Free-Flow Condtions and Pore-Network Models. (2022). (Forschungsmodul2).
    11. Accurate Flow Boundary Conditions for the Lattice Boltzmann Method. (2022). (Masterarbeit).
    12. Modeling the use of microbially induced calcite precipitation for road construction. (2022). (Masterarbeit).
    13. Numerische Simulation des wärmegekoppelten Stofftransports durch die Speicherhülle eines Erdbeckenspeichers. (2022). (Masterarbeit).
    14. Coupled flow, transport, and geochemical processes in karstic fractures. (2022). (Masterarbeit).
  3. 2021

    1. Modeling calcite dissolution due to density-induced fingering of CO2-enriched water. (2021). (Master’s Thesis).
    2. Transport Properties from Entropy Scaling using PC-SAFT Equation of State for the Modelling of Subsurface Hydrogen Storage. (2021). (Masterarbeit). Universität Stuttgart.
    3. SIMPLE-type methods for iteratively solving the Navier-Stokes equations. (2021). (Forschungsmodul 1). Universität Stuttgart.
    4. Modelling Turbulence in Coupled Environments: The K-Shear Stress Transport Model. (2021). (Master’s Thesis).
    5. Averaged Analysis of Pore Scale Dynamics via Closure Problems. (2021). (Forschungsmodul 2).
    6. Linear stability analysis for an evaporation problem of a porous slab. (2021). (Bachelorarbeit).
    7. Herleitung reduzierter Modelle einer Zweiphasenströmung zwischen parallelen Platten mit Slip-Bedingungen. (2021). (Projektarbeit).
    8. Density-driven dissolution of CO2 in karst water - longterm monitoring and modelling in a water column. (2021). (Masterarbeit).
    9. Die Finite-Volumen-Methode am Beispiel der Konvektions-Diffusions-Gleichung. (2021). (Seminararbeit).
    10. Flow in diffusive transition zones. (2021). (Projektarbeit).
    11. Vergleich des Lösens der Navier-Stokes Gleichungen auf lokal verfeinerten versetzten Gittern in den Softwarepakete DuMux und IBAMR. (2021). (Projektarbeit).
    12. Modellierung von Deponien mit schwach radioaktivem Material. (2021). (Bachelorarbeit).
    13. A 0-dimensional conceptual model to facilitate coupling of groundwater and surface-water numerical models - and its application to a bog-wetland study area. (2021). (Masterarbeit).
    14. Implementing and testing a standard black oil model in Dumux. (2021). (Masterarbeit).
    15. Discretizing free flow coupled to porous-medium flow by a locally-refined finite-volume staggered-grid method using an interface with refined pressures and coarse velocities. (2021). (Masterarbeit).
    16. Experimental Investigation on the Impact of Induced Calcite Precipitation on Two-Phase Flow. (2021). (Bachalorarbeit).
    17. Experimentelle Untersuchung von induzerter Calcitausfällung. (2021). (Master’s Thesis).
    18. Numerical study on the modelling of macropores. (2021). (Master Thesis).
    19. Modeling of temperature-dependent mineral precipitation and dissolution in porous media. (2021). (Forschungsmodul).
    20. Experimentelle Untersuchung von mikrobiologisch induzierter Kalkausfällung in mikrofluidischen Zellen. (2021). (Bachalorarbeit).
    21. Investigation of linear solvers and preconditioners for sparse systems resulting from free-flow applications. (2021). (Masterarbeit).
  4. 2020

    1. Grundlagenuntersuchung zum saugseitigen Filter im DNOX-Fördermodul. (2020). (Masterarbeit).
    2. Untersuchung von Rissstrukturen bei der thermochemischen Wärmespeicherung mit CaO/Ca(OH)2. (2020). (Bachelorarbeit).
    3. Numerical investigation of fracture dilation processes in radioactive waste storage sites. (2020). (Masterarbeit). Universität Stuttgart.
    4. Entwicklung eines Stoffmodells für Wasserstoff unter überkritischen Bedingungen zur Analyse von Wasserstoffspeicherung im Untergrund. (2020). (Bachalorarbeit).
    5. Combination of a locally-refined quadtree finite-volume staggered grid scheme for the Navier-Stokes equation with turbulence models. (2020). (Forschungsmodul 2).
    6. Effective heat transfer models in thin porous media. (2020). (Bachelorarbeit).
    7. Untersuchung des lokalen thermischen Nicht-Gleichgewichts bei der thermochemischen Wärmespeicherung. (2020). (Projektarbeit). Universität Stuttgart.
    8. Mixed-dimension coupling methods with distributed sources for two phase flow problems in porous media. (2020). (Masterarbeit).
    9. Extension of a locally-refined quadtree finite-volume staggered-grid scheme to a drop-on-wall geometry. (2020). (Forschungsmodul 1).
    10. Kalibrierung eines realistischen Grundwassermodells mit FEPEST. (2020). (Masterarbeit).
  5. 2019

    1. A fully implicit formulation for Navier-Stokes/Darcy coupling. (2019). (Masterthesis). Retrieved from https://www.politesi.polimi.it/bitstream/10589/146077/1/2019_04_Vescovini.pdf
    2. Vergleich von Mehrkomponentendiffusionsansätzen im Kontext der Anwendung auf Brennstoffzellen. (2019). (bachelor thesis).
    3. Theorie und Erfahrung mit dem Gmsh Generator. (2019). (Seminararbeit).
    4. Instability analysis for salt precipitation processes in unsaturated porous media. (2019). (Bachelorarbeit).
    5. Numerische Simulation von Konvektion durch in Wasser gelöstes CO2. (2019). (Bachelorarbeit).
    6. Modelling of Isotope Transport and Evaporation Rates at the Porous Medium Free-Flow Interface. (2019). (Masterarbeit).
    7. Modelling and Simulation of the Thermal Utilization of Shallow Groundwater. (2019). (Masterarbeit).
    8. Examination of Mass Transfer Effects in Redox Flow Batteries by means of Analytical Modelling. (2019). (Masterarbeit).
    9. Numerische Ermittlung der Ergiebigkeit von Brunnen unter Berücksichtigung der Forchheimer-Gleichung und Darstellung der Ergebnisse in dimensionsloser Form / Numerical simulation of well yield using the forchheimer equation and presentation of the results by dimensionless numbers. (2019). (Masterarbeit).
    10. Quantifying similarities between computational expensive reactive transport models. (2019). (Bachelorarbeit).
    11. Pore and pore-network scale modeling on realistic geometries extracted from CT images. (2019). (Masterarbeit).
    12. Sensitivitätsanalyse eines reaktiven Transportmodells. (2019). (Projektarbeit).
    13. A dual pore-network model for fluid and energy transport in soils considering thermal non-equilibrium. (2019). (Masterarbeit).
    14. Decoupled solution of flow, transport and reactions for microbially enhanced coal bed methane scenarios. (2019). (Masterarbeit).
    15. Development of interface criteria for model reduction strategies for the simulation of hydrogen storage. (2019). (Masterarbeit). Universität Stuttgart.
    16. Sensitivitätsanalyse für ein Modell zur mikrobiell erhöhten Methanproduktion in Kohleflözen. (2019). (Bacherlorarbeit).
    17. Implementierung eines numerischen Modells für den Transport von Tracerkomponenten in Zweiphasenströmungen. (2019). (Studienarbeit).
    18. Non-isothermal effects in Compressed Air Energy Storage systems. (2019). (Masterarbeit).
    19. Experimental and numerical investigation of tracer transport in porous media on the pore scale. (2019). (Masterarbeit).
  6. 2018

    1. Investigation of the Streamline-Upwind Petrov-Galerkin method for the Navier-Stokes equations. (2018). (Bachelorarbeit). 0.
    2. Kopplung zwischen freier Strömung und Strömung im porösen Medium: Modellierung des Transportes von Metallen und Kolloiden in der hyporheischen Zone. (2018). (Bachelorarbeit).
    3. Modelling of salt precipitation and comparison with experimental results. (2018). (Masterthesis).
    4. Implementation of a finite element discretization for Stokes problems in DuMux. (2018). (Propaedeuticum).
    5. Machbarkeit und Effizienz von Pumpspeicherung im Untergrund. (2018). (Studienarbeit).
    6. Berechnung der Öffnungsweite bei Zugversagen mit Hilfe eines analytischen Ansatzes. (2018). (Bachelorarbeit).
    7. Thermodynamische Analyse einer CAES-Anlage - mit Fokus auf analytischer Approximation. (2018). (Bachelorarbeit).
    8. Upscaling von kapillaren Netzwerkstrukturen. (2018). (Masterthesis).
    9. Modelling hydrodynamic dispersion under two-phase flow conditions. (2018). (Masterarbeit).
    10. Experimentelle Visualisierung von Konvektion durch in Wasser gelöstes CO2. (2018). Universität Stuttgart.
    11. Pumpversuche zur Bestimmung hydrogeologischer Parameter. (2018). (Bachelorarbeit).
    12. Parameterization of element balance formulation in reactive compositional flow and transport. (2018). (Masterarbeit). TU Delft.
    13. Modeling fractures in a CaO/Ca(OH)2 thermo-chemical heat storage reactor. (2018). (Masterthesis).
    14. Investigating turbulence in an indirect thermo-chemical heat storage reactor. (2018). (Bachelorarbeit).
    15. Investigation of different coupling schemes for hybrid-dimensional models. (2018). (Masterthesis).
    16. Numerical simulations of underground carbon dioxide storage with hydrogen impurities. (2018). (Masterthesis).
    17. Analyse der Möglichkeiten von Energiespeicherung durch Unterwasserdruckluftspeicherkraftwerke. (2018). (Bachelorarbeit).
    18. Experimental and numerical investigation of enzymatically induced calcite precipitation in porous media. (2018). (Masterthesis).
    19. Implementation of Adsorption Isotherms in the numerical simulator DuMuX. (2018). (Studienarbeit).
    20. Modellierung und Simulation von Vaskulogenese und Angiogenese. (2018). (Studienarbeit).
    21. Modeling heat transfer between porous medium and free flow. (2018). (Projektarbeit).
    22. Analyse der Möglichkeiten von Energiespeicherung durch Windkraftanlagenpumpspeicherkraftwerke. (2018). (Bachelorarbeit).
    23. Dichtegetriebene Strömung durch Einlösen von CO2 in Wasser. (2018). (Bachelorarbeit).
    24. Parametersensitivitätsstudie für ein biogeochemisches Goldkreislaufmodell. (2018). (Bachelorarbeit).
  7. 2017

    1. Ansätze zur Kopplung von Grundwasser- und Fließgewässermodellen - Vergleich von Softwarelösungen. (2017). (Masterthesis).
    2. Abschätzung von Möglichkeiten der Wärmegewinnung aus Grundwasser und Entwicklung eines Programms für eine Parameterstudie. (2017). (Bachelorarbeit).
    3. Comparison of the use of hydrogen and methane for underground energy storage. (2017). (Bachelorarbeit).
    4. Bayesian model selection for hydro-morphodynamic models. (2017). (Masterthesis).
    5. Analyse der Möglichkeiten von Energiespeicherung durch Hochhauspumpspeicherkraftwerke. (2017). (Bachelorarbeit).
    6. Development of a Numerical Model for Microbial Precipitation of Metallic Gold. (2017). (Masterthesis).
    7. Lumped parameter models for the human cardiovascular system. (2017). (Masterthesis).
    8. Erstellung eines Programms zur Auslegung von Rohrnetzwerken in der Wasserversorgung. (2017). (Bachelorarbeit). Universität Stuttgart.
    9. Parameterstudie zur Charakterisierung verschiedener Bodenarten für Poren-Netzwerk-Modelle. (2017). (Bachelorarbeit).
    10. Auslegung einer Gebäudeheizung mit einem thermochemischen Wärmespeicher. (2017). (Bachelorarbeit).
    11. Simulation of Blood Flow through a Bifurcation at capillary level by 3D and 1D models. (2017). (Bachelorarbeit).
    12. Convergence analysis of two-phase flow systems in porous media: Comparison of implicit hybrid upwinding and phase potential upwinding. (2017). (Bachelorarbeit).
    13. Numerical investigation of turbulent flow around obstacles and evaporating porous media. (2017). (Masterthesis).
    14. Investigation of parametrization of dual-continuum models through multi-scale finite volume methods. (2017). (Masterthesis).
    15. Investigation of the SUPG method: Concept and 1-d implementation. (2017). (Projektarbeit).
    16. Modellierung des diffusiven Methantransports im Zusammenhang mit Hydraulic Fracturing. (2017). (Bachelorarbeit).
    17. Modelling of intra- and extracellular flow and transport processes. (2017). (Masterthesis).
    18. Modeling microbially enhanced coal-bed methane production. (2017). (Masterthesis).
    19. Entwicklung eines Programms zur Auslegung eines hydraulischen Widders. (2017). (Bachelorarbeit).
    20. Modellierung und experimentelle Untersuchung des Stoffsystems SrBr2/H2O zur thermochemischen Energiespeicherung. (2017). (Masterthesis).
  8. 2016

    1. Numerical Simulations to Reproduce Experiments on Capillary Liquid Uptake in Core Samples. (2016). (Masterthesis).
    2. Algorithmus zur Zeitschrittweitenanpassung für das linear elastische Modell. (2016). (Bachelorarbeit).
    3. Development of 1D and 3D DuMuX models to simulate transport of nano zero-valent iron particles in porous media. (2016). (Masterthesis).
    4. Development of a numerical model for thermal-ureolysis-induced calcite precipitation. (2016). (Masterthesis).
    5. Effizienz von Druckluftspeicherung in porösen geologischen Formationen. (2016). (Bachelorarbeit).
    6. Experimentelle Untersuchung der effektiven Gaspermeabilität von feinen Schüttungen. (2016). (Bachelorarbeit).
    7. Analyse eines modifizierten, vertikal integrierten Modells. (2016). (Bachelorarbeit).
    8. Modellierung des Strömungsübergangs am porösen Medium für Filterelemente. (2016). (Masterthesis).
    9. Investigation of a nonlinear Multi-Point Flux Approximation in DuMuX. (2016). (Forschungsmodul).
    10. Numerical and experimental investigation of soil-root interactions. (2016). (Masterthesis).
    11. Untersuchung und Weiterentwicklung der in DuMuX implementierten Flachwassergleichungen. (2016). (Bachelorarbeit).
    12. Entwicklung von Kopplungskriterien zur adaptiven Bestimmung des VE-Bereichs in einem gekoppelten Modell. (2016). (Bachelorarbeit).
    13. Modeling the espresso brewing process using a non-isothermal, compositional two-phase approach with dissolution kinetics. (2016). (Masterthesis).
    14. Development and Evaluation of Iterative Solution Strategies for Coupled Stokes-Darcy Problems. (2016). (Masterthesis).
  9. 2015

    1. Charakterisierung, Auswahl und Untersuchung von Spacern für die Membrandestillation. (2015). (Masterthesis).
    2. Numerical modeling of salt precipitation around gas wells and its influence on the methane extraction rates. (2015). (Independent-Study).
    3. Numerical Modeling of Peripheral Arterial Stenoses and Evaluation of Compensation Mechanisms. (2015). (Masterthesis).
    4. Comparison of different methods for solving elliptic pressure equations in heterogeneous anisotropic porous media. (2015). (Bachelorarbeit).
    5. Untersuchungen zu Möglichkeiten der Wärmespeicherung bei der adiabaten Druckluftspeicherung. (2015). (Bachelorarbeit).
    6. Numerical modeling of steam chamber build-up guided by hot-water pre-injection. (2015). (Masterthesis).
    7. Fundamentals of multiphase flow in porous media. (2015). (Projektarbeit).
    8. Behaviors of air bubbles in drinking water pipelines: Experimental investigation. (2015). (Masterthesis).
    9. Simulating Complex Flow in Karst: Numerical Upscaling through Calibration of a Double Continuum Model. (2015). (Bachelorarbeit).
    10. Entwicklung und Auslegung eines thermischen Frostschutzverfahrens. (2015). (Bachelorarbeit).
    11. Development of a model for microbially enhanced coalbed methane. (2015). (Masterthesis).
    12. General theory of three-dimensional consolidation. (2015). (Seminararbeit).
    13. Investigation of an adaptive cell-centerd finite volume scheme with application to soil-root interaction. (2015). (Masterthesis).
    14. Experimentelle Untersuchung der Luftausgasung von Flüssigkeiten. (2015). (Masterthesis).
    15. Pitzer-Ansatz für den reaktiven transport und Vergleich mit dem standard Debey-Hückle-Modell. (2015). (Bachelorarbeit).
    16. Numerische Untersuchung des Einflusses von Heterogenitäten im porösen Medium auf mikrobiell induzierte Kalzitausfällung. (2015). (Bachelorarbeit).
    17. Steam Assisted Gravity Drainage - Comparison of continuous and cyclic injection on field and laboratory scale. (2015). (Diplomarbeit).
    18. Investigation of the influence of hysteresis on underground gas storage. (2015). (Bachelorarbeit).
    19. Domain Decomposition Methods For Partial Differential Equations. (2015). (Seminararbeit).
    20. Hierarchical Fracture Modeling Approach. (2015). (Masterthesis).
  10. 2014

    1. Comparison Of Models For Fracture Tips. (2014). (Bachelorarbeit).
    2. Kinetic approach for modeling salt precipitation in porous-media. (2014). (Independent-Study).
    3. Analysis of Processes and Properties at a Porous-Medium Free-Flow Interface with the Application of Evaporation. (2014). (Masterthesis).
    4. Spatial model coupling for the simulation of CO2 injection scenarios in deep saline aquifers. (2014). (Masterthesis).
    5. Methane and Ethane sorption on shale. (2014). (Masterthesis).
    6. Study on porous medium wall functions for k-epsilon and k-omega turbulence models. (2014). (Bachelorarbeit).
    7. Investigation of error estimates for cell centered finite volume schemes: analysis and improvement of grid adaptation strategies in DuMuX. (2014). (Masterthesis).
    8. Composite Programming als Methode zur Konfliktanalyse. Das Fallbeispiel Polder Waldsee/Altrip/Neuhofen. (2014). (Bachelorarbeit).
    9. Analytical Solution for Determining Brine Leakage Along a Salt Wall. (2014). (Bachelorarbeit).
    10. Implementation of advanced algebraic turbulence models on a staggered grid. (2014). (Masterthesis).
    11. Three Phase (Water, Air, and NAPL) Modeling of Bail-Down Test. (2014). (Masterthesis).
    12. Numerical investigation of microbially induced calcite precipitation at field scale. (2014). (Independent-Study).
    13. Numerical modeling and analysis of groundwater recharge in a wadi system for efficient water management. (2014). (Masterthesis).
    14. Coupling a vascular graph model and the surrounding tissue to simulate flow processes in vascular networks. (2014). (Masterthesis).
    15. Verifikationsproblem mit bekannter Lösung für die Zwei-Phasen-Darcy-Gleichung. (2014). (Bachelorarbeit).
    16. Bayesian networks as decision support tool for inspection and replacement of water distribution systems. (2014). (Masterthesis).
    17. Kinetic approach to model salt precipitation in porous-media coupled with the free-flow. (2014). (Masterthesis).
    18. Investigation of a decoupling scheme for modeling reactive transport. (2014). (Masterthesis).
    19. Calibration of a complex MODFLOW-based surface water-groundwater model: A case study for the polder IMO. (2014). (Masterthesis).
    20. Numerical Analysis of Modeling Concepts for Salt Precipitation and Porosity - Permeability Evolution during Brine Evaporation. (2014). (Masterthesis).
    21. Bürgerbeteiligung als Lösungsweg raumbezogener Konflikte? Eine Analyse am Beispiel der Hochwasserrückhaltung Elzmündung am Oberrhein. (2014). (Bachelorarbeit).
    22. A conceptional approach to the effect of shear failure on the stress field in porous media. (2014). (Masterthesis).
    23. Wetting properties in porous media: Analysis of the influence on evaporation and radiative heat exchange. (2014). (Bachelorarbeit).
  11. 2013

    1. Rechenzeitoptimierung bei numerischen Sicherheitsabschätzungen für Atommüll-Endlager. (2013). (Diplomarbeit).
    2. Flow Modelling of Coupled Fracture-Matrix Porous Media Systems with a Two Mesh Concept. (2013). (Diplomarbeit).
    3. Investigating the influence of relative permeability on DNAPL dissolution and depletion at contaminated sites. (2013). (Masterthesis).
    4. Analysis of modeling concepts for radiative heat exchange during evaporation processes from porous media. (2013). (Bachelorarbeit).
    5. Stochastic Investigation of the Thermal Behavior of Lithium-Ion Batteries. (2013). (Diplomarbeit).
    6. Einfluss von Grenzschichten auf das Strömungsverhalten. (2013). (Seminararbeit).
    7. Modeling water management in PEM fuel cells using Dumux. (2013). (Bachelorarbeit).
    8. Numerical simulations of geomechanical processes - Verification of a poro-elastic model on the basis of a literature study. (2013). (Bachelorarbeit).
    9. Impact of transient flow considerations on probabilistic well-head protection delineation. (2013). (Masterthesis).
    10. Extending a fracture-matrix model towards Forchheimer flow in the fracture network. (2013). (Independent-Study).
    11. Modeling Flow and Diffusion along a Salt Flank. (2013). (Bachelorarbeit).
    12. Optimizing early-warning monitoring systems for improved drinking water resource protection. (2013). (Masterthesis).
    13. Comparison of different modelling approaches for reactive transport in porous media. (2013). (Bachelorarbeit).
    14. Modeling transvascular flow - Analysing the influence of adsorption, degradation and lymph flow. (2013). (Studienarbeit).
    15. Coupling of porous-medium and free flow under non-equilibrium conditions. (2013). (Bachelorarbeit).
    16. Analytische Berechnung der Jacobimatrix für das nicht-lineare diskrete Gleichungssystem einer Zwei-Phasen-Darcyströmung: Implementierung und Vergleich mit der näherungsweisen Berechnung. (2013). (Bachelorarbeit).
    17. CO2 as a working fluid in geothermal power plants:Literature review, summary and outlook. (2013). (Studienarbeit).
    18. Quantitative Risikoabschätzung und Risikomanagement in einem Grundwassereinzugsgebiet am Beispiel Burgberg. (2013). (Diplomarbeit).
    19. Modellierung und Simulation arterieller Netzwerke. (2013). (Masterthesis).
    20. Modeling transvascular exchanges of therapeutic agents - Sensitivity analysis. (2013). (Studienarbeit).
    21. Comparison of Monolithic and Iterative Solvers for Coupled Fracture-Network Rock-Matrix Porous Media Problems. (2013). (Bachelorarbeit).
    22. A comparison of different model reduction techniques for model calibration and risk assessment. (2013). (Diplomarbeit).
    23. Parameter Study and a Comparison of Different Model Approaches for Simulating the Displacement of Brine and Fracking Fluid Into Overlying Aquifers. (2013). (Diplomarbeit).
    24. Implementation of Element Velocities in a pressure Model for Fractured Porous Media. (2013). (Independent-Study).
  12. 2012

    1. Coupling of Free Flow and Flow in Porous Media - Dimensional Analysis and Numerical Investigation. (2012). (Masterthesis).
    2. Forchheimer porous-media flow models - Numerical investigation and comparison with experimental data. (2012). (Masterthesis).
    3. Modellierung und experimentelle Untersuchung der Permeabilität von Pulverschüttungen. (2012). (Diplomarbeit).
    4. A Response Surface Bootstrap Filter To Calibrate CO2 Injection Models. (2012). (Diplomarbeit).
    5. Untersuchung strömungsmechanischer und thermischer Vorgänge innerhalb des Absorberrohrs eines salzbasierten Parabolrinnenkraftwerks. (2012). (Diplomarbeit).
    6. Flow in unsaturated porous media: Numerical and experimental evaluation of the two-phase model and the Richards equation. (2012). (Masterthesis).
    7. Efficient History Matching for Reduced Reservoir Models with PCE-based Bootstrap Filters. (2012). (Diplomarbeit).
    8. Numerical simulation of CO2-leakage scenarios on a large scale under realistic geologic conditions. (2012). (Diplomarbeit).
    9. Experimental Investigations of Water Infiltration into Unsaturated Soil - Analysis of Dynamic Capillarity Effects. (2012). (Diplomarbeit).
    10. A Lagrangian Smoothed Particle Framework to Simulate DNAPL Dissolution Pheomena in Subsurface Porous Media. (2012). (Masterthesis).
    11. Numerical analysis of the influence of turbulence on exchange processes between porous-medium and free flow. (2012). (Diplomarbeit).
    12. Investigation of the influences of different refinement approaches in the modelling of multiphase flow in porous media. (2012). (Diplomarbeit).
    13. The influence of different geological layers and in-situ stress states on the geomechanical processes during CO2 storage. (2012). (Diplomarbeit).
    14. Inspecting endovascular aneurysm treatments with porous medium flow simulations and the use of a statistical framework. (2012). (Diplomarbeit).
  13. 2011

    1. Coupling of Free Flow and Flow in Porous Media - A Dimensional Analysis. (2011). (Independent-Study).
    2. Steam Injection Technique for In Situ Remediation of Chlorinated Hydrocarbons from Low Permeable Saturated Zones - Experiment and Numerical Approach. (2011). (Diplomarbeit).
    3. Optimaler Einsatz von Rechenleistung bei alternativen Modellvereinfachungen am Beispiel eines Grundwassermodells. (2011). (Diplomarbeit).
    4. Investigation on changing pressures in a saline aquifer before CO2-injection. (2011). (Studienarbeit).
    5. Simulation der Konvektionsströmung bei der Speicherung von CO2 in tiefen Gesteinsformationen. (2011). (Bachelorarbeit).
    6. Optimization of a Calibration Method for Heterogeneous Groundwater Models. (2011). (Diplomarbeit).
    7. Dimensionless Analysis of Convection Enhanced Drug Delivery to Brain Tissues. (2011). (Masterthesis).
    8. Adaptive grid refinement for two phase flow in porous media. (2011). (Diplomarbeit).
    9. Horizontal Redistribution of Two Fluid Phases in a Porous Medium - Experimental and Numerical Investigations. (2011). (Diplomarbeit).
    10. Theoretisch-numerische Arbeit zum Thema Verdampfung in Mikrokanälen. (2011). (Diplomarbeit).
    11. Vereinfachte Methoden zur Flutwellenabschätzung. (2011). (Bachelorarbeit).
    12. Implementation of a Reactive Multi-Component Transport Model for the Lime-Carbonic Acid Balance in Dumux. (2011). (Diplomarbeit).
    13. Risikoanalyse für Wasserschutzgebiete am Beispiel Burgberg. (2011). (Diplomarbeit).
    14. Untersuchung und Simulationen zum Strömungs- und Verweilzeitverhalten eines Zwischenbehälters in der Wasserversorgung. (2011). (Diplomarbeit).
    15. Modelling biofilm induced calcite precipitation and its effect on two phase flow in porous media. (2011). (Diplomarbeit).
    16. Two phase flow in homogeneous porous media - The role of dynamic capillary pressure in modeling gravity driven fingering. (2011). (Diplomarbeit).
    17. Gefährdungsanalyse und Risikoabschätzung zum Schutz von Trinkwasservorkommen am Beispiel Burgberg. (2011). (Diplomarbeit).
    18. Numerical reduction and numerical simulation of transport processes in blood vessels with bifurcations. (2011). (Diplomarbeit).
  14. 2010

    1. Modellierung des Transports von Ölteppichen in Seen am Beispiel des Bodensees. (2010). (Diplomarbeit).
    2. Cyclic Steam Injection into the Subsurface - solarthermal steam generation for enhanced oil recovery. (2010). (Diplomarbeit).
    3. Stochastic multi-scale simulation of porous media flow with Polynomial Chaos Expansion. (2010). (Diplomarbeit).
    4. Modeling of infiltration processes in the unsaturated zone - switching of boundary condition from Neumann to Dirichlet -. (2010). (Independent-Study).
    5. Horizontal Redistribution of Two Fluid Phases in a Porous Medium - Experimental and Numerical Investigations. (2010). (Diplomarbeit).
    6. Modelling biofilm distribution and its effect on two-phase flow in porous media. (2010). (Studienarbeit).
    7. Parameter Estimation by Ensemble Kalman Filters with Transformed Data. (2010). (Diplomarbeit).
  15. 2009

    1. Determination of Interfacial Area - Capillary Pressure - Saturation Relationships for a Single Fracture: Study, Upscaling, and Determination. (2009). (Diplomarbeit).
    2. Modeling Convection-Enhanced Delivery into Brain Tissue using Information from Magnetic Resonance Imaging. (2009). (Masterthesis).
    3. Modellierung des Abwassernetzes der Oase Beni Abbes, Algerien. (2009). (Diplomarbeit).
    4. Numerical solution of Philip’s redistribution problem. (2009). (Diplomarbeit).
    5. Modeling the transfer of therapeutic agents from the vascular space to the tissue compartment (a continuum approach). (2009). (Diplomarbeit).
    6. CO2 sequestration simulations: A comparison study between DuMuX and Eclipse. (2009). (Diplomarbeit).
    7. Modelling Carbon Dioxide Flow in the Shallow Subsurface. (2009). (Diplomarbeit).
    8. Numerical modeling of enhanced gas recovery with CO2 storage - Primary variable switch -. (2009). (Diplomarbeit).
    9. Examination of the assumption of thermal equilibrium on the fluid distribution and front stability. (2009). (Diplomarbeit).
    10. Two-phase flow modeling in porous media with kinetic interphase mass transfer processes in fractures. (2009). (Diplomarbeit).
  16. 2008

    1. Beschreibung und Quantifizierung der Wechselwirkungen zwischen Grundwasserkörper, Baggersee und Drainagegräben im Rahmen einer 3D Strömungs- und Transportmodellierung. (2008). (Diplomarbeit).
    2. Contaminant Transport in Lake Constance: Analysis of Moments and the Dilution Index. (2008). (Diplomarbeit).
    3. A double-continuum approach for two-phase flow in macroporous media: Parameter study and applications. (2008). (Diplomarbeit).
    4. Modeling the Spatial and Temporal Distribution of Therapeutic Agents in Tumor Tissue (a Continuum Approach). (2008). (Diplomarbeit).
    5. The use of natural heat as a tracer to quantify groundwater surface water interactions: Maules Creek, New South Wales, Australia. (2008). (Diplomarbeit).
    6. Weiterentwicklung einer Finite-Volumen-Methode für die Flachwassergleichungen zur Simulation des Oberflächenabflusses im Gewässer und im Gelände. (2008). (Diplomarbeit).
    7. Numerical Simulations of CO2 Injection into Saline Aquifers: Estimation of Storage Capacity and Arrival Times using Multiple Realizations of Heterogeneous Permeability Fields. (2008). (Diplomarbeit).
    8. Implementation and Application of a Hysteresis Model for Multiphase Flow and Transport in Porous Media. (2008). (Diplomarbeit).
    9. Experimentelle Untersuchungen der Prozesse auf technischer Skala bei der In-situ-Reinigung gering durchlässiger, gesättigter Böden mit festen Wärmequellen. (2008). (Diplomarbeit).
    10. Comparison of mathematical and numerical models for twophase flow in porous media. (2008). (Diplomarbeit).
    11. Towards a model concept for coupling porous gas diffusion layer and gas distributor in PEM fuel cells. (2008). (Diplomarbeit).
  17. 2007

    1. Numerical Investigations of Flow through Fractured Porous Media. (2007). (Masterthesis).
    2. Stochastische Modellierung und hydrogeologische Charakterisierung von Karstgrundwasserleitern. (2007). (Diplomarbeit).
    3. Erarbeitung und Implementierung eines Modellkonzepts zur Simulation von Strömungs- und Transportprozessen im menschlichen Gehirn. (2007). (Diplomarbeit).
    4. Investigations of Carbon Dioxide Storage Capacity in Saline Aquifers. (2007). (Diplomarbeit).
    5. CO2 Storage into Dipped Saline Aquifers Including Ambient Water Flow. (2007). (Diplomarbeit).
    6. Saturation Determination for Multiphase Systems in Porous Medium Using Light Transmission Method. (2007). (Independent-Study).
    7. The development of a single phase multicomponent model with sorption for the analysis of methane migration from subsurface coal seams. (2007). (Masterthesis).
    8. Simulation der Wasserqualität im Bodensee mit Hilfe eines dreidimensionalen Modells. (2007). (Diplomarbeit).
    9. The influende on mixing in a lake of an internal boundary layer for the wind. (2007). (Independent-Study).
    10. Characterisation of tracer distribution in a lake using spatial moments. (2007). (Independent-Study).
    11. Characterisation of tracer distribution in Upper Lake Constance using spatial moments. (2007). (Studienarbeit).
    12. Implementation of a Stochastic Wind Model into the Virtual WaterWay (VWW) Program. (2007). (Masterthesis).
    13. Investigations on Flow Processes in Absorbent Products using FeFlow Finite Element Software. (2007). (Diplomarbeit).
  18. 2006

    1. Numerical study on solute mixing in thermally induced buoyancy flow in groundwater. (2006). (Masterthesis).
    2. Prinzipstudie zur CO2-Migration im Untergrund in Bezug auf die Mineralwässer Stuttgarts. (2006). (Diplomarbeit).
    3. Investigation on macrodispersion for two-phase flow in heterogeneous porous media. (2006). (Masterthesis).
    4. Efficient Spectral Methods for Geostatistical Interpolation. (2006). (Diplomarbeit).
    5. Modeling of CO2 Sequestration: Carbon Dioxide Entry Behaviour at the Cap Rock. (2006). (Studienarbeit).
  19. 2005

    1. Untersuchung von Randbedingungen bei der numerischen Simulation von Zweiphasenströmungen in porösen Medien. (2005). (Diplomarbeit).
    2. Using the moving mesh feature to simulate the unsteady electrostatic spray painting produced by a high-speed rotary bell atomizer with the external charge. (2005). (Masterthesis).
    3. Physical Aspects in the Numerical Modeling of Carbon-Dioxide Sequestration. (2005). (Masterthesis).
    4. Thermal Effects of Carbon Dioxide Sequestration in the Subsurface. (2005). (Diplomarbeit).
    5. Sensitivity Analysis of flow and fracture parameters in fractured porous medium. (2005). (Masterthesis).
    6. Entwicklung und Implementierung eines numerischen Modellkonzepts zur Simulation von Alkoholspülungsprozessen in DNAPL-kontaminierten Grundwasserleitern. (2005). (Diplomarbeit).
    7. Einfluss von Heterogenitäten auf Mehrphasenströmungen. (2005). (Diplomarbeit).
    8. Identification of a REV for a given upscaling method. (2005). (Masterthesis).
    9. Modelling of Multiphase Multicomponent Flow and Transport in Heap Leaching of Copper Ores. (2005). (Masterthesis).
    10. Numerical Modeling of Methane Adsorption and Transport Processes in Mined Areas. (2005). (Masterthesis).
    11. Experimental and numerical investigations on steam injection in saturated soils. (2005). (Masterthesis).
  20. 2004

    1. Evaluation of CO2 velocity changes in a CO2 plume migrating in the subsurface. (2004). (Independent-Study).
    2. Effects of groundwater density on CO2 migration in the subsurface. (2004). (Independent-Study).
    3. Interpretation of simulation results including a dynamic capillary pressure relationship. (2004). (Masterthesis).
    4. Steam- and steam-air-injection in the saturated zone: experimental and numerical investigations on DNAPL-mobilization and heat front behaviour. (2004). (Masterthesis).
    5. Modeling of CO2 Injection in Geological Formations: The Effect of Dissolved CO2 on Water Density. (2004). (Independent-Study).
    6. Inverse modeling of groundwater transport using temporal moments of concentration. (2004). (Masterthesis).
    7. Influence of Seasonal Stratification Patterns on the Basin-Scale Motions of Upper Lake Constance. (2004). (Masterthesis).
    8. The Influence of the Intrinsic Permeability and the van Genuchten Parameters on Small-Scale Simulation Results. (2004). (Masterthesis).
    9. Modeling of Natural Attenuation: Evaluation of Available Codes. (2004). (Independent-Study).
    10. Development of a Finite Element model for a cylindrical device for the determination of the hydraulic conductivity tensor. (2004). (Masterthesis).
    11. Parametrisierung von Buhnen in 2D-HN-Modellen anhand numerischer Modellrechnungen und Naturdaten der Donau. (2004). (Diplomarbeit).
    12. Parameter study for the migration of DNAPL around a sand lens. (2004). (Independent-Study).
    13. Simultaneous geostatistical identification of conductivity and recharge parameters in the groundwater flow equation. (2004). (Masterthesis).
    14. Modeling of Mine Gas Repositories. (2004). (Masterthesis).
  21. 2003

    1. Numerische und experimentelle Untersuchung des Einflusses der Sensorheizung auf den Wärmeübergang an Abgassensoren. (2003). (Diplomarbeit).
    2. Nachbildung und Normalisierung von Tracersummenkurven. (2003). (Diplomarbeit).
    3. Estimation en temps reel de la biodegradation d’un polluant dans un sol non-sature-stude en colonne. (2003). (Bachelorarbeit).
    4. Artificial Groundwater Recharge. (2003). (Independent-Study).
    5. Experimental determination of transverse dispersion coefficients in porous media. (2003). (Masterthesis).
    6. Development of a program for the groundwater flow equation in an unconfined aquifer. (2003). (Independent-Study).

Contact

This image shows Lehrstuhl für Hydromechanik und Hydrosystem-modellierung

Lehrstuhl für Hydromechanik und Hydrosystem-modellierung

 
 

Anfahrt

Pfaffenwaldring 61, 70569 Stuttgart

To the top of the page