Publikationen

Journals, Dissertationen, studentische Arbeiten und weitere Literatur des IWS

Journals (letzte 50)

  1. 2020

    1. Haas, J., Khalighi, J., de la Fuente, A., Gerbersdorf, S., Nowak, W., & Chen, P.-J. (2020). Floating photovoltaic plants: ecological impacts versus hydropower operation flexibility. Energy Conversion and Management.
    2. Koch, T., Flemisch, B., Helmig, R., Wiest, R., & Obrist, D. (2020). A multi-scale sub-voxel perfusion model to estimate diffusive capillary wall conductivity in multiple sclerosis lesions from perfusion MRI data. International Journal for Numerical Methods in Biomedical Engineering, 36(2), e3298. https://doi.org/10.1002/cnm.3298
    3. Ghosh, T., Bringedal, C., Helmig, R., & Sekhar, G. P. R. (2020). Upscaled equations for two-phase flow in highly heterogeneous porous media: Varying permeability and porosity. Advances in Water Resources, 145, 103716. https://doi.org/10.1016/j.advwatres.2020.103716
    4. Shokri-Kuehni, S. M. S., Raaijmakers, B., Kurz, T., Or, D., Helmig, R., & Shokri, N. (2020). Water Table Depth and Soil Salinization: From Pore-Scale Processes to Field-Scale Responses. Water Resources Research, 56(2), e2019WR026707. https://doi.org/10.1029/2019WR026707
    5. Fraundorf, P., Lipp, M., Hundley, T., Silva, C., & Chrostoski, P. (2020). Fraction Crystalline from Electron Powder Patterns of Unlayered Graphene in Solidified Carbon Rain. Microscopy and Microanalysis, 1–4. https://doi.org/10.1017/S1431927620022953
    6. Emmert, S., Class, H., Davis, K. J., & Gerlach, R. (2020). Importance of specific substrate utilization by microbes in microbially enhanced coal-bed methane production: A modelling study. International Journal of Coal Geology, 229, 103567. https://doi.org/10.1016/j.coal.2020.103567
    7. Hommel, J., Akyel, A., Frieling, Z., Phillips, A. J., Gerlach, R., Cunningham, A. B., & Class, H. (2020). A Numerical Model for Enzymatically Induced Calcium Carbonate Precipitation. Applied Sciences, 10(13), 4538. https://doi.org/10.3390/app10134538
    8. Koch, T., Schneider, M., Helmig, R., & Jenny, P. (2020). Modeling tissue perfusion in terms of 1d-3d embedded mixed-dimension coupled problems with distributed sources. Journal of Computational Physics, 410, 109370. https://doi.org/10.1016/j.jcp.2020.109370
    9. Koch, T., Helmig, R., & Schneider, M. (2020). A new and consistent well model for one-phase flow in anisotropic porous media using a distributed source model. Journal of Computational Physics, 410, 109369. https://doi.org/10.1016/j.jcp.2020.109369
    10. Koch, T., Gläser, D., Weishaupt, K., Ackermann, S., Beck, M., Becker, B., Burbulla, S., Class, H., Coltman, E., Emmert, S., Fetzer, T., Grüninger, C., Heck, K., Hommel, J., Kurz, T., Lipp, M., Mohammadi, F., Scherrer, S., Schneider, M., … Flemisch, B. (2020). DuMux 3 – an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling. Computers & Mathematics with Applications. https://doi.org/10.1016/j.camwa.2020.02.012
    11. Seitz, G., Helmig, R., & Class, H. (2020). A numerical modeling study on the influence of porosity changes during thermochemical heat storage. Applied Energy, 259, 114152. https://doi.org/10.1016/j.apenergy.2019.114152
    12. Schneider, M., Weishaupt, K., Gläser, D., Boon, W. M., & Helmig, R. (2020). Coupling staggered-grid and MPFA finite volume methods for free flow/porous-medium flow problems. Journal of Computational Physics, 401. https://doi.org/10.1016/j.jcp.2019.109012
  2. 2019

    1. Ortiz, J., Kracht, W., Pamparana, G., & Haas, J. (2019). Optimization of a SAG mill energy system: integrating rock hardness, solar irradiation, climate change and demand side management. Mathematical Geosciences. https://doi.org/10.1007/s11004-019-09816-6
    2. Seidel, J., Trachte, K., Orellana-Alvear, J., Figueroa, R., Célleri, R., Bendix, J., Fernandez, C., & Huggel, C. (2019). Precipitation Characteristics at Two Locations in the Tropical Andes by Means of Vertically Pointing Micro-Rain Radar Observations. Remote Sensing, 11(24), 2985. https://doi.org/10.3390/rs11242985
    3. Bliefernicht, J., Waongo, M., Salack, S., Seidel, J., Laux, P., & Kunstmann, H. (2019). Quality and Value of Seasonal Precipitation Forecasts Issued by the West African Regional Climate Outlook Forum. Journal of Applied Meteorology and Climatology, 58(3), 621–642. https://doi.org/10.1175/JAMC-D-18-0066.1
    4. Weishaupt, K., Terzis, A., Zarikos, I., Yang, G., de Winter, M., & Helmig, R. (2019). Model reduction for coupled free flow over porous media: a hybrid dimensional pore network model approach. https://arxiv.org/abs/1908.01771
    5. Zhuang, L., Hassanizadeh, S. M., van Duijn, C. J., Zimmermann, S., Zizina, I., & Helmig, R. (2019). Experimental and Numerical Studies of Saturation Overshoot during Infiltration into a Dry Soil. Vadose Zone Journal, 18(1), 180167. https://doi.org/10.2136/vzj2018.09.0167
    6. Yang, G., Terzis, A., Zarikos, I., Hassanizadeh, S. M., Weigand, B., & Helmig, R. (2019). Internal flow patterns of a droplet pinned to the hydrophobic surfaces of a confined microchannel using micro-PIV and VOF simulations. Chemical Engineering Journal, 370, 444–454. https://doi.org/10.1016/j.cej.2019.03.191
    7. Terzis, A., Zarikos, I., Weishaupt, K., Yang, G., Chu, X., Helmig, R., & Weigand, B. (2019). Microscopic velocity field measurements inside a regular porous medium adjacent to a low Reynolds number channel flow. Physics of Fluids, 31(4), 042001. https://doi.org/10.1063/1.5092169
    8. Oladyshkin, Sergey, & Nowak, W. (2019). The connection between Bayesian Inference and Information Theory for model selection, information gain and experimental design. Entropy, 21, 1081. https://doi.org/doi:10.3390/e21111081
    9. Xiao, S., Reuschen, S., Köse, G., Oladyshkin, S., & Nowak, W. (2019). Estimation of small failure probabilities based on thermodynamic integration and parallel tempering. Mechanical Systems and Signal Processing, 133, 106248. https://doi.org/10.1016/j.ymssp.2019.106248
    10. Bilke, L., Flemisch, B., Kalbacher, T., Kolditz, O., Helmig, R., & Nagel, T. (2019). Development of Open-Source Porous Media Simulators: Principles and Experiences. Transport in Porous Media, 130(1), 337--361. https://doi.org/10.1007/s11242-019-01310-1
    11. Brunner, M. I., Bárdossy, A., & Furrer, R. (2019). Technical note: Stochastic simulation of streamflow time series using phase randomization. Hydrology and Earth System Sciences, 23(8), 3175--3187. https://doi.org/10.5194/hess-23-3175-2019
    12. Weishaupt, K., Joekar-Niasar, V., & Helmig, R. (2019). An efficient coupling of free flow and porous media flow using the pore-network modeling approach. Journal of Computational Physics: X, 1, 100011. https://doi.org/10.1016/j.jcpx.2019.100011
    13. Mitra, K., Köppl, T., Duijn, H. van, Pop, I. S., & Helmig, R. (2019). Fronts in two-phase porous media flow problems: the effects of hysteresis and dynamic capillarity. Studies in Applied Mathematics, 1906.08134. https://research.tue.nl/en/publications/fronts-in-two-phase-porous-media-flow-problems-the-effects-of-hys
    14. Gläser, Dennis, Flemisch, B., Helmig, R., & Class, H. (2019). A hybrid-dimensional discrete fracture model for non-isothermal two-phase flow in fractured porous media. GEM - International Journal on Geomathematics, 10(1), 5. https://doi.org/10.1007/s13137-019-0116-8
    15. Pamparana, G., Kracht, W., Haas, J., Ortiz, J. M., Nowak, W., & Palma-Behnke, R. (2019). Studying the integration of solar energy into the operation of a semi-autogenous grinding mill. Part II: effect of ore hardness variability, geometallurgical modeling and demand side management. Minerals Engineering, 137, 53–67. https://doi.org/10.1016/j.mineng.2019.03.016
    16. González-Nicolás, A., Cihan, A., Petrusak, R., Zhou, Q., Trautz, R., Riestenberg, D., Godec, M., & Birkholzer, J. T. (2019). Pressure management via brine extraction in geological CO2 storage: Adaptive optimization strategies under poorly characterized reservoir conditions. International Journal of Greenhouse Gas Control, 83, 176–185.
    17. Bürger, R., & Kröker, I. (2019). Computational uncertainty quantification for some strongly degenerate parabolic convection–diffusion equations. Journal of Computational and Applied Mathematics, 348, 490–508. https://doi.org/10.1016/j.cam.2018.09.006
    18. Vidotto, Ettore., Koch, Timo., Köppl, Tobias., Helmig, Rainer., & Wohlmuth, Barbara. (2019). Hybrid Models for Simulating Blood Flow in Microvascular Networks. Multiscale Modeling & Simulation, 17(3), 1076--1102. https://doi.org/10.1137/18M1228712
    19. Cunningham, A. B., Class, H., Ebigbo, A., Gerlach, R., Phillips, A. J., & Hommel, J. (2019). Field-scale modeling of microbially induced calcite precipitation. Computational Geosciences, 23(2), 399--414. https://doi.org/10.1007/s10596-018-9797-6
    20. Veyskarami, M., Hassani, A. H., & Ghazanfari, M. H. (2019). Monitoring the behaviour of anionic polymer-anionic surfactant stabilized foam in the absence and presence of oil:Bulk and bubble-scale experimental analyses. The Canadian Journal of Chemical Engineering, 97. https://doi.org/10.1002/cjce.23368
  3. 2018

    1. Vidotto, E., Helmig, R., Schneider, M., & Wohlmuth, B. (2018). Streamline method for resolving sharp fronts for complex two-phase flow in porous media. Computational Geosciences, 22(6), 1487--1502. https://doi.org/10.1007/s10596-018-9767-z
    2. Veyskarami, M., & Ghazanfari, M. H. (2018). Synergistic effect of like and opposite charged nanoparticle and surfactant on foam stability and mobility in the absence and presence of hydrocarbon:A comparative study. Journal of Petroleum Science and Engineering, 166. https://doi.org/10.1016/j.petrol.2018.03.076
    3. Veyskarami, M., Hassani, A. H., & Ghazanfari, M. H. (2018). A new insight into onset of inertial flow in porous media using network modeling with converging/diverging pores. Computational Geosciences, 22. https://link.springer.com/article/10.1007/s10596-017-9695-3
    4. Bringedal, Carina, Eldevik, T., Skagseth, Ø., Spall, M. A., & Østerhus, S. (2018). Structure and Forcing of Observed Exchanges across the Greenland–Scotland Ridge. Journal of Climate, 31(24), 9881--9901. https://doi.org/10.1175/JCLI-D-17-0889.1
  4. 2017

    1. Bringedal, Carina, & Kumar, K. (2017). Effective Behavior Near Clogging in Upscaled Equations for Non-isothermal Reactive Porous Media Flow. Transport in Porous Media, 120(3), 553--577. https://doi.org/10.1007/s11242-017-0940-y
    2. Moreno-Leiva, S., D, Haas, J., Telsnig, T., D, Palma-Behnke, R., Kracht, W., Román, R., Chudinzow, D., & Eltrop, L. (2017). Towards solar power supply for copper production in Chile: Assessment of global warming potential using a life-cycle approach. Journal of Cleaner Production, 164, 242--249. https://doi.org/10.1016/j.jclepro.2017.06.038
    3. Hassani, A. H., Veyskarami, M., Al-Ajmi, A. M., & Masihi, M. (2017). A modified method for predicting the stresses around producing boreholes in an isotropic in-situ stress field. International Journal of Rock Mechanics and Mining Sciences, 96. https://doi.org/10.1016/j.ijrmms.2017.02.011
  5. 2016

    1. Veyskarami, M., Hassani, A. H., & Ghazanfari, M. H. (2016). Modeling of non-Darcy flow through anisotropic porous media:Role of pore space profiles. Chemical Engineering Science, 151. https://doi.org/10.1016/j.ces.2016.05.020
    2. Bringedal, Carina, Berre, I., Pop, I. S., & Radu, F. A. (2016). Upscaling of Non-isothermal Reactive Porous Media Flow with Changing Porosity. Transport in Porous Media, 114(2), 371--393. https://doi.org/10.1007/s11242-015-0530-9
    3. Bringedal, C., Berre, I., Pop, I. S., & Radu, F. A. (2016). Upscaling of Nonisothermal Reactive Porous Media Flow under Dominant Péclet Number: The Effect of Changing Porosity. Multiscale Modeling & Simulation, 14(1), 502--533. https://doi.org/10.1137/15M1022781
    4. Gläser, D., Dell’Oca, A., Tatomir, A., Bensabat, J., Class, H., Guadagnini, A., Helmig, R., McDermott, C., Riva, M., & Sauter, M. (2016). An Approach Towards a FEP-based Model for Risk Assessment for Hydraulic Fracturing Operations. Energy Procedia, 97, 387--394. https://doi.org/10.1016/j.egypro.2016.10.030
  6. 2015

    1. Bringedal, Carina, Berre, I., Pop, I. S., & Radu, F. A. (2015). A model for non-isothermal flow and mineral precipitation and dissolution in a thin strip. Journal of Computational and Applied Mathematics, 289, 346--355. https://doi.org/10.1016/j.cam.2014.12.009
  7. 2013

    1. Bringedal, C., Berre, I., & Nordbotten, J. M. (2013). Influence of natural convection in a porous medium when producing from borehole heat exchangers. Water Resources Research, 49(8), 4927--4938. https://doi.org/10.1002/wrcr.20388
    2. Pracht, U. S., Heintze, E., Clauss, C., Hafner, D., Bek, R., Werner, D., Gelhorn, S., Scheffler, M., Dressel, M., Sherman, D., Gorshunov, B., Il, Henrich, D., & Siegel, M. (2013). Electrodynamics of the Superconducting State in Ultra-Thin Films at THz Frequencies. IEEE Transactions on Terahertz Science and Technology, 3(3), 269–280. https://doi.org/10.1109/TTHZ.2013.2255047
  8. 2012

    1. de Barros, F. P. J., Dentz, M., Koch, J., & Nowak, W. (2012). Flow topology and scalar mixing in heterogeneous porous media. Geophysical Research Letters, 39(L08404), Article L08404. https://doi.org/10.1029/2012GL051302
    2. Leube, P., Nowak, W., & Schneider, G. (2012). Temporal Moments revisited: Why there is there nobetter way for physically-based model reduction in time. Water Resources Research, 48(W11527), Article W11527. https://doi.org/10.1029/2012WR011973
  9. 2011

    1. Bringedal, Carina, Berre, I., Nordbotten, J. M., & Rees, D. A. S. (2011). Linear and nonlinear convection in porous media between coaxial cylinders. Physics of Fluids, 23(9), 094109. https://doi.org/10.1063/1.3637642
  10. 2007

    1. Oladyshkin, S., & Panfilov, M. (2007). Streamline splitting between thermodynamics and hydrodynamics in compositional gas-liquid flow through porous media. Comptes Rendus de l’Academie Des Sciences Mecanique, 335(1), 7–12. https://doi.org/10.1016/j.crme.2006.12.001

Dissertationen (letzte 50)

  1. 2019

    1. Most, S. (2019). Analysis and simulation of anomalous transport in porous media (Vol. 268) [Promotionsschrift, Universität Stuttgart, Institut für Wasser- Umweltsystemmodellierung]. https://elib.uni-stuttgart.de/handle/11682/10511
    2. Schneider, M. (2019). Nonlinear finite volume schemes for complex flow processes and challenging grids [PhD Thesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. http://dx.doi.org/10.18419/opus-10416
    3. Beck, M. (2019). Conceptual approaches for the analysis of coupled hydraulic and geomechanical processes [Phdthesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. http://dx.doi.org/10.18419/opus-10418
    4. Haas, J. (2019). Optimal planning of hydropower and energy storage technologies for fully renewable power systems [Phdthesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. http://dx.doi.org/10.18419/opus-10297
    5. Buchta, R. (2019). Entwicklung eines Ziel- und Bewertungssystems zur Schaffung nachhaltiger naturnaher Strukturen in großen sandgeprägten Flüssen des norddeutschen Tieflandes [Phdthesis, Stuttgart: Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. http://dx.doi.org/10.18419/opus-10520
  2. 2018

    1. Beck, M. (2018). Conceptual approaches for the analysis of coupled hydraulic and geomechanical processes [Promotionsschrift, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. In Mitteilungsheft (Vol. 265). https://doi.org/10.18419/opus-10418
    2. Schmidt, H. (2018). Microbial stabilization of lotic fine sediments [Phdthesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. http://dx.doi.org/10.18419/opus-10015
    3. Schneider, M. (2018). Nonlinear finite volume schemes for complex flow processes and challenging grids [Promotionsschrift, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. In Mitteilungsheft (Vol. 267). https://doi.org/10.18419/opus-10416
    4. Mejri, E. (2018). Modeling and Analysis of Salt Precipitation on Evaporation Processes in the Unsaturated Zone [Promotionsschrift]. Université de Tunis El Manar, Ecole Nationale d´Ingenieurs de Tunis.
    5. Bode, F. (2018). Early-warning monitoring systems for improved drinking water resource protection [Phdthesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. http://dx.doi.org/10.18419/opus-10268
    6. Gebler, T. (2018). Statistische Auswertung von simulierten Talsperrenüberwachungsdaten zur Identifikation von Schadensprozessen an Gewichtsstaumauern [Phdthesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung]. http://dx.doi.org/10.18419/opus-10196
    7. Yan, J. (2018). Nonlinear estimation of short time precipitation using weather radar and surface observations [Phdthesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. http://dx.doi.org/10.18419/opus-10270
    8. Fetzer, T. (2018). Coupled free and porous-medium flow processes affected by turbulence and roughness : models, concepts and analysis [Phdthesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. http://dx.doi.org/10.18419/opus-10016
    9. Fenrich, E. K. (2018). Entwicklung eines ökologisch-ökonomischen Vernetzungsmodells für Wasserkraftanlagen und Mehrzweckspeicher [Phdthesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. http://dx.doi.org/10.18419/opus-10112
    10. Schröder, H. C. (2018). Large-scale high head pico hydropower potential assessment [Phdthesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. http://dx.doi.org/10.18419/opus-10236
    11. Harten, M. von. (2018). Analyse des Zuppinger-Wasserrades : hydraulische Optimierungen unter Berücksichtigung ökologischer Aspekte [Phdthesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. http://dx.doi.org/10.18419/opus-10322
  3. 2017

    1. Sinsbeck, M. (2017). Uncertainty quantification for expensive simulations : optimal surrogate modeling under time constraints [Promotionsschrift, Universität Stuttgart, Institut für Wasser- Umweltsystemmodellierung]. https://elib.uni-stuttgart.de/handle/11682/9223
    2. Grüninger, C. (2017). Numerical coupling of Navier-Stokes and Darcy flow for soil-water evaporation (Vol. 253) [Promotionsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung]. https://doi.org/10.18419/opus-9657
    3. Mosthaf, T. (2017). New concepts for regionalizing temporal distributions of precipitation and for its application in spatial rainfall simulation [Phdthesis, Stuttgart: Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. http://dx.doi.org/10.18419/opus-9709
    4. Müller, T., Mosthaf, T., Gunzenhauser, S., Seidel, J., & Bárdossy, A. (2017). Grundlagenbericht Niederschlags-Simulator (NiedSim3) (No. 255; Issue 255). Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart. http://dx.doi.org/10.18419/opus-9347
  4. 2016

    1. Kissinger, A. (2016). Basin-Scale Site Screening and Investigation of Possible Impacts of CO2 Storage on Subsurface Hydrosystems (Vol. 251) [Promotionsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung]. https://dx.doi.org/10.18419/opus-8998
  5. 2015

    1. Nuske, P. (2015). Beyond local equilibrium : relaxing local equilibrium assumptions in multiphase flow in porous media (Vol. 237) [Promotionsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung]. https://elib.uni-stuttgart.de/opus/volltexte/2015/9796/pdf/thesisPhilippNuskeMerged.pdf
    2. Köppl, T. (2015). Multi-scale modeling of flow and transport processes in arterial networks and tissue [Promotionsschrift]. TU München,.
  6. 2014

    1. Lauser, A. (2014). Theory and Numerical Applications of Compositional Multi-Phase Flow in Porous Media (Vol. 228) [Promotionsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung]. https://elib.uni-stuttgart.de/opus/volltexte/2014/9074/pdf/lauser_thesis_2print.pdf
    2. Geiges, A. (2014). Efficient concepts for optimal experimental design in nonlinear environmental systems. Promotionsschrift Nr. 238, Mitteilungsheft des Instituts für Wasserbau Nr. 238 (Promotionsschrift) Institut für Wasserbau, Universität Stuttgart, 2014. ISBN: 978-3-942036-42-9.
    3. Mosthaf, K. (2014). Modeling and Analysis of Coupled Porous - Medium and Free Flow with Application to Evaporation Processes (Vol. 223) [Promotionsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung]. https://elib.uni-stuttgart.de/opus/volltexte/2014/9064/pdf/DISSERTATION_KlausMosthaf_final.pdf
    4. Koch, J. (2014). Simulation, identification and characterization of contaminant source architectures in the subsurface. Promotionsschrift Nr. 233, Mitteilungsheft des Instituts für Wasserbau Nr. 233 (Promotionsschrift) Institut für Wasserbau, Universität Stuttgart, 2014. ISBN: 978-3-942036-37-5.
    5. Faigle, B. (2014). Adaptive modelling of compositional multi-phase flow with capillary pressure. (Vol. 230) [Promotionsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung]. https://elib.uni-stuttgart.de/opus/volltexte/2014/9068/
    6. Oladyshkin, S. (2014). Efficient Modeling of Environmental Systems in the Face of Complexity and Uncertainty. Habilitationsschrift Nr. 231, Mitteilungsheft des Instituts für Wasserbau Nr. 231 (Habilitationsschrift) Institut für Wasserbau, Universität Stuttgart, 2014. ISBN: 978-3-942036-35-1.
  7. 2013

    1. Enzenhöfer, R. (2013). Risk Quantification and Management in Water Production and Supply Systems. Promotionsschrift Nr. 229, Mitteilungsheft des Instituts für Wasserbau Nr. 229 (Promotionsschrift) Institut für Wasserbau, Universität Stuttgart, 2014. ISBN: 978-3-942036-33-7.
    2. Flemisch, B. (2013). Tackling Coupled Problems in Porous Media: Development of Numerical Models and an Open Source Simulator [Habilitationsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung]. https://www.iws.uni-stuttgart.de/publikationen/hydrosys/paper/2013/flemisch_habil.pdf
    3. Kröker, I. (2013). Stochastic models for nonlinear convection-dominated flows. Universität Stuttgart.
    4. Leube, P. (2013). Methods for Physically-Based Model Reduction in Time: Analysis, Comparison of Methods and Application. Promotionsschrift Nr. 224, Mitteilungsheft des Instituts für Wasserbau Nr. 224 (Promotionsschrift) Institut für Wasserbau, Universität Stuttgart, 2013. ISBN: 978-3-942036-28-3.
  8. 2012

    1. Erbertseder, K. (2012). A multi-scale model for describing cancer-therapeutic transport in the human lung (Vol. 213) [Promotionsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung]. https://elib.uni-stuttgart.de/opus/volltexte/2012/7200/
    2. Haas, T. (2012). Geistliche als Kreuzfahrer. Der Klerus im Konflikt zwischen Orient und Okzident 1095-1221 [Promotionsschrift]. ,.
    3. Darcis, M. (2012). Coupling Models of Different Complexity for the Simulation of CO2 Storage in Deep Saline Aquifers (Vol. 218) [Promotionsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung]. https://elib.uni-stuttgart.de/opus/volltexte/2013/8141/
  9. 2011

    1. Kuhlmann, A. (2011). Influence of soil structure and root water uptake on flow in the unsaturated zone (Vol. 209) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://elib.uni-stuttgart.de/opus/volltexte/2012/7214/
  10. 2010

    1. Dogan, M. O. (2010). Coupling of porous media flow with pipe flow (Vol. 199) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://elib.uni-stuttgart.de/opus/volltexte/2011/5942/
    2. Niessner, J. (2010). The Role of Interfacial Areas in Two-Phase Flow in Porous Media -- bridging scales and coupling models [Habilitationsschrift, Universität Stuttgart, Institut für Wasserbau]. In Universität Stuttgart, Stuttgart. https://elib.uni-stuttgart.de/opus/volltexte/2011/6305/
    3. Fritz, J. (2010). A decoupled model for compositional non-isothermal multiphase flow in porous media and multiphysics approaches for two-phase flow (Vol. 192) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau, Lehrstuhl für Hydromechanik und Hydrosystemmodellierung]. https://elib.uni-stuttgart.de/opus/volltexte/2010/5683
    4. Cao, Y. (2010). Robust numerical algorithms based on corrected operator splitting for two-phase flow in porous media [Promotionsschrift, Universität Stuttgart, Universität Stuttgart]. https://www.shaker.de/de/content/catalogue/index.asp?lang=de&ID=8&ISBN=978-3-8322-9237-9
  11. 2008

    1. Brommundt, J. (2008). Stochastische Generierung räumlich zusammenhängender Niederschlagszeitreihen (Vol. 170) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://elib.uni-stuttgart.de/opus/volltexte/2008/3470/pdf/Brommundt_170_online.pdf
    2. Freiboth, S. (2008). A phenomenological model for the numerical simulation of multiphase multicomponent processes considering structural alternations of porous media (Vol. 184) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://elib.uni-stuttgart.de/opus/volltexte/2009/4610/pdf/Dissertation_Freiboth_Sandra.pdf
    3. Wagner, S. (2008). Water balance in a poorly gauged basin in West Africa using atmospheric modelling and remote sensing information (Vol. 173) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://elib.uni-stuttgart.de/opus/frontdoor.php?source_opus=3615&la=de
  12. 2007

    1. Kebede Gurmessa, T. (2007). Numerical Investigation on Flow and Transport Characteristicsto Improve Long-Term Simulation of Reservoir Sedimentation (Vol. 162) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://elib.uni-stuttgart.de/opus/volltexte/2007/3272/
    2. Trifkovic, A. (2007). Multi-objective and Risk-based Modelling Methodology forPlanning, Design and Operation of Water Supply Systems (Vol. 163) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://elib.uni-stuttgart.de/opus/volltexte/2007/3251/
    3. Götzinger, J. (2007). Distributed Conceptual Hydrological Modelling - Simulation of Climate, Land Use Change Impact and Uncertainty Analysis (Vol. 164) [Promotionsschrift, Eigenverlag des Instituts für Wasserbau, Universität Stuttgart]. https://elib.uni-stuttgart.de/opus/frontdoor.php?source_opus=3349&la=de
    4. Hartmann, G. (2007). Investigation of Evapotranspiration Concepts in HydrologicalModelling for Climate Change Impact Assessment (Vol. 161) [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://elib.uni-stuttgart.de/opus/volltexte/2007/3086/
  13. 2006

    1. Flemisch, B. (2006). Non-matching triangulations of curvilinear interfaces applied to electro-mechanics and elasto-acoustics [Promotionsschrift, Universität Stuttgart, Institut für Wasserbau]. https://www.iws.uni-stuttgart.de/publikationen/hydrosys/paper/flemisch_thesis.pdf
  14. 2005

    1. Nowak, W. (2005). Geostatistical Methods for the Identification of Flow and Transport Parameters in Subsurface Flow. Promotionsschrift Nr. 134, Mitteilungsheft des Instituts für Wasserbau Nr. 134 (Promotionsschrift) Institut für Wasserbau, Universität Stuttgart, 2005. ISBN: 3-933761-37-9.
Zum Seitenanfang