Abstract
Porosity and permeability are two major hydraulic properties that govern flow through porous media. Different kinds of processes can lead to alterations of the pore space which eventually change the hydraulic properties. This project focuses primarily on fluid-solid interfaces that are prone to change as a result of microbial activity. The alterations need to be measured experimentally and interpreted on the scales of interest by means of numerical simulations. It is also required to improve the efficiency of corresponding complex numerical simulation methods.
Project leader
apl. Prof. Dr.-Ing. Holger Class
Researcher
Dr.-Ing. Johannes Hommel
Dr.-Ing. Martin Beck (bis April 2019)
Dr.-Ing. Felix Weinhardt
Kerem Bozkurt (M.Sc.)
Department
Duration
01/2018 - 12/2025
Publications
(Journal-) Articles
- Hommel, J., Gehring, L., Weinhardt, F., Ruf, M., & Steeb, H. (2022). Effects of Enzymatically Induced Carbonate Precipitation on Capillary Pressure-Saturation Relations. Minerals, 12(10), Article 10. https://doi.org/10.3390/min12101186
- von Wolff, L., Weinhardt, F., Class, H., Hommel, J., & Rohde, C. (2021). Investigation of Crystal Growth in Enzymatically Induced Calcite Precipitation by Micro-Fluidic Experimental Methods and Comparison with Mathematical Modeling. Transport in Porous Media, 137(2), Article 2. https://doi.org/10.1007/s11242-021-01560-y
- Scheurer, S., Schäfer Rodrigues Silva, A., Mohammadi, F., Hommel, J., Oladyshkin, S., Flemisch, B., & Nowak, W. (2021). Surrogate-based Bayesian comparison of computationally expensive models: application to microbially induced calcite precipitation. Computational Geosciences. https://doi.org/10.1007/s10596-021-10076-9
- Hommel, J., Akyel, A., Frieling, Z., Phillips, A. J., Gerlach, R., Cunningham, A. B., & Class, H. (2020). A Numerical Model for Enzymatically Induced Calcium Carbonate Precipitation. Applied Sciences, 10(13), Article 13. https://doi.org/10.3390/app10134538
- Cunningham, A. B., Class, H., Ebigbo, A., Gerlach, R., Phillips, A., & Hommel, J. (2019). Field-scale modeling of microbially induced calcite precipitation. Computational Geosciences, tbd. https://doi.org/10.1007/s10596-018-9797-6
- Hommel, J., Coltman, E., & Class, H. (2018). Porosity-Permeability Relations for Evolving Pore Space: A Review with a Focus on (Bio-)geochemically Altered Porous Media. Transport in Porous Media, 2(124), Article 124. https://doi.org/10.1007/s11242-018-1086-2
Datasets
- Lee, D., Weinhardt, F., Hommel, J., Class, H., & Steeb, H. (2023). Time resolved micro-XRCT dataset of Enzymatically Induced Calcite Precipitation (EICP) in sintered glass bead columns. DaRUS. https://doi.org/10.18419/darus-2227
- Ruf, M., Hommel, J., & Steeb, H. (2022). Enzymatically induced carbonate precipitation and its effect on capillary pressure-saturation relations of porous media - micro-XRCT dataset of medium column (sample 3). DaRUS. https://doi.org/10.18419/darus-2906
- Hommel, J., & Gehring, L. (2022). Enzymatically induced carbonate precipitation and its effect on capillary pressure-saturation relations of porous media - column samples. DaRUS. https://doi.org/10.18419/darus-1713
- Ruf, M., Hommel, J., & Steeb, H. (2022). Enzymatically induced carbonate precipitation and its effect on capillary pressure-saturation relations of porous media - micro-XRCT dataset of high column (sample 4). DaRUS. https://doi.org/10.18419/darus-2907
- Hommel, J., & Weinhardt, F. (2022). Enzymatically induced carbonate precipitation and its effect on capillary pressure-saturation relations of porous media - microfluidics samples. DaRUS. https://doi.org/10.18419/darus-2791
- Ruf, M., Hommel, J., & Steeb, H. (2022). Enzymatically induced carbonate precipitation and its effect on capillary pressure-saturation relations of porous media - micro-XRCT dataset of low column (sample 10). DaRUS. https://doi.org/10.18419/darus-2908
Contact
Holger Class
apl. Prof. Dr.-Ing.Akademischer Oberrat

Johannes Hommel
Dr.-Ing.Academic Staff

Felix Weinhardt
Dr.-Ing.Academic Staff