This image shows Rainer Helmig

Rainer Helmig

Prof. Dr.-Ing. Dr.-Ing. h.c.

Emeritus
Institute for Modelling Hydraulic and Environmental Systems
Department of Hydromechanics and Modelling of Hydrosystems

Contact

+49 711 685 64741
+49 711 685 60430

Business card (VCF)

Pfaffenwaldring 61
70569 Stuttgart
Germany
Room: 1.006

Career

Since 2024: Emeritus, Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart
2000-2024: Full Professor, Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart
1998-2020: Full Professor, Institute of Computer Applications in Civil Engineering, TU Braunschweig
1997-1998: Acting Professor, Institute of Computer Applications in Civil Engeneering, TU Braunschweig
1993-1997: Research Assistant, Institute of Hydraulic Engineering, University of Stuttgart
1988-1992: Research Assistant, Institute of Fluid Mechanics, University of Hannover
1986-1988: Ingenieur, Land Nordrhein-Westfalen

Academic Degrees

1996: Habilitation degree (Dr.-Ing. habil.), University of Stuttgart
1993: Doctoral degree (Dr.-Ing.), University of Hannover
1986: Graduation in Civil Engeneering (Dipl.-Ing.), University of Hannover
1981: Graduation in Civil Engineering (Dipl.-Ing. (FH)), University of Applied Sciences, Münster

print-version of CV

 

1995: Dresden Prize for Groundwater Research
2008: Teaching award for lectures in Hydromechanics, University of Stuttgart
since 2010: Elected member of the Heidelberg Academy of Sciences and Humanities
2012: NOW-von Humboldt Stiftung award
2013: Shell lecture 2013, Rice University, Houston, USA
2013: InterPore-Rosette, International Society for Porous Media
2015: Henry Darcy Distinguished Lecturer, National Groundwater Association (NGWA)
since 2017: Elected member of the German Academy of Science and Engineering
2019: Honorary Lifetime Membership Award, International Society for Porous Media (InterPore)
2019 – 2022: Magne Espedal Honorary Professor at the University of Bergen, Norway
2020: AGU Fellow 2020, American Geophysical Union
2021 – 2024: Research Professorship, University of Stuttgart
2022: Honorary Degree of Doctor of Engineering, Heriot-Watt University, United Kingdom
2022: Elected member of the Academia Europaea, The Academy of Europe
2024: Kimberly-Clark Distinguished Lecturer 2025, International Society for Porous Media

since 1999: Member of the Editorial Board of "Advances in Water Research"
since 2007: Member of the Editorial Board of "Computational Geosciences"
since 2009: Course Coordinator of the study program "Simulation Technology" at the University of Stuttgart
2018-2021: Member of the Executive Board of the Cluster of Excellence EXC 2075 “Data-integrated Simulation Science” (Simtech) at the University of Stuttgart
2018-2023: Spokesperson of the Collaborative Research Centre (SFB) 1313 “Interface-Driven Multi-Field Processes in Porous Media: Flow, Transport and Deformation”, University of Stuttgart
since 2018: Principal investigator of the Cluster of Excellence EXC 2075 “Data-integrated Simulation Science” (Simtech) at the University of Stuttgart
since 2018: Principal Investigator of the Collaborative Research Centre (SFB) 1313 “Interface-Driven Multi-Field Processes in Porous Media: Flow, Transport and Deformation”, University of Stuttgart

Publications

  1. (Journal-) Articles

    1. Aricò, C., Helmig, R., Puleo, D., & Schneider, M. (2024). A new numerical mesoscopic scale one-domain approach solver for free fluid/porous medium interaction. Computer Methods in Applied Mechanics and Engineering, 419, 116655. https://doi.org/10.1016/j.cma.2023.116655
    2. Veyskarami, M., Bringedal, C., & Helmig, R. (2024). Modeling and Analysis of Droplet Evaporation at the Interface of a Coupled Free-Flow--Porous Medium System. Transport in Porous Media. https://doi.org/10.1007/s11242-024-02123-7
    3. Schneider, J., Kiemle, S., Heck, K., Rothfuss, Y., Braud, I., Helmig, R., & Vanderborght, J. (2024). Analysis of experimental and simulation data of evaporation-driven isotopic fractionation in unsaturated porous media. Vadose Zone Journal, 23(5), Article 5. https://doi.org/10.1002/vzj2.20363
    4. Schollenberger, T., von Wolff, L., Bringedal, C., Pop, I. S., Rohde, C., & Helmig, R. (2024). Investigation of Different Throat Concepts for Precipitation Processes in Saturated Pore-Network Models. Transport in Porous Media, 151(14), Article 14. https://doi.org/10.1007/s11242-024-02125-5
    5. Boon, W. M., Gläser, D., Helmig, R., Weishaupt, K., & Yotov, I. (2024). A mortar method for the coupled Stokes-Darcy problem using the MAC scheme for Stokes and mixed finite elements for Darcy. Computational Geosciences, 28(3), Article 3. https://doi.org/10.1007/s10596-023-10267-6
    6. Tatomir, A., Gao, H., Abdullah, H., Pötzl, C., Karadimitriou, N., Steeb, H., Licha, T., Class, H., Helmig, R., & Sauter, M. (2023). Estimation of Capillary-Associated NAPL-Water Interfacial Areas for Unconsolidated Porous Media by Kinetic Interface Sensitive (KIS) Tracer Method. Water Resources Research, 59(12), Article 12. https://doi.org/10.1029/2023WR035387
    7. Veyskarami, M., Michalkowski, C., Bringedal, C., & Helmig, R. (2023). Droplet Formation, Growth and Detachment at the Interface of a Coupled Free-FLow--Porous Medium System: A New Model Development and Comparison. Transport in Porous Media, 149, 389–419. https://doi.org/10.1007/s11242-023-01944-2
    8. Wu, H., Veyskarami, M., Schneider, M., & Helmig, R. (2023). A New Fully Implicit Two-Phase Pore-Network Model by Utilizing Regularization Strategies. Transport in Porous Media. https://doi.org/10.1007/s11242-023-02031-2
    9. Kiemle, S., Heck, K., Coltman, E., & Helmig, R. (2023). Stable Water Isotopologue Fractionation During Soil-Water Evaporation: Analysis Using a Coupled Soil-Atmosphere Model. Water Resources Research, 59(2), Article 2. https://doi.org/10.1029/2022WR032385
    10. Ackermann, S., Fest-Santini, S., Veyskarami, M., Helmig, R., & Santini, M. (2023). Experimental validation of a coupling concept for drop formation and growth onto porous materials by high-resolution X-ray imaging technique. International Journal of Multiphase Flow, 160. https://doi.org/10.1016/j.ijmultiphaseflow.2022.104371
    11. Schneider, M., Gläser, D., Weishaupt, K., Coltman, E., Flemisch, B., & Helmig, R. (2023). Coupling staggered-grid and vertex-centered finite-volume methods for coupled porous-medium free-flow problems. Journal of Computational Physics, 482, 112042. https://doi.org/10.1016/j.jcp.2023.112042
    12. Boon, W. M., Gläser, D., Helmig, R., & Yotov, I. (2023). Flux-mortar mixed finite element methods with multipoint flux approximation. Computer Methods in Applied Mechanics and Engineering, 405, 115870. https://doi.org/10.1016/j.cma.2022.115870
    13. Bringedal, C., Schollenberger, T., Pieters, G. J. M., van Duijn, C. J., & Helmig, R. (2022). Evaporation-Driven Density Instabilities in Saturated Porous Media. Transport in Porous Media, 143(2), Article 2. https://doi.org/10.1007/s11242-022-01772-w
    14. Michalkowski, C., Weishaupt, K., Schleper, V., & Helmig, R. (2022). Modeling of Two Phase Flow in a Hydrophobic Porous Medium Interacting with a Hydrophilic Structure. Transport in Porous Media, 144(2), Article 2. https://doi.org/10.1007/s11242-022-01816-1
    15. Boon, W. M., Gläser, D., Helmig, R., & Yotov, I. (2022). Flux-Mortar Mixed Finite Element Methods on NonMatching Grids. SIAM Journal on Numerical Analysis, 60(3), Article 3. https://doi.org/10.1137/20M1361407
    16. Younes, A., Hoteit, H., Helmig, R., & Fahs, M. (2022). A robust upwind mixed hybrid finite element method  for transport in variably saturated porous media. Hydrology and Earth System Sciences, 26(20), Article 20. https://doi.org/10.5194/hess-26-5227-2022
    17. Tsinober, A., Rosenzweig, R., Class, H., Helmig, R., & Shavit, U. (2022). The Role of Mixed Convection and Hydrodynamic Dispersion During CO2 Dissolution in Saline Aquifers: A Numerical Study. Water Resources Research, 58(3), Article 3. https://doi.org/10.1029/2021WR030494
    18. Wang, W., Lozano-Durán, A., Helmig, R., & Chu, X. (2022). Spatial and spectral characteristics of information flux between turbulent boundary layers and porous media. Journal of Fluid Mechanics, 949. https://doi.org/10.1017/jfm.2022.770
    19. Becker, B., Guo, B., Buntic, I., Flemisch, B., & Helmig, R. (2022). An Adaptive Hybrid Vertical Equilibrium/Full-Dimensional Model for Compositional Multiphase Flow. Water Resources Research, 58(1), Article 1. https://doi.org/10.1029/2021WR030990
    20. Younes, A., Hoteit, H., Helmig, R., & Fahs, M. (2022). A robust fully mixed finite element model for flow and transport in unsaturated fractured porous media. Advances in Water Resources, 166, 104259. https://doi.org/10.1016/j.advwatres.2022.104259
    21. Michalkowski, C., Veyskarami, M., Bringedal, C., Helmig, R., & Schleper, V. (2022). Two-phase Flow Dynamics at the Interface Between GDL and Gas Distributor Channel Using a Pore-Network Model. Transport in Porous Media, 144(2), Article 2. https://doi.org/10.1007/s11242-022-01813-4
    22. Eller, J., Sauerborn, T., Becker, B., Buntic, I., Gross, J., & Helmig, R. (2022). Modeling Subsurface Hydrogen Storage With Transport Properties From Entropy Scaling Using the PC-SAFT Equation of State. Water Resources Research, 58(4), Article 4. https://doi.org/10.1029/2021WR030885
    23. Weishaupt, K., Koch, T., & Helmig, R. (2022). A fully implicit coupled pore-network/free-flow model for the pore-scale simulation of drying processes. Drying Technology, 40(4), Article 4. https://doi.org/10.1080/07373937.2021.1955706
    24. Kurgyis, K., Hommel, J., Flemisch, B., Helmig, R., & Ott, H. (2021). Explicit continuum scale modeling of low-salinity mechanisms. Journal of Petroleum Science and Engineering, 199, 108336. https://doi.org/10.1016/j.petrol.2020.108336
    25. Weishaupt, K., Koch, T., & Helmig, R. (2021). A fully implicit coupled pore-network/free-flow model for the pore-scale simulation of drying processes. Drying Technology, 0(0), Article 0. https://doi.org/10.1080/07373937.2021.1955706
    26. Wang, W. (王文康), Yang, G. (杨光), Evrim, C., Terzis, A., Helmig, R., & Chu, X. (初旭). (2021). An assessment of turbulence transportation near regular and random permeable interfaces. Physics of Fluids, 33(11), Article 11. https://doi.org/10.1063/5.0069311
    27. Schneider, J., Groh, J., Pütz, T., Helmig, R., Rothfuss, Y., Vereecken, H., & Vanderborght, J. (2021). Prediction of soil evaporation measured with weighable lysimeters using the FAO Penman–Monteith method in combination with Richards’ equation. Vadose Zone Journal, 20(1), Article 1. https://doi.org/10.1002/vzj2.20102
    28. Chu, X., Wang, W., Yang, G., Terzis, A., Helmig, R., & Weigand, B. (2021). Transport of Turbulence Across Permeable Interface in a Turbulent Channel Flow: Interface-Resolved Direct Numerical Simulation. Transport in Porous Media, 136(1), Article 1. https://doi.org/10.1007/s11242-020-01506-w
    29. Gao, B., Coltman, E., Farnsworth, J., Helmig, R., & Smits, K. M. (2021). Determination of Vapor and Momentum Roughness Lengths Above an Undulating Soil Surface Based on PIV-Measured Velocity Profiles. Water Resources Research, 57(7), Article 7. https://doi.org/10.1029/2021WR029578
    30. Ackermann, S., Bringedal, C., & Helmig, R. (2021). Multi-scale three-domain approach for coupling free flow and flow in porous media including droplet-related interface processes. Journal of Computational Physics, 429, 109993. https://doi.org/10.1016/j.jcp.2020.109993
    31. Wang, W., Chu, X., Lozano-Durán, A., Helmig, R., & Weigand, B. (2021). Information transfer between turbulent boundary layers and porous media. Journal of Fluid Mechanics, 920, A21. https://doi.org/10.1017/jfm.2021.445
    32. Ahmadi, N., Heck, K., Rolle, M., Helmig, R., & Mosthaf, K. (2021). On multicomponent gas diffusion and coupling concepts for porous media and free flow: a benchmark study. Computational Geosciences, 25(5), Article 5. https://doi.org/10.1007/s10596-021-10057-y
    33. Koch, T., Weishaupt, K., Müller, J., Weigand, B., & Helmig, R. (2021). A (Dual) Network Model for Heat Transfer in Porous Media. Transport in Porous Media, 140(1), Article 1. https://doi.org/10.1007/s11242-021-01602-5
    34. Seitz, G., Helmig, R., & Class, H. (2020). A numerical modeling study on the influence of porosity changes during thermochemical heat storage. Applied Energy, 259, 114152. https://doi.org/10.1016/j.apenergy.2019.114152
    35. Schneider, M., Weishaupt, K., Gläser, D., Boon, W. M., & Helmig, R. (2020). Coupling staggered-grid and MPFA finite volume methods for free flow/porous-medium flow problems. Journal of Computational Physics, 401. https://doi.org/10.1016/j.jcp.2019.109012
    36. de Winter, M., Weishaupt, K., Scheller, S., Frey, S., Raoof, A., Hassanizadeh, M., & Helmig, R. (2020). The Complexity of Porous Media Flow Characterized in a Microfluidic Model Based on Confocal Laser Scanning Microscopy and Micro-PIV. Transport in Porous Media. https://doi.org/10.1007/s11242-020-01515-9
    37. Ghosh, T., Bringedal, C., Helmig, R., & Sekhar, G. P. R. (2020). Upscaled equations for two-phase flow in highly heterogeneous porous media: Varying permeability and porosity. Advances in Water Resources, 145, 103716. https://doi.org/10.1016/j.advwatres.2020.103716
    38. Heck, K., Coltman, E., Schneider, J., & Helmig, R. (2020). Influence of Radiation on Evaporation Rates: A Numerical Analysis. Water Resources Research, 56(10), Article 10. https://doi.org/10.1029/2020WR027332
    39. Koch, T., Flemisch, B., Helmig, R., Wiest, R., & Obrist, D. (2020). A multi-scale sub-voxel perfusion model to estimate diffusive capillary wall conductivity in multiple sclerosis lesions from perfusion MRI data. International Journal for Numerical Methods in Biomedical Engineering, 36(2), Article 2. https://doi.org/10.1002/cnm.3298
    40. Koch, T., Helmig, R., & Schneider, M. (2020). A new and consistent well model for one-phase flow in anisotropic porous media using a distributed source model. Journal of Computational Physics, 410, 109369. https://doi.org/10.1016/j.jcp.2020.109369
    41. Koch, T., Schneider, M., Helmig, R., & Jenny, P. (2020). Modeling tissue perfusion in terms of 1d-3d embedded mixed-dimension coupled problems with distributed sources. Journal of Computational Physics, 410, 109370. https://doi.org/10.1016/j.jcp.2020.109370
    42. Weishaupt, K., Terzis, A., Zarikos, I., Yang, G., Flemisch, B., de Winter, D. A. M., & Helmig, R. (2020). A Hybrid-Dimensional Coupled Pore-Network/Free-Flow Model Including Pore-Scale Slip and Its Application to a Micromodel Experiment. Transport in Porous Media, 135(1), Article 1. https://doi.org/10.1007/s11242-020-01477-y
    43. Coltman, E., Lipp, M., Vescovini, A., & Helmig, R. (2020). Obstacles, Interfacial Forms, and Turbulence: A Numerical Analysis of Soil-Water Evaporation Across Different Interfaces. Transport in Porous Media, 134(2), Article 2. https://doi.org/10.1007/s11242-020-01445-6
    44. Shokri-Kuehni, S. M. S., Raaijmakers, B., Kurz, T., Or, D., Helmig, R., & Shokri, N. (2020). Water Table Depth and Soil Salinization: From Pore-Scale Processes to Field-Scale Responses. Water Resources Research, 56(2), Article 2. https://doi.org/10.1029/2019WR026707
    45. Bahlmann, L. M., Smits, K. M., Heck, K., Coltman, E., Helmig, R., & Neuweiler, I. (2020). Gas Component Transport Across the Soil-Atmosphere Interface for Gases of Different Density: Experiments and Modeling. Water Resources Research, 56(9), Article 9. https://doi.org/10.1029/2020WR027600
    46. Gläser, D., Flemisch, B., Class, H., & Helmig, R. (2020). Frackit: a framework for stochastic fracture network generation and analysis. Journal of Open Source Software, 5. https://doi.org/10.21105/joss.02291
    47. Weishaupt, K., Joekar-Niasar, V., & Helmig, R. (2019). An efficient coupling of free flow and porous media flow using the pore-network modeling approach. Journal of Computational Physics: X, 1, 100011. https://doi.org/10.1016/j.jcpx.2019.100011
    48. Yang, G., Terzis, A., Zarikos, I., Hassanizadeh, S. M., Weigand, B., & Helmig, R. (2019). Internal flow patterns of a droplet pinned to the hydrophobic surfaces of a confined microchannel using micro-PIV and VOF simulations. Chemical Engineering Journal, 370, 444–454. https://doi.org/10.1016/j.cej.2019.03.191
    49. Bilke, L., Flemisch, B., Kalbacher, T., Kolditz, O., Helmig, R., & Nagel, T. (2019). Development of Open-Source Porous Media Simulators: Principles and Experiences. Transport in Porous Media, 130(1), Article 1. https://doi.org/10.1007/s11242-019-01310-1
    50. Gläser, D., Flemisch, B., Helmig, R., & Class, H. (2019). A hybrid-dimensional discrete fracture model for non-isothermal two-phase flow in fractured porous media. GEM - International Journal on Geomathematics, 10(1), Article 1. https://doi.org/10.1007/s13137-019-0116-8
    51. Yang, G., Coltman, E., Weishaupt, K., Terzis, A., Helmig, R., & Weigand, B. (2019). On the Beavers-Joseph interface condition for non-parallel coupled channel flow over a porous structure at high Reynolds numbers. Transport in Porous Media. https://doi.org/10.1007/s11242-019-01255-5
    52. Zhuang, L., Hassanizadeh, S. M., van Duijn, C. J., Zimmermann, S., Zizina, I., & Helmig, R. (2019). Experimental and Numerical Studies of Saturation Overshoot during Infiltration into a Dry Soil. Vadose Zone Journal, 18(1), Article 1. https://doi.org/10.2136/vzj2018.09.0167
    53. Mitra, K., Köppl, T., Duijn, H. van, Pop, I. S., & Helmig, R. (2019). Fronts in two-phase porous media flow problems: the effects of hysteresis and dynamic capillarity. Studies in Applied Mathematics, 1906.08134. https://research.tue.nl/en/publications/fronts-in-two-phase-porous-media-flow-problems-the-effects-of-hys
    54. Vidotto, Ettore., Koch, Timo., Köppl, Tobias., Helmig, Rainer., & Wohlmuth, Barbara. (2019). Hybrid Models for Simulating Blood Flow in Microvascular Networks. Multiscale Modeling & Simulation, 17(3), Article 3. https://doi.org/10.1137/18M1228712
    55. Yang, G., Vaikuntanathan, V., Terzis, A., Cheng, X., Weigand, B., & Helmig, R. (2019). Impact of a linear array of hydrophilic and superhydrophobic spheres on a deep water pool. Colloids and Interfaces. https://doi.org/10.3390/colloids3010029
    56. Terzis, A., Zarikos, I., Weishaupt, K., Yang, G., Chu, X., Helmig, R., & Weigand, B. (2019). Microscopic velocity field measurements inside a regular porous medium adjacent to a low Reynolds number channel flow. Physics of Fluids, 31(4), Article 4. https://doi.org/10.1063/1.5092169
    57. Gao, B., Davarzani, H., Helmig, R., & Smits, K. M. (2018). Experimental and numerical study of evaporation from wavy surfaces by coupling free flow and porous media flow. Water Resources Research. https://doi.org/10.1029/2018WR023423
    58. Schneider, M., Köppl, T., Helmig, R., Steinle, R., & Hilfer, R. (2018). Stable propagation of saturation overshoots for two-phase flow in porous media. Transport in Porous Media, 121(3), Article 3. https://doi.org/10.1007/s11242-017-0977-y
    59. Praditia, T., Helmig, R., & Hajibeygi, H. (2018). Multiscale formulation for coupled flow-heat equations arising from single-phase flow in fractured geothermal reservoirs. Computational Geosciences. https://doi.org/10.1007/s10596-018-9754-4
    60. Schneider, M., Gläser, D., Flemisch, B., & Helmig, R. (2018). Comparison of finite-volume schemes for diffusion problems. Oil & Gas Science and Technology – Revue d’IFP Energies Nouvelles, 73. https://ogst.ifpenergiesnouvelles.fr/articles/ogst/pdf/2018/01/ogst180050.pdf
    61. Vidotto, E., Helmig, R., Schneider, M., & Wohlmuth, B. (2018). Streamline method for resolving sharp fronts for complex two-phase flow in porous media. Computational Geosciences, 22(6), Article 6. https://doi.org/10.1007/s10596-018-9767-z
    62. Schneider, M., Flemisch, B., Helmig, R., Terekhov, K., & Tchelepi, H. (2018). Monotone nonlinear finite-volume method for challenging grids. Computational Geosciences. https://doi.org/10.1007/s10596-017-9710-8
    63. Köppl, T., Fedoseyev, M., & Helmig, R. (2018). Simulation of surge reduction systems using dimensionally reduced models. Journal of Hydraulic Engineering. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001553
    64. Becker, B., Guo, B., Bandilla, K., Celia, M. A., Flemisch, B., & Helmig, R. (2018). An adaptive multiphysics model coupling vertical equilibrium and full multidimensions for multiphase flow in porous media. Water Resources Research, 54. https://doi.org/10.1029/2017WR022303
    65. Köppl, T., Santin, G., Haasdonk, B., & Helmig, R. (2018). Numerical modelling of a peripheral arterial stenosis using dimensionally reduced models and machine learning techniques. International Journal for Numerical Methods in Biomedical Engineering. https://doi.org/10.1002/cnm.3095
    66. Koch, T., Heck, K., Schröder, N., Class, H., & Helmig, R. (2018). A new simulation framework for soil-root interaction, evaporation, root growth, and solute transport. Vadose Zone Journal. https://doi.org/10.2136/vzj2017.12.0210
    67. Gläser, D., Helmig, R., Flemisch, B., & Class, H. (2017). A discrete fracture model for two-phase flow in fractured porous media. Advances in Water Resources, 110. https://doi.org/10.1016/j.advwatres.2017.10.031
    68. Terzis, A., Roumeli, E., Weishaupt, K., Brack, S., Aslannejad, H., Groß, J., Hassanizadeh, S. M., Helmig, R., & Weigand, B. (2017). Heat release at the wetting front during capillary filling of cellulosic micro-substrates. Journal of Colloid and Interface Science. https://doi.org/10.1016/j.jcis.2017.06.027
    69. Jabbari, M., Shojaee Nasirabadi, P., Jambhekar, V. A., Hattel, J. H., & Helmig, R. (2017). Drying of a tape-cast layer: Numerical investigation of influencing parameters. International Journal of Heat and Mass Transfer, 108. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.074
    70. Gupta, S., Deusner, C., Haeckel, M., Helmig, R., & Wohlmuth, B. I. (2017). Testing a thermo-chemo-hydro-geomechanical model for gas hydrate bearing sediments using triaxial compression lab experiments. https://doi.org/10.1002/2017GC006901
    71. Becker, B., Guo, B., Bandilla, K., Celia, M. A., Flemisch, B., & Helmig, R. (2017). A pseudo-vertical equilibrium model for slow gravity drainage dynamics. Water Resources Research, 53. https://doi.org/10.1002/2017WR021644
    72. Mejri, E., Bouhlila, R., & Helmig, R. (2017). Heterogeneity effects on evaporation-induced halite and gypsum co-precipitation in porous media. Transport in Porous Media. https://doi.org/10.1007/s111242-017-0846-8
    73. Yang, G., Weigand, B., Terzis, A., Weishaupt, K., & Helmig, R. (2017). Numerical simulation of turbulent flow and heat transfer in a three-dimensional channel coupled with flow through porous structures. Transport in Porous Media, 120. https://doi.org/10.1007/s11242-017-0995-9
    74. Fetzer, T., Vanderborght, J., Mosthaf, K., Smits, K. M., & Helmig, R. (2017). Heat and water transport in soils and across the soil-atmosphere interface: 2. Numerical analysis. Water Resources Research, 53(2), Article 2. https://doi.org/10.1002/2016WR019983
    75. Vanderborght, J., Fetzer, T., Mosthaf, K., Smits, K. M., & Helmig, R. (2017). Heat and water transport in soils and across the soil-atmosphere interface: 1. Theory and different model concepts. Water Resources Research, 53(2), Article 2. https://doi.org/10.1002/2016WR019982
    76. Neuweiler, I., & Helmig, R. (2017). Debates - Hypothesis testing in hydrology: a subsurface perspective. Water Resources Research, 53. https://doi.org/1002/2016WR020047
    77. Trautz, A., Illangasekare, T., Rodriguez-Iturbe, I., Heck, K., & Helmig, R. (2017). Development of an experimental approach to study coupled soil-plant-atmosphere processes using plant analogs. Water Resources Research, 53.
    78. Schneider, M., Flemisch, B., & Helmig, R. (2017). Monotone nonlinear finite-volume method for nonisothermal two-phase two-component flow in porous media. International Journal for Numerical Methods in Fluids, 84(6), Article 6. https://doi.org/10.1002/fld.4352
    79. Jambhekar, V. A., Mejri, E., Schröder, N., Helmig, R., & Shokri, N. (2016). Kinetic Approach to Model Reactive Transport and Mixed Salt Precipitation in a Coupled Free-Flow–Porous-Media System. Transport in Porous Media. https://doi.org/10.1007/s11242-016-0665-3
    80. Fattahi, E., Waluga, C., Wohlmuth, B. I., Rüde, U., Manhard, M., & Helmig, R. (2016). Lattice Boltzmann methods in porous media simulations: laminar to turbulent flow. Computers and Fluids, 140.
    81. Hommel, J., Ebigbo, A., Gerlach, R., Cunningham, A. B., Helmig, R., & Class, H. (2016). Finding a balance between accuracy and effort for modeling biomineralization. Energy Procedia, 97. https://doi.org/10.1016/j.egypro.2016.10.028
    82. Gupta, S., Wohlmuth, B. I., & Helmig, R. (2016). Multi-rate time stepping schemes for hydro-geomechanical model for subsurface methane hydrate reservoirs. Advances in Water Resources, 91. https://doi.org/10.1016/j.advwatres.2016.02.013
    83. Lindner, F., Nuske, P., Weishaupt, K., Helmig, R., Mundt, C., & Pfitzner, M. (2016). Transpiration cooling with local thermal nonequilibrium: Model comparison in multiphase flow in porous media. Journal of Porous Media, 19. https://doi.org/10.1615/JPorMedia.v19.i2.30
    84. Gläser, D., Dell’Oca, A., Tatomir, A., Bensabat, J., Class, H., Guadagnini, A., Helmig, R., McDermott, C., Riva, M., & Sauter, M. (2016). An Approach Towards a FEP-based Model for Risk Assessment for Hydraulic Fracturing Operations. Energy Procedia, 97, 387--394. https://doi.org/10.1016/j.egypro.2016.10.030
    85. Baber, K., Flemisch, B., & Helmig, R. (2016). Modelling drop dynamics at the interface between free and porous-medium flow using the mortar method. International Journal of Heat and Mass Transfer. https://www.iws.uni-stuttgart.de/publikationen/hydrosys/paper/2014/SimTech_Preprint_Baber2014.pdf
    86. Hommel, J., Lauchnor, E., Gerlach, R., Cunningham, A. B., Ebigbo, A., Helmig, R., & Class, H. (2016). Investigating the influence of the initial biomass distribution and injection strategies on biofilm-mediated calcite precipitation in porous media. Transport in Porous Media, 114(2), Article 2. https://doi.org/10.1007/s11242-015-0617-3
    87. Drzisga, D., Köppl, T., Pohl, U., Helmig, R., & Wohlmuth, B. I. (2016). Numerical modeling of compensation mechanisms for peripheral arterial stenoses. Computers in Biology and Medicine, 70, Article 70.
    88. Fetzer, T., Smits, K. M., & Helmig, R. (2016). Effect of Turbulence and Roughness on Coupled Porous-Medium/Free-Flow Exchange Processes. Transport in Porous Media, 114(2), Article 2. https://doi.org/10.1007/s11242-016-0654-6
    89. Jabbari, M., Jambhekar, V. A., Hattel, J. H., & Helmig, R. (2016). Drying of a tape-cast layer: Numerical modelling of the evaporation process in a graded/layered material. International Journal of Heat and Mass Transfer, 103. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.073
    90. Helmig, R., Hassanizadeh, S. M., & Dahle, H. K. (2016). Foreword. NUPUS: Porous media research has got a brand name. Transport in Porous Media, 114. https://doi.org/10.1007/s11242-016-0736-5
    91. Szymanska, P., Tisler, W., Schütz, C., Szymkiewicz, A., Neuweiler, I., & Helmig, R. (2016). Experimental and numerical analysis of air trapping in a porous medium with coarse textured inclusions. Acta Geophysica, 64.
    92. Hommel, J., Lauchnor, E., Phillips, A., Gerlach, R., Cunningham, A. B., Helmig, R., Ebigbo, A., & Class, H. (2015). A revised model for microbially induced calcite precipitation: Improvements and new insights based on recent experiments. Water Resources Research, 51(5), Article 5. https://doi.org/10.1002/2014WR016503
    93. Rybak, I., Magiera, J., Helmig, R., & Rohde, C. (2015). Multirate time integration for coupled saturated/unsaturated porous medium and free flow systems. Computational Geosciences. https://doi.org/10.1007/s10596-015-9469-8
    94. Schwenck, N., Flemisch, B., Helmig, R., & Wohlmuth, B. I. (2015). Dimensionally reduced flow models in fractured porous media: crossings and boundaries. Computational Geosciences, 19(6), Article 6. https://doi.org/10.1007/s10596-015-9536-1
    95. Nuske, P., Ronneberger, O., Karadimitriou, N., Helmig, R., & Hassanizadeh, S. M. (2015). Modelling Multi-Phase Flow in a Micro-Model with Local Thermal Non-Equilibrium on the Darcy Scale. International Journal of Heat and Mass Transfer, 88.
    96. Faigle, B., Elfeel, M. A., Helmig, R., Becker, B., Flemisch, B., & Geiger, S. (2015). Multi-physics modeling of non-isothermal compositional flow on adaptive grids. Computational Methods in Applied Mechanical Engineering, 292. https://doi.org/10.1016/j.cma.2014.11.030
    97. Tatomir, A., Schaffer, M., Kissinger, A., Hommel, J., Nuske, P., Licha, T., Helmig, R., & Sauter, M. (2015). Novel approach for modeling kinetic interface-sensitive (KIS) tracers with respect to time-dependent interfacial area change for the optimization of supercritical carbon dioxide injection into deep saline aquifers. International Journal of Greenhouse Gas Control, 33. https://doi.org/10.1016/j.ijggc.2014.11.020
    98. Lindner, F., Nuske, P., Helmig, R., Mundt, C., & Pfitzner, M. (2014). Transpiration Cooling with Local Thermal Non-Equilibrium: Model Comparison in Multiphase Flow in Porous Media. Journal of Porous Media.
    99. Schmid, K. S., Groß, J., & Helmig, R. (2014). Chemical osmosis in two-phase flow and salinity-dependent capillary pressures in rocks with microporosity. Water Resources Research. https://doi.org/10.1002/2013WR013848
    100. Mosthaf, K., Helmig, R., & Or, D. (2014). Modeling and analysis of evaporation processes from porous media on the REV scale. Water Resources Research, 50. https://doi.org/10.1002/2013WR014442

Talks

  1. R. Helmig, “Vom Gehirn zum Energiespeicher: Poröse Medien sind überall,” Nov. 2018.
  2. B. Becker, M. Schneider, H. Class, B. Flemisch, and R. Helmig, “Multi-physics models accounting for subsurface energy storage,” Jun. 2018.
  3. R. Helmig, “Simulationen: die Welt besser verstehen? Strömung und Transport in porösen Medien,” Jul. 2018.
  4. R. Helmig, “Grundwasser im Spannungsfeld konkurrierender Nutzungen des Untergrundes,” Jun. 2018.
  5. R. Helmig, “Energiespeicherung, Herausforderung der Zukunft - Was Simulationen beitragen,” May 2017.
  6. R. Helmig, “Modeling and analysis of soil-moisture processes in the subsurface: the influence of evaporation and salt precipitation in groundwater,” Mar. 2017.
  7. T. Fetzer, K. Weishaupt, V. A. Jambhekar, E. Mejri, and R. Helmig, “Modelling and analysis of soil-moisture processes in the subsurface: the influence of evaporation and salt precipitation in groundwater,” May 2017.
  8. B. Becker, M. Schneider, B. Flemisch, M. Wolff, B. Faigle, and R. Helmig, “Multi-scale and multi-physics modelling: IMPESC formulation,” May 2017.
  9. B. Becker, M. Schneider, H. Class, B. Flemisch, and R. Helmig, “Model concepts for coupled geo-thermal flow and transport processes in subsurface systems,” Oct. 2017.
  10. B. Becker, M. Schneider, H. Class, B. Flemisch, and R. Helmig, “Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Dec. 2017.
  11. T. Fetzer, B. Flemisch, and R. Helmig, “Coupling free and porous-medium flow via an interface including surface roughness,” May 2016.
  12. R. Helmig and H. Class, “Kann Wasser den Berg hoch fließen?,” Apr. 2016.
  13. R. Helmig, “Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” May 2016.
  14. R. Helmig, “Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Feb. 2016.
  15. R. Helmig, “Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Oct. 2016.
  16. R. Helmig, “Flow and transport in porous media: from environmental via technical to biological applications,” Dec. 2016.
  17. R. Helmig, “Der Weg zum Wassernetzwerk Baden-Württemberg,” Jan. 2016.
  18. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Modeling and analysis of soil-moisture processes in the subsurface: the influence of evaporation and salt precipitation in groundwater,” Sep. 2015.
  19. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Modeling and analysis of soil-moisture processes in the subsurface: the influence of evaporation and salt precipitation in groundwater,” Sep. 2015.
  20. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” May 2015.
  21. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Modeling and analysis of soil-moisture processes in the subsurface: the influence of evaporation and salt precipitation in groundwater,” May 2015.
  22. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Modeling and analysis of soil-moisture processes in the subsurface: the influence of evaporation and salt precipitation in groundwater,” Oct. 2015.
  23. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Sep. 2015.
  24. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Modeling and analysis of soil-moisture processes in the subsurface: the influence of evaporation and salt precipitation in groundwater,” Dec. 2015.
  25. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Modeling and analysis of soil-moisture processes in the subsurface: the influence of evaporation and salt precipitation in groundwater,” Feb. 2015.
  26. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Modeling and analysis of soil-moisture processes in the subsurface: the influence of evaporation and salt precipitation in groundwater,” Jan. 2015.
  27. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Mar. 2015.
  28. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Modeling and analysis of soil-moisture processes in the subsurface: the influence of evaporation and salt precipitation in groundwater,” Mar. 2015.
  29. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Modeling and analysis of soil-moisture processes in the subsurface: the influence of evaporation and salt precipitation in groundwater,” Mar. 2015.
  30. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Sep. 2015.
  31. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Aug. 2015.
  32. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Dec. 2015.
  33. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Nov. 2015.
  34. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” May 2015.
  35. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” May 2015.
  36. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Mar. 2015.
  37. R. Helmig, B. Becker, H. Class, B. Flemisch, and M. Schneider, “Konkurrierende Nutzung des Untergrunds diskutiert am Beispiel der Energiespeicherung: Ist Mathematik hier notwendig?,” Jul. 2015.
  38. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Aug. 2015.
  39. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Jun. 2015.
  40. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” May 2015.
  41. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Mar. 2015.
  42. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Modeling and analysis of soil-moisture processes in the subsurface: the influence of evaporation and salt precipitation in groundwater,” Mar. 2015.
  43. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Aug. 2015.
  44. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Aug. 2015.
  45. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Modeling and analysis of soil-moisture processes in the subsurface: the influence of evaporation and salt precipitation in groundwater,” Dec. 2015.
  46. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Modeling and analysis of soil-moisture processes in the subsurface: the influence of evaporation and salt precipitation in groundwater,” Nov. 2015.
  47. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Nov. 2015.
  48. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” May 2015.
  49. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Modeling and analysis of soil-moisture processes in the subsurface: the influence of evaporation and salt precipitation in groundwater,” Nov. 2015.
  50. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Modeling and analysis of soil-moisture processes in the subsurface: the influence of evaporation and salt precipitation in groundwater,” Apr. 2015.
  51. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Oct. 2015.
  52. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Mar. 2015.
  53. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Oct. 2015.
  54. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Jul. 2015.
  55. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Jun. 2015.
  56. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Jan. 2015.
  57. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Aug. 2015.
  58. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Aug. 2015.
  59. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Nov. 2015.
  60. R. Helmig, “Evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Dec. 2015.
  61. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” May 2015.
  62. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Apr. 2015.
  63. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Oct. 2015.
  64. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Modeling and analysis of soil-moisture processes in the subsurface: the influence of evaporation and salt precipitation in groundwater,” Oct. 2015.
  65. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Apr. 2015.
  66. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Mar. 2015.
  67. R. Helmig and T. Fetzer, “Coupling two-phase compositional porous-medium and free flow,” Jul. 2015.
  68. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” May 2015.
  69. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Jun. 2015.
  70. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Mar. 2015.
  71. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Aug. 2015.
  72. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Aug. 2015.
  73. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Dec. 2015.
  74. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” May 2015.
  75. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Nov. 2015.
  76. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Modeling and analysis of soil-moisture processes in the subsurface: the influence of evaporation and salt precipitation in groundwater,” Apr. 2015.
  77. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Oct. 2015.
  78. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Numerical models for evaluating the competitive use of the subsurface: the influence of energy storage and production in groundwater,” Nov. 2015.
  79. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Modeling and analysis of soil-moisture processes in the subsurface: the influence of evaporation and salt precipitation in groundwater,” Mar. 2015.
  80. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Modeling and analysis of soil-moisture processes in the subsurface: the influence of evaporation and salt precipitation in groundwater,” Jun. 2015.
  81. R. Helmig, “Darcy Lecture Series in Groundwater Science 2015: Modeling and analysis of soil-moisture processes in the subsurface: the influence of evaporation and salt precipitation in groundwater,” Feb. 2015.
  82. B. Becker, B. Flemisch, R. Helmig, and M. Schneider, “Roads to success in porous media research: A workshop for future research leaders in the UK,” Dec. 2014.
  83. R. Helmig and H. Class, “Konkurrierende Nutzung des Untergrunds - Risiken und Chancen, erklärt am Beispiel der CO2-Speicherung,” Jan. 2014.
  84. K. Mosthaf, T. Fetzer, B. Flemisch, and R. Helmig, “Modeling and analysis of the movement of fluid-fluid interfaces in porous media coupled with free flow,” Feb. 2014.
  85. R. Helmig, B. Faigle, and P. Nuske, “Gas-water flow and transport processes in fractured porous systems,” Mar. 2013.
  86. R. Helmig, K. Baber, K. Mosthaf, B. Flemisch, B. I. Wohlmuth, and T. Leijnse, “Modeling of compositional flow in coupled porous media-free flow domains,” Jan. 2013.
  87. R. Helmig, B. Faigle, B. Flemisch, and M. Wolff, “A decoupled model for compositional multiphase flow in porous media and multi-physics, multi-scale approaches for two-phase flow,” Feb. 2013. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0045782514004630
  88. R. Helmig, “Strömungs- und Transportvorgänge in porösen Medien - vom Grundwasser bis zur Brennstoffzelle,” Jul. 2013.
  89. R. Helmig, “Klimawandel und CO2 - kann CO2-Speicherung im Untergrund den Klimawandel abmildern?,” May 2012.
  90. L. Walter, A. Kissinger, H. Class, S. Oladyshkin, and R. Helmig, “Methods for evaluating competitive use of the subsurface - for example, the influence of CCS in groundwater,” May 2012.
  91. R. Helmig, K. Baber, B. Flemisch, and B. I. Wohlmuth, “Compositional multi-phase flow in coupled porous-media and free-flow domains,” Oct. 2012.
  92. A. Ebigbo, H. Class, and R. Helmig, “Modelling of biofilm growth and its influence on CO2 and water (two-phase) flow in porous media,” Mar. 2011.
  93. R. Helmig, B. Faigle, B. Flemisch, and J. Fritz, “Efficient modelling of multi-phase flow and transport in porous media using multi-physics and multi-scale approaches,” Jul. 2011.
  94. R. Helmig, B. Faigle, B. Flemisch, J. Fritz, and J. Niessner, “Efficient modelling of multi-phase flow and transport in porous media using multi-physics and multi-scale approaches,” Feb. 2011.
  95. R. Helmig, “Modelling of complex porous media systems - from CO2 sequestration to evaporation at the soil-atmosphere interface,” Dec. 2011.
  96. K. Mosthaf, K. Baber, B. Flemisch, R. Helmig, and B. I. Wohlmuth, “Coupling two-phase compositional porous-medium and free flow,” Nov. 2011.
  97. R. Helmig, K. Baber, K. Mosthaf, B. Flemisch, B. I. Wohlmuth, and T. Leijnse, “Modeling of compositional flow in coupled porous-media - �free-flow domains,” Jul. 2011.
  98. R. Helmig, B. Faigle, B. Flemisch, and M. Wolff, “Efficient modeling of flow and transport in porous media using multiphysics and multiscale approaches,” Nov. 2011.
  99. R. Helmig, K. Baber, K. Mosthaf, B. Flemisch, B. I. Wohlmuth, and T. Leijnse, “Modeling of compositional flow in coupled porous-media - �free-flow domains,” Jan. 2011.
  100. Y. Cao, M. Espedal, R. Helmig, and B. I. Wohlmuth, “A new corrected operator splitting method combining streamline approach for two-phase flow with gravity,” Mar. 2011.

Current research projects

To the top of the page