This image shows Martin Schneider

Martin Schneider

Dr.-Ing.

Academic Staff
Institute for Modelling Hydraulic and Environmental Systems
Department of Hydromechanics and Modelling of Hydrosystems

Contact

+49 711 685 69159
+49 711 685 69430

Business card (VCF)

Pfaffenwaldring 61
70569 Stuttgart
Germany
Room: 1.007

Anwendungen zu Numerische Methoden der Fluidmechanik lecture | exercise
Grundlagen zu Numerische Methoden der Fluidmechanik lecture | exercise
Modeling of Hydrosystems and Hydroinformatics lecture | exercise
Simulationstechnik A lecture

Abitur

May 2006 in Trossingen (Germany)

Academic Degrees

October 2010: B.Sc. in Mathematics, Technical University of Munich
March 2013: M.Sc. in Mathematics in Science and Engineering, Technical University of Munich
June 2018: Doctoral Degree (Dr.-Ing.), University of Stuttgart

Academic Career

June 2013 - June 2018: Doctoral Researcher, Department of Hydromechanics and Modelling of Hydrosystems, University of Stuttgart
since July 2018: Postdoctoral Researcher, Department of Hydromechanics and Modelling of Hydrosystems, University of Stuttgart

  • 2014: Best Poster Award, International Conference on Computatioal Methods in Water Resources (CMWR 2014)
  • 2018: The Best PhD Thesis Award-Prize
  • 2018: Publication Prize of the University of Stuttgart (together with Léo Agélas, Guillaume Enchéry, and Bernd Flemisch) for the paper "Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes"

Publications

  1. Journal Articles

    1. Krach, D., Weinhardt, F., Wang, M., Schneider, M., Class, H., & Steeb, H. (2025). A novel geometry-informed drag term formulation for pseudo-3D Stokes simulations with varying apertures. Advances in Water Resources, 195, 104860. https://doi.org/10.1016/j.advwatres.2024.104860
    2. Bursik, B., Stierle, R., Oukili, H., Schneider, M., Bauer, G., & Gross, J. (2025). Modelling Interfacial Dynamics Using Hydrodynamic Density Functional Theory: Dynamic Contact Angles and the Role of Local Viscosity. arXiv Preprint arXiv:2504.03032. https://doi.org/10.48550/arXiv.2504.03032
    3. Aricò, C., Helmig, R., Puleo, D., & Schneider, M. (2024). A new numerical mesoscopic scale one-domain approach solver for free fluid/porous medium interaction. Computer Methods in Applied Mechanics and Engineering, 419, 116655. https://doi.org/10.1016/j.cma.2023.116655
    4. Schneider, M., & Koch, T. (2024). Stable and locally mass- and momentum-conservative control-volume finite-element schemes for the Stokes problem. Computer Methods in Applied Mechanics and Engineering, 420, 116723. https://doi.org/10.1016/j.cma.2023.116723
    5. Wu, H., Veyskarami, M., Schneider, M., & Helmig, R. (2023). A New Fully Implicit Two-Phase Pore-Network Model by Utilizing Regularization Strategies. Transport in Porous Media. https://doi.org/10.1007/s11242-023-02031-2
    6. Schneider, M., Gläser, D., Weishaupt, K., Coltman, E., Flemisch, B., & Helmig, R. (2023). Coupling staggered-grid and vertex-centered finite-volume methods for coupled porous-medium free-flow problems. Journal of Computational Physics, 482, 112042. https://doi.org/10.1016/j.jcp.2023.112042
    7. Mohammadi, F., Eggenweiler, E., Flemisch, B., Oladyshkin, S., Rybak, I., Schneider, M., & Weishaupt, K. (2023). A surrogate-assisted uncertainty-aware Bayesian validation framework and its application to coupling free flow and porous-medium flow. Computational Geosciences, 27, Article 4. https://doi.org/10.1007/s10596-023-10228-z
    8. Koch, T., Wu, H., & Schneider, M. (2022). Nonlinear mixed-dimension model for embedded tubular networks with application to root water uptake. Journal of Computational Physics, 450, 110823. https://doi.org/10.1016/j.jcp.2021.110823
    9. Gläser, D., Schneider, M., Flemisch, B., & Helmig, R. (2022). Comparison of cell- and vertex-centered finite-volume schemes for flow in fractured porous media. Journal of Computational Physics, 448, 110715. https://doi.org/10.1016/j.jcp.2021.110715
    10. Koch, T., Gläser, D., Weishaupt, K., Ackermann, S., Beck, M., Becker, B., Burbulla, S., Class, H., Coltman, E., Emmert, S., Fetzer, T., Grüninger, C., Heck, K., Hommel, J., Kurz, T., Lipp, M., Mohammadi, F., Scherrer, S., Schneider, M., et al. (2021). DuMux 3 – an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling. Computers & Mathematics with Applications. https://doi.org/10.1016/j.camwa.2020.02.012
    11. Schneider, M., Flemisch, B., Frey, S., Hermann, S., Iglezakis, D., Ruf, M., Schembera, B., Seeland, A., & Steeb, H. (2020). Datenmanagement im SFB 1313. Bausteine Forschungsdatenmanagement, 3, Article 1. https://doi.org/10.17192/bfdm.2020.1.8085
    12. Schneider, M., Weishaupt, K., Gläser, D., Boon, W. M., & Helmig, R. (2020). Coupling staggered-grid and MPFA finite volume methods for free flow/porous-medium flow problems. Journal of Computational Physics, 401. https://doi.org/10.1016/j.jcp.2019.109012
    13. Koch, T., Schneider, M., Helmig, R., & Jenny, P. (2020). Modeling tissue perfusion in terms of 1d-3d embedded mixed-dimension coupled problems with distributed sources. Journal of Computational Physics, 410, 109370. https://doi.org/10.1016/j.jcp.2020.109370
    14. Koch, T., Helmig, R., & Schneider, M. (2020). A new and consistent well model for one-phase flow in anisotropic porous media using a distributed source model. Journal of Computational Physics, 410, 109369. https://doi.org/10.1016/j.jcp.2020.109369
    15. Agélas, L., Schneider, M., Enchéry, G., & Flemisch, B. (2020). Convergence of nonlinear finite volume schemes for two-phase porous media flow on general meshes. IMA Journal of Numerical Analysis. https://doi.org/10.1093/imanum/draa064
    16. Schneider, M., Köppl, T., Helmig, R., Steinle, R., & Hilfer, R. (2018). Stable propagation of saturation overshoots for two-phase flow in porous media. Transport in Porous Media, 121, Article 3. https://doi.org/10.1007/s11242-017-0977-y
    17. Schneider, M., Gläser, D., Flemisch, B., & Helmig, R. (2018). Comparison of finite-volume schemes for diffusion problems. Oil & Gas Science and Technology – Revue d’IFP Energies Nouvelles, 73. https://ogst.ifpenergiesnouvelles.fr/articles/ogst/pdf/2018/01/ogst180050.pdf
    18. Vidotto, E., Helmig, R., Schneider, M., & Wohlmuth, B. (2018). Streamline method for resolving sharp fronts for complex two-phase flow in porous media. Computational Geosciences, 22, Article 6. https://doi.org/10.1007/s10596-018-9767-z
    19. Schneider, M., Flemisch, B., Helmig, R., Terekhov, K., & Tchelepi, H. (2018). Monotone nonlinear finite-volume method for challenging grids. Computational Geosciences. https://doi.org/10.1007/s10596-017-9710-8
    20. Koch, T., Gläser, D., Weishaupt, K., Ackermann, S., Beck, M., Becker, B., Burbulla, S., Class, H., Coltman, E., Fetzer, T., Flemisch, B., Grüninger, C., Heck, K., Hommel, J., Kurz, T., Lipp, M., Mohammadi, F., Schneider, M., Seitz, G., et al. (2018). DuMuX 3.0.0. https://doi.org/10.5281/zenodo.2479595
    21. Schneider, M., Agélas, L., Enchery, G., & Flemisch, B. (2017). Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes. 351. https://doi.org/10.1016/j.jcp.2017.09.003
    22. Schneider, M., Flemisch, B., & Helmig, R. (2017). Monotone nonlinear finite-volume method for nonisothermal two-phase two-component flow in porous media. International Journal for Numerical Methods in Fluids, 84, Article 6. https://doi.org/10.1002/fld.4352
    23. Köppl, T., Schneider, M., Pohl, U., & Wohlmuth, B. I. (2014). The influence of an unilateral carotid artery stenosis on brain oxygenation. Medical Engineering and Physics, 36(7).
  2. Datasets

    1. Krach, D., Weinhardt, F., Wang, M., Schneider, M., Class, H., & Steeb, H. (2024). Results for pseudo-3D Stokes simulations with a geometry-informed drag term formulation for porous media with varying apertures [DaRUS]. https://doi.org/10.18419/DARUS-4347
    2. Oukili, H., Ackermann, S., Buntic, I., Class, H., Coltman, E., Flemisch, B., Ghosh, T., Gläser, D., Grüninger, C., Hommel, J., Jupe, T., Keim, L., Kelm, M., Kiemle, S., Koch, T., Kostelecky, A. M., Pallam, H. V., Schneider, M., Stadler, L., et al. (2023). DuMux 3.7.0 [DaRUS]. https://doi.org/10.18419/DARUS-3405
  3. Anthology Chapters

    1. Schneider, M., Gläser, D., Flemisch, B., & Helmig, R. (2017). Nonlinear finite-volume scheme for complex flow processes on corner-point grids. In Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems: FVCA 8, 12.06.2017 - 16.06.2017, Lille. Springer-Verlag. https://link.springer.com/chapter/10.1007/978-3-319-57394-6_44
  4. Master’s Theses

    1. Schneider, M. (2013). Modellierung und Simulation arterieller Netzwerke [Masterthesis].
  5. Other

    1. Coltman, E., Schneider, M., & Helmig, R. (2024). Data-Driven Closure Parametrizations with Metrics: Dispersive Transport. https://arxiv.org/abs/2311.13975
    2. Buntic, I., Schneider, M., Flemisch, B., & Helmig, R. (2024). A fully-implicit solving approach to an adaptive multi-scale model -- coupling a vertical-equilibrium and full-dimensional model for compressible, multi-phase flow in porous media. https://arxiv.org/abs/2405.18285
  6. Doctoral Theses

    1. Schneider, M. (2019). Nonlinear finite volume schemes for complex flow processes and challenging grids [PhD Thesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. http://dx.doi.org/10.18419/opus-10416

Posters

  1. M. Lipp, M. Schneider, and R. Helmig, “A locally refined quadtree finite-volume staggered-grid scheme,” SFB 1313 Seminar, Gültstein. Mar. 2020. [Online]. Available: https://www.iws.uni-stuttgart.de/publikationen/hydrosys/paper/2020/lipp-A_locally_refined_quadtree_finite-volume_staggered-grid_scheme.pdf
  2. M. Lipp, R. Helmig, K. Weishaupt, and M. Schneider, “Adaptive Staggered 2D Grids for DuMuX - Plans/Ideas,” 2nd International Conference on Simulation Technology (SimTech 2018), 26.03.2018 - 28.03.2018, Stuttgart. Mar. 2018. [Online]. Available: https://www.iws.uni-stuttgart.de/publikationen/hydrosys/paper/2017/Plakat_NUPUS2017_MelanieLipp.pdf
  3. M. Schneider, B. Flemisch, and R. Helmig, “Nonlinear finite-volume schemes for complex flow processes and challenging grids,” Interpore Conference, 10th Annual Meeting, New Orleans, USA. May 2018.
  4. M. Lipp, R. Helmig, K. Weishaupt, and M. Schneider, “Adaptive Staggered 2D Grids for DuMuX - Plans/Ideas,” 2nd SRP NUPUS Meeting, 09.10.2017 - 11.10.2017, Mühlhausen im Täle. Oct. 2017. [Online]. Available: https://www.iws.uni-stuttgart.de/publikationen/hydrosys/paper/2017/Plakat_NUPUS2017_MelanieLipp.pdf
  5. T. Köppl, M. Schneider, and R. Helmig, “Stability of saturation overshoots for two-phase flow in porous media,” SIAM GS17 Erlangen, 11.09.2017 - 14.09.2017, Erlangen. Sep. 2017. [Online]. Available: https://www.iws.uni-stuttgart.de/publikationen/hydrosys/paper/2017/Poster_Tobias_Koeppl_SIAMGS_17_Erlangen.pdf
  6. B. Becker, B. Faigle, M. Schneider, and R. Helmig, “Development of a heuristic grid adaptation indicator based on rigorous a posteriori error estimation,” Gordon Research Conference on Flow and Transport in Permeable Media 2014, 06.07.2014 - 11.07.2014, Lewiston, Maine, USA. Jul. 2014. [Online]. Available: https://www.iws.uni-stuttgart.de/publikationen/hydrosys/paper/2014/2014_Poster_Beatrix_Gordon-compressed.pdf
  7. M. Schneider, B. Becker, B. Flemisch, and R. Helmig, “Efficient and robust modelling of two-phase flow in porous media,” Computational Methods in Water Resources (CMWR), XX. International Conference, Stuttgart, Germany. Jun. 2014.
  8. H. Class et al., “Dumux: Dune for Multi-Phase, Component, Scale, Physics, ... Flow and Transport in Porous Media,” NumPor Annual Meeting 2014, 02.03.2014 - 03.03.2014, KAUST, Kingdom of Saudi Arabia. Mar. 2014.
  9. B. Becker, B. Guo, M. Schneider, and R. Helmig, “Development of efficient models accounting for reversible flow at various subsurface energy storage sites,” 7. SimTech Statusseminar, 10.12.2014 - 12.12.2014, Bad Boll. Dec. 2014. [Online]. Available: https://www.iws.uni-stuttgart.de/publikationen/hydrosys/paper/2014/2014SimTechStatusSeminar_posterBeatrix-compressed.pdf
  10. M. Schneider, B. Becker, B. Flemisch, and R. Helmig, “Efficient and robust modelling of two-phase flow in porous media.,” Gordon Conference, Lewiston, Maine, USA. 2014.

Supervised student assignements

  1. Coupled Turbulent Free- and Porous Media Flows: Investigations of Interfacial Roughness. (2022). (mastersthesis).
  2. Averaged Analysis of Pore Scale Dynamics via Closure Problems. (2021). (Forschungsmodul 2).
  3. Investigation of linear solvers and preconditioners for sparse systems resulting from free-flow applications. (2021). (Masterarbeit).
  4. Mixed-dimension coupling methods with distributed sources for two phase flow problems in porous media. (2020). (Masterarbeit).
  5. Modelling and Simulation of the Thermal Utilization of Shallow Groundwater. (2019). (Masterarbeit).
  6. Convergence analysis of two-phase flow systems in porous media: Comparison of implicit hybrid upwinding and phase potential upwinding. (2017). (Bachelorarbeit).
  7. Investigation of a nonlinear Multi-Point Flux Approximation in DuMuX. (2016). (Forschungsmodul).
  8. Untersuchung und Weiterentwicklung der in DuMuX implementierten Flachwassergleichungen. (2016). (Bachelorarbeit).
  9. Comparison of different methods for solving elliptic pressure equations in heterogeneous anisotropic porous media. (2015). (Bachelorarbeit).
  10. Domain Decomposition Methods For Partial Differential Equations. (2015). (Seminararbeit).
  11. Investigation of error estimates for cell centered finite volume schemes: analysis and improvement of grid adaptation strategies in DuMuX. (2014). (Masterthesis).

Current research projects

To the top of the page