Dieses Bild zeigt Carina Bringedal

Carina Bringedal

Frau Jun.-Prof., Ph.D.

Weggang im Oktober 2022

Kontakt

Website
Visitenkarte (VCF)

Akademische Grade

2009: B.Sc. in Mathematik, Universität Bergen (Norwegen)
2011: M.Sc. in Applied and Computational Mathematics, Universität Bergen (Norwegen)
2015: Ph.D. in Applied and Computational Mathematics, Universität Bergen (Norwegen)

Academischer Werdegang

2011-2016: Doktorandin, Institut für Mathematik, Universität Bergen (Norwegen)
2016-2017 Postdoktorandin, Geophysical Institute, Universität Bergen (Norwegen)
2017-2018 Postdoktorandin, Computational Mathematics, Universität Hasselt (Belgien)
seit Dezember 2018: Juniorprofessorin, Institut für Wasser- und Umweltsystemmodellierung, Universität Stuttgart

2011, 2013, 2017: Meltzer Research Fund Grant, Universität Bergen
2014: Oberwolfach Leibniz Graduate Student Grant, Mathematisches Forschungsinstitut Oberwolfach
2015: Akademia Research Fund Grant 
2016: Ocean Outlook Fellowship

Publikationen

  1. (Zeitschriften-) Aufsätze

    1. Veyskarami, M., Michalkowski, C., Bringedal, C., & Helmig, R. (2023). Droplet Formation, Growth and Detachment at the Interface of a Coupled Free-FLow--Porous Medium System: A New Model Development and Comparison. Transport in Porous Media, 149, 389–419. https://doi.org/10.1007/s11242-023-01944-2
    2. Michalkowski, C., Veyskarami, M., Bringedal, C., Helmig, R., & Schleper, V. (2022). Two-phase Flow Dynamics at the Interface Between GDL and Gas Distributor Channel Using a Pore-Network Model. Transport in Porous Media, 144(2), Article 2. https://doi.org/10.1007/s11242-022-01813-4
    3. Bringedal, C., Schollenberger, T., Pieters, G. J. M., van Duijn, C. J., & Helmig, R. (2022). Evaporation-Driven Density Instabilities in Saturated Porous Media. Transport in Porous Media, 143(2), Article 2. https://doi.org/10.1007/s11242-022-01772-w
    4. Kelm, M., Gärttner, S., Bringedal, C., Flemisch, B., Knabner, P., & Ray, N. (2022). Comparison study of phase-field and level-set method for three-phase systems including two minerals. Computational Geosciences, 26(3), Article 3. https://doi.org/10.1007/s10596-022-10142-w
    5. Lunowa, S. B., Mascini, A., Bringedal, C., Bultreys, T., Cnudde, V., & Pop, I. S. (2022). Dynamic Effects during the Capillary Rise of Fluids in Cylindrical Tubes. Langmuir, 38(5), Article 5. https://doi.org/10.1021/acs.langmuir.1c02680
    6. Scholz, L., & Bringedal, C. (2022). A Three-Dimensional Homogenization Approach for Effective Heat Transport in Thin Porous Media. Transport in Porous Media, 141(3), Article 3. https://doi.org/10.1007/s11242-022-01746-y
    7. Bastidas Olivares, M., Bringedal, C., & Pop, I. S. (2021). A two-scale iterative scheme for a phase-field model for precipitation and dissolution in porous media. Applied Mathematics and Computation, 396, 125933. https://doi.org/10.1016/j.amc.2020.125933
    8. Wagner, A., Eggenweiler, E., Weinhardt, F., Trivedi, Z., Krach, D., Lohrmann, C., Jain, K., Karadimitriou, N., Bringedal, C., Voland, P., Holm, C., Class, H., Steeb, H., & Rybak, I. (2021). Permeability Estimation of Regular Porous Structures: A Benchmark for Comparison of Methods. Transport in Porous Media, 138(1), Article 1. https://doi.org/10.1007/s11242-021-01586-2
    9. Lunowa, S. B., Bringedal, C., & Pop, I. S. (2021). On an averaged model for immiscible two-phase flow with surface tension and dynamic contact angle in a thin strip. Studies in Applied Mathematics, 147(1), Article 1. https://doi.org/10.1111/sapm.12376
    10. Ackermann, S., Bringedal, C., & Helmig, R. (2021). Multi-scale three-domain approach for coupling free flow and flow in porous media including droplet-related interface processes. Journal of Computational Physics, 429, 109993. https://doi.org/10.1016/j.jcp.2020.109993
    11. Bastidas, M., Bringedal, C., Pop, I. S., & Radu, F. A. (2021). Numerical homogenization of non-linear parabolic problems on adaptive meshes. Journal of Computational Physics, 425, 109903. https://doi.org/10.1016/j.jcp.2020.109903
    12. Ghosh, T., Bringedal, C., Helmig, R., & Sekhar, G. P. R. (2020). Upscaled equations for two-phase flow in highly heterogeneous porous media: Varying permeability and porosity. Advances in Water Resources, 145, 103716. https://doi.org/10.1016/j.advwatres.2020.103716
    13. Sharmin, S., Bringedal, C., & Pop, I. S. (2020). On upscaling pore-scale models for two-phase flow with evolving interfaces. Advances in Water Resources, 142, 103646. https://doi.org/10.1016/j.advwatres.2020.103646
    14. Bringedal, C., von Wolff, L., & Pop, I. S. (2020). Phase Field Modeling of Precipitation and Dissolution Processes in Porous Media: Upscaling and Numerical Experiments. Multiscale Modeling & Simulation, 18(2), Article 2. https://doi.org/10.1137/19M1239003
    15. Bringedal, C., Eldevik, T., Skagseth, Ø., Spall, M. A., & Østerhus, S. (2018). Structure and Forcing of Observed Exchanges across the Greenland–Scotland Ridge. Journal of Climate, 31(24), Article 24. https://doi.org/10.1175/JCLI-D-17-0889.1
    16. Bringedal, C., & Kumar, K. (2017). Effective Behavior Near Clogging in Upscaled Equations for Non-isothermal Reactive Porous Media Flow. Transport in Porous Media, 120(3), Article 3. https://doi.org/10.1007/s11242-017-0940-y
    17. Bringedal, C., Berre, I., Pop, I. S., & Radu, F. A. (2016). Upscaling of Non-isothermal Reactive Porous Media Flow with Changing Porosity. Transport in Porous Media, 114(2), Article 2. https://doi.org/10.1007/s11242-015-0530-9
    18. Bringedal, C., Berre, I., Pop, I. S., & Radu, F. A. (2016). Upscaling of Nonisothermal Reactive Porous Media Flow under Dominant Péclet Number: The Effect of Changing Porosity. Multiscale Modeling & Simulation, 14(1), Article 1. https://doi.org/10.1137/15M1022781
    19. Bringedal, C., Berre, I., Pop, I. S., & Radu, F. A. (2015). A model for non-isothermal flow and mineral precipitation and dissolution in a thin strip. Journal of Computational and Applied Mathematics, 289, 346--355. https://doi.org/10.1016/j.cam.2014.12.009
    20. Bringedal, C., Berre, I., & Nordbotten, J. M. (2013). Influence of natural convection in a porous medium when producing from borehole heat exchangers. Water Resources Research, 49(8), Article 8. https://doi.org/10.1002/wrcr.20388
    21. Bringedal, C., Berre, I., Nordbotten, J. M., & Rees, D. A. S. (2011). Linear and nonlinear convection in porous media between coaxial cylinders. Physics of Fluids, 23(9), Article 9. https://doi.org/10.1063/1.3637642
  2. Datensätze

    1. Bringedal, C. (2021). Data and code for Upscaled equations for two-phase flow in highly heterogeneous porous media: Varying permeability and porosity. DaRUS. https://doi.org/10.18419/darus-1376
    2. Schulz, S., Bringedal, C., & Ackermann, S. (2021). Code for relative permeabilities for two-phase flow between parallel plates with slip conditions. DaRUS. https://doi.org/10.18419/darus-2241
    3. Scholz, L., & Bringedal, C. (2021). Code for effective heat conductivity in thin porous media. DaRUS. https://doi.org/10.18419/darus-2026
  3. Konferenzbeiträge

    1. Bringedal, C. (2020). A Conservative Phase-Field Model for Reactive Transport. In R. Klöfkorn, E. Keilegavlen, F. A. Radu, & J. Fuhrmann (Hrsg.), Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (S. 537--545). Springer International Publishing. https://doi.org/10.1007/978-3-030-43651-3_50

betreute studentische Arbeiten

  1. Untersuchung einer modifizierten Allen-Cahn-Gleichung ohne krümmungsbedingte Bewegung. (2022). (Bachelorarbeit). Universität Stuttgart, Institut für Wasser-und Umweltsystemmodellierung, Lehrstuhl für Hydromechanik und Hydrosystemmodellierung.
  2. Accurate Flow Boundary Conditions for the Lattice Boltzmann Method. (2022). (Masterarbeit). Universität Stuttgart, Institut für Wasser-und Umweltsystemmodellierung, Lehrstuhl für Hydromechanik und Hydrosystemmodellierung.
  3. Linear stability analysis for an evaporation problem of a porous slab. (2021). (Bachelorarbeit). Universität Stuttgart, Institut für Wasser-und Umweltsystemmodellierung, Lehrstuhl für Hydromechanik und Hydrosystemmodellierung.
  4. Herleitung reduzierter Modelle einer Zweiphasenströmung zwischen parallelen Platten mit Slip-Bedingungen. (2021). (Projektarbeit).
  5. Flow in diffusive transition zones. (2021). (Projektarbeit).
  6. Modeling of temperature-dependent mineral precipitation and dissolution in porous media. (2021). (Forschungsmodul).
  7. Effective heat transfer models in thin porous media. (2020). (Bachelorarbeit). Universität Stuttgart, Institut für Wasser-und Umweltsystemmodellierung, Lehrstuhl für Hydromechanik und Hydrosystemmodellierung.

Forschungsprojekte

Zum Seitenanfang