Dieses Bild zeigt  Carina Bringedal

Frau Jun.-Prof., Ph.D.

Carina Bringedal

Institut für Wasser- und Umweltsystemmodellierung
Lehrstuhl für Hydromechanik und Hydrosystemmodellierung


+49 711 685-60037

Visitenkarte (VCF)

Pfaffenwaldring 5a
70569 Stuttgart
Raum: 01.019


Nach Vereinbarung

Akademische Grade

2009: B.Sc. in Mathematik, Universität Bergen (Norwegen)
2011: M.Sc. in Applied and Computational Mathematics, Universität Bergen (Norwegen)
2015: Ph.D. in Applied and Computational Mathematics, Universität Bergen (Norwegen)

Academischer Werdegang

2011-2016: Doktorandin, Institut für Mathematik, Universität Bergen (Norwegen)
2016-2017 Postdoktorandin, Geophysical Institute, Universität Bergen (Norwegen)
2017-2018 Postdoktorandin, Computational Mathematics, Universität Hasselt (Belgien)
seit Dezember 2018: Juniorprofessorin, Institut für Wasser- und Umweltsystemmodellierung, Universität Stuttgart

2011, 2013, 2017: Meltzer Research Fund Grant, Universität Bergen
2014: Oberwolfach Leibniz Graduate Student Grant, Mathematisches Forschungsinstitut Oberwolfach
2015: Akademia Research Fund Grant 
2016: Ocean Outlook Fellowship


  1. article

    1. Bastidas Olivares, M., Bringedal, C., & Pop, I. S. (2021). A two-scale iterative scheme for a phase-field model for precipitation and dissolution in porous media. Applied Mathematics and Computation, 396, 125933. https://doi.org/https://doi.org/10.1016/j.amc.2020.125933
    2. Bastidas, M., Bringedal, C., Pop, I. S., & Radu, F. A. (2021). Numerical homogenization of non-linear parabolic problems on adaptive meshes. Journal of Computational Physics, 425, 109903. https://doi.org/https://doi.org/10.1016/j.jcp.2020.109903
    3. Ghosh, T., Bringedal, C., Helmig, R., & Sekhar, G. P. R. (2020). Upscaled equations for two-phase flow in highly heterogeneous porous media: Varying permeability and porosity. Advances in Water Resources, 145, 103716. https://doi.org/10.1016/j.advwatres.2020.103716
    4. Bringedal, C., von Wolff, L., & Pop, I. S. (2020). Phase Field Modeling of Precipitation and Dissolution Processes in Porous Media: Upscaling and Numerical Experiments. Multiscale Modeling & Simulation, 18(2), 1076--1112. https://doi.org/10.1137/19M1239003
    5. Sharmin, S., Bringedal, C., & Pop, I. S. (2020). On upscaling pore-scale models for two-phase flow with evolving interfaces. Advances in Water Resources, 142, 103646. https://doi.org/10.1016/j.advwatres.2020.103646
    6. Ackermann, S., Bringedal, C., & Helmig, R. (2020). Multi-scale three-domain approach for coupling free flow and flow in porous media including droplet-related interface processes. Journal of Computational Physics, 109993. https://doi.org/https://doi.org/10.1016/j.jcp.2020.109993
    7. Bringedal, C., Eldevik, T., Skagseth, Ø., Spall, M. A., & Østerhus, S. (2018). Structure and Forcing of Observed Exchanges across the Greenland–Scotland Ridge. Journal of Climate, 31(24), 9881--9901. https://doi.org/10.1175/JCLI-D-17-0889.1
    8. Bringedal, C., & Kumar, K. (2017). Effective Behavior Near Clogging in Upscaled Equations for Non-isothermal Reactive Porous Media Flow. Transport in Porous Media, 120(3), 553--577. https://doi.org/10.1007/s11242-017-0940-y
    9. Bringedal, C., Berre, I., Pop, I. S., & Radu, F. A. (2016). Upscaling of Non-isothermal Reactive Porous Media Flow with Changing Porosity. Transport in Porous Media, 114(2), 371--393. https://doi.org/10.1007/s11242-015-0530-9
    10. Bringedal, C., Berre, I., Pop, I. S., & Radu, F. A. (2016). Upscaling of Nonisothermal Reactive Porous Media Flow under Dominant Péclet Number: The Effect of Changing Porosity. Multiscale Modeling & Simulation, 14(1), 502--533. https://doi.org/10.1137/15M1022781
    11. Bringedal, C., Berre, I., Pop, I. S., & Radu, F. A. (2015). A model for non-isothermal flow and mineral precipitation and dissolution in a thin strip. Journal of Computational and Applied Mathematics, 289, 346--355. https://doi.org/10.1016/j.cam.2014.12.009
    12. Bringedal, C., Berre, I., & Nordbotten, J. M. (2013). Influence of natural convection in a porous medium when producing from borehole heat exchangers. Water Resources Research, 49(8), 4927--4938. https://doi.org/10.1002/wrcr.20388
    13. Bringedal, C., Berre, I., Nordbotten, J. M., & Rees, D. A. S. (2011). Linear and nonlinear convection in porous media between coaxial cylinders. Physics of Fluids, 23(9), 094109. https://doi.org/10.1063/1.3637642
  2. inproceedings

    1. Bringedal, C. (2020). A Conservative Phase-Field Model for Reactive Transport. In R. Klöfkorn, E. Keilegavlen, F. A. Radu, & J. Fuhrmann (Eds.), Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (pp. 537--545). Springer International Publishing. https://doi.org/10.1007/978-3-030-43651-3_50

betreute studentische Arbeiten

  1. auf der Horst, K. (2021). Modeling of temperature-dependent mineral precipitation and dissolution in porous media [Forschungsmodul].
  2. Scholz, L. (2020). Effective heat transfer models in thin porous media [Bachelorarbeit]. Universität Stuttgart, Institut für Wasser-und Umweltsystemmodellierung, Lehrstuhl für Hydromechanik und Hydrosystemmodellierung.

Aktuelle Forschungsprojekte

Zum Seitenanfang