Kontakt
Pfaffenwaldring 5a
D-70569 Stuttgart
Raum: 2.29
2020
- Höge M, Guthke A, Nowak W. Bayesian Model Weighting: The Many Faces of Model Averaging. Water [Internet]. 2020;12:309. Available from: https://www.mdpi.com/2073-4441/12/2/309
- Sinsbeck M, Höge M, Nowak W. Exploratory-phase-free estimation of GP hyperparameters in sequential design methods - at the example of Bayesian inverse problems. Frontiers in Artificial Intelligence, section AI in Food, Agriculture and Water. 2020;3:1–16.
- Schäfer Rodrigues Silva A, Guthke A, Höge M, Cirpka OA, Nowak W. Strategies for simplifying reactive transport models - a Bayesian model comparison. Water Resources Research. 2020;56:e2020WR028100.
2019
- Höge M. Bayesian multi-model frameworks - Properly Addressing Conceptual Uncertainty in Applied Modelling [Internet] [Doctoral dissertation]. Universität Tübingen, Tübingen, Germany; 2019. Available from: https://publikationen.uni-tuebingen.de/xmlui/handle/10900/87769
- Höge M, Guthke A, Nowak W. The Hydrologist’s Guide to Bayesian Model Selection, Averaging and Combination. Journal of Hydrology [Internet]. 2019 May;572:96–107. Available from: http://www.sciencedirect.com/science/article/pii/S0022169419301532
2018
- Höge M, Wöhling T, Nowak W. A Primer for Model Selection: The Decisive Role of Model Complexity. Water Resources Research [Internet]. 2018; Available from: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017WR021902
- Höge M, Wöhling T, Nowak W. The Decisive Role of Model Complexity in Model Selection. In: General Assembly 2018, Geophysical Research Abstracts 20: EGU2018-6499, 2018. Vienna, Austria: European Geosciences Union (EGU); 2018.
- Guthke A, Höge M, Nowak W. How model selection and averaging strategies help us improve hydrological models. In: General Assembly 2018, Geophysical Research Abstracts 20: EGU2018-12797, 2018. Vienna, Austria: European Geosciences Union (EGU); 2018.
- Khan U, Snieder E, R.Shakir, Höge M, Nowak W. Using model complexity to select the optimum architecture for artificial neural networks. In: General Assembly 2018, Geophysical Research Abstracts 20: EGU2018-17908. Vienna, Austria: European Geosciences Union (EGU); 2018.
- Höge M, Wöhling T, Nowak W. Model Selection: Play-It-Safe vs. No-Risk-No-Fun. In: Integrated Hydrosystem Modelling 2018 Conference: How Complex Should Integrated Models Be? Tübingen, Germany: RTG 1829, DFG; 2018.
2017
- Guthke A, Höge M, Nowak W. Bayesian model evidence as a model evaluation metric. In: General Assembly 2017, Geophysical Research Abstracts 19: EGU2017-13390-1, 2017. Vienna, Austria: European Geosciences Union (EGU); 2017.
- Höge M, Illman W, Nowak W. Bayesian Model Selection under Time Constraints. In: Fall Meeting 2017, Abstract: H23C-1661. New Orleans, LA, USA: American Geophysical Union (AGU); 2017.
2016
- Höge M, Wöhling T, Nowak W. On the Way to Appropriate Model Complexity. In: Fall Meeting 2016, Abstract: NG13A-1683. San Francisco, CA, USA: American Geophysical Union (AGU); 2016.
Seit 10/2019 Postdoktorand, Institut für Wasser- und
Umweltsystemmodellierung, Universität Stuttgart
04/2019 Dr. rer. nat, Universität Tübingen
Seit 10/2015 Wissenschaftlicher Mitarbeiter, Institut für Wasser- und
Umweltsystemmodellierung, Universitäten Stuttgart und Tübingen
09/2015 M.Sc. Applied and Environmental Geoscience, Universität Tübingen
09/2013 B.Sc. Umweltnaturwissenschaften, Universität Tübingen
Bayes'sche Modellwahl, -mittelung und -kombination
Stochastische Modellierung von integrierten Hydrosystemen
Wissenschaftliches maschinelles Lernen