Publikationen

Journals, Dissertationen, studentische Arbeiten und weitere Literatur des IWS

Studentische Arbeiten am IWS (letzte 50)

  1. 2024

    1. Tavares Pereira, C. (2024). Säulenversuche zur Reduktion chlorierter Kohlenwasserstoffe mittels nullwertigen Eisenverbundmaterial in Kombination mit einem Gleichstromfeld (Bachelorarbeit).
    2. Cimen, B. (2024). Dependence of Hydrometeorological Variables on Soil and Drinking Water Pipe Temperatures (Masterarbeit) [Masterarbeit].
    3. Hasberg, L. (2024). Upscaling of Microbial Fuel Cells (Master thesis).
    4. Krell, L. (2024). Infiltration von Mikroplastik in porösen Medien: Einfluss von Stoffeigenschaften und Niederschlag [Bachelorarbeit].
    5. Aucello, P. (2024). Adsorptionskinetik und -isothermen ausgewählter PFAS in Wasser mit Aktivkohlen sowie die Adsorption von PFAS in Boden-Aktivkohle-Mischungen (Bachelorarbeit).
    6. Müller, S. (2024). Infiltration von Mikroplastik in poröse Medien: Einfluss von verschiedenen Beregnungsszenarien [Bachelorarbeit].
  2. 2023

    1. Heinz, L. (2023). Investigation of the influence of heterogeneities on evaporation-driven density instabilities for two-phase flow [Bachelorarbeit].
    2. Ferreira, T. (2023). Column experiments with nZVI particles in combination with direct current application to study the chlorine formation by electrolysis (Master Thesis) [Masterarbeit].
    3. Wied, J. (2023). Validierung eines Wasser- und Wärmetransportmodells im Oberflächennahen Untergrund (Masterarbeit).
    4. Filipovic, A. (2023). Untersuchung naturnaher Flockungshilfsmittel als Alternative zu Polyacrylamid bei der Trinkwasseraufbereitung unter Berücksichtigung des Wiederverkeimungspotentials [Masterarbeit].
    5. Meyer, M. (2023). Bilanzierung und Bewertung eines Schwerölphasenaustrages durch Regenerierung mittels Airlift und dem Druckwellen-Impuls-Verfahren in einem Teeröl (und LHKW) verunreinigten Untersuchungsgebiet (Masterarbeit).
    6. Burkhardt, A. (2023). Design, set-up, operation and optimization of a large-scale bioaugmentaion experiment for the electrokinetic transport of TCE-degrading microorganisms using a direct current field (Masterthesis) [Masterarbeit].
    7. Lipp, D. (2023). Experimental investigation of process-dependent dispersion in porous media using inverse modeling (Masterthesis).
    8. Loaiza Villagómez, N. M. (2023). Experimental Investigation of Bioaugmentation and Electrokinetic Transport of Aerobic TCE Degrading Bacteria in Porous Media (Masterarbeit).
  3. 2022

    1. Böse, B. (2022). Analysis of the Stefan flow problem and comparison to an advection-diffusion formulation [Masterarbeit].
    2. Koprek, A. (2022). Thermodynamic Analysis of Carbon Dioxide Mass Transport in a Stagnant Water Column [Bachelorarbeit].
    3. Kostelecky, A. M. (2022). Coupled Turbulent Free- and Porous Media Flows: Investigations of Interfacial Roughness [Mastersthesis].
    4. Zhao, Z. (2022). Numerical Modeling of Biocement Production [Masterarbeit].
    5. Madani, A. (2022). Coupling between a detailed model and a large-scale model for exchanging density-dependent salt fluxes [Masterarbeit].
    6. Heckel, C. (2022). Combining a monolithic implementation of a locally-refined finite-volume staggered-grid method for the incompressible Navier-Stokes equations with an implementation of a SIMPLE-type solution algorithm [Bachelorarbeit und Propädeutikum].
    7. Chen, Q. (2022). Modeling of mechanical response to microbially induced calcite precipitation in porous media [Masterarbeit].
    8. Schulz, S. (2022). Untersuchung einer modifizierten Allen-Cahn-Gleichung ohne krümmungsbedingte Bewegung [Bachelorarbeit].
    9. Heilemann, S. (2022). Untersuchung der Sorptionskinetik von organischen Schadstoffen im Infinite-Sink-Verfahren [Bachelorarbeit].
    10. Wentges, A. (2022). Entwicklung eines Bestimmungsverfahrens zur summarischen Erfassung von Organofluorverbindungen aus Bodenproben [Bachelorarbeit].
    11. Hopp, R. (2022). Biofilm-Visualisierung in mikrofluidischen Zellen [Bachelorarbeit].
    12. Engelmeier, S. (2022). Experimental Investigations on Surfactant-Enhanced In-Situ Chemical Oxidation (S-ISCO) Using a 2D Model Approach [Masterarbeit].
    13. Moira, P. (2022). Accurate Flow Boundary Conditions for the Lattice Boltzmann Method [Masterarbeit].
    14. Abdellaoui, W. (2022). Modeling the use of microbially induced calcite precipitation for road construction [Masterarbeit].
    15. Brand, T. (2022). Numerische Simulation des wärmegekoppelten Stofftransports durch die Speicherhülle eines Erdbeckenspeichers [Masterarbeit].
    16. Keim, L. (2022). Coupled flow, transport, and geochemical processes in karstic fractures [Masterarbeit].
    17. Kostelecky, A. M. (2022). Coupled Free-Flow and Porous Media Flow Systems: Analysis of Turbulent Free-Flow Condtions and Pore-Network Models [Forschungsmodul2].
  4. 2021

    1. Buntic, I. (2021). Modelling Turbulence in Coupled Environments: The K-Shear Stress Transport Model [Master’s Thesis].
    2. Herbich, L. (2021). Untersuchung der (De-)Sorption von PFAS in sterilen und nicht sterilen Säulenelutionsversuchen [Bachelorarbeit].
    3. Kloker, L. (2021). Linear stability analysis for an evaporation problem of a porous slab [Bachelorarbeit].
    4. Hannss, J. (2021). SIMPLE-type methods for iteratively solving the Navier-Stokes equations [Forschungsmodul 1].
    5. Sauerborn, T. (2021). Transport Properties from Entropy Scaling using PC-SAFT Equation of State for the Modelling of Subsurface Hydrogen Storage [Masterarbeit].
    6. Nepal, A. (2021). Modeling calcite dissolution due to density-induced fingering of CO2-enriched water [Master’s Thesis].
    7. Hannss, J. (2021). Averaged Analysis of Pore Scale Dynamics via Closure Problems [Forschungsmodul 2].
    8. Schulz, S. (2021). Herleitung reduzierter Modelle einer Zweiphasenströmung zwischen parallelen Platten mit Slip-Bedingungen [Projektarbeit].
    9. Bürkle, P. (2021). Density-driven dissolution of CO2 in karst water - longterm monitoring and modelling in a water column [Masterarbeit].
    10. Blessing, L. (2021). Flow in diffusive transition zones [Projektarbeit].
    11. Heckel, C. (2021). Vergleich des Lösens der Navier-Stokes Gleichungen auf lokal verfeinerten versetzten Gittern in den Softwarepakete DuMux und IBAMR [Projektarbeit].
    12. Loaiza Villagómez, N. M. (2021). The Infinite-Sink-Experiment: An Assessment of the leaching of total organic fluoride from PFAS contaminated soil [Bachelorarbeit].
    13. Wissinger, J. (2021). Modellierung von Deponien mit schwach radioaktivem Material [Bachelorarbeit].
    14. Bode, J.-P. (2021). Die Finite-Volumen-Methode am Beispiel der Konvektions-Diffusions-Gleichung [Seminararbeit].
    15. Kootanor Sheshardivasan, V. (2021). A 0-dimensional conceptual model to facilitate coupling of groundwater and surface-water numerical models - and its application to a bog-wetland study area [Masterarbeit].
    16. Rimkus, A. (2021). Discretizing free flow coupled to porous-medium flow by a locally-refined finite-volume staggered-grid method using an interface with refined pressures and coarse velocities [Masterarbeit].
    17. Lakshmiprasad, R. (2021). TEMPERATURE AND MOISTURE TRANSPORT FROM GROUND SURFACE TO WATER SUPPLY PIPES [Master’s Thesis].
    18. Wendel, K. (2021). Implementing and testing a standard black oil model in Dumux [Masterarbeit].
    19. Schirmer, L. (2021). Experimental Investigation on the Impact of Induced Calcite Precipitation on Two-Phase Flow [Bachalorarbeit].

Dissertationen (letzte 50)

  1. 2024

    1. Herzog, B. M. (2024). Surfactant-enhanced in-situ chemical oxidation : developing a remediation design with experimental upscaling (Dissertation No. 310, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart). https://doi.org/10.18419/opus-15077
    2. Bierbaum, T. (2024). Immobilization of per- and polyfluoroalkyl substances (PFAS) : experimental and model-based analysis of leaching behavior (Dissertation No. 314, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart). https://doi.org/10.18419/opus-15572
  2. 2023

    1. Sadid, N. (2023). Bedload transport estimation in mountainous intermittent rivers and streams (Dissertation No. 298, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart). https://doi.org/10.18419/opus-13448
    2. Veyskarami, M. (2023). Coupled free-flow-porous media flow processes including drop formation (Vol. 303) [Promotionsschrift, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. http://dx.doi.org/10.18419/opus-13894
    3. Mohammadi, F. (2023). A surrogate-assisted Bayesian framework for uncertainty-aware validation benchmarks (Dissertation No. 299, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart). https://doi.org/10.18419/opus-13285
    4. Praditia, T. (2023). Physics-informed neural networks for learning dynamic, distributed and uncertain systems (Dissertation No. 300, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung). https://doi.org/10.18419/opus-13229
  3. 2022

    1. Glatz, K. (2022). Upscaling of nanoparticle transport in porous media (p. 132, 14 Seiten) [Hochschulschrift, Eigenverlag des Instituts für Wasser- und Umweltsystemmodelierung der Universität Stuttgart]. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-124082
    2. Schäfer Rodrigues Silva, A. (2022). Quantifying and visualizing model similarities for multi-model methods (Dissertation No. 290, Eigenverlag des Instituts für Wasser- und Umweltsystemmodelierung der Universität Stuttgart). https://doi.org/10.18419/opus-12399
    3. Gao, Z. (2022). Spectral induced polarization of biochar in soil [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-12411
    4. Koca, K. (2022). Advanced experimental methods for investigating flow-biofilm-sediment interactions (Dissertation No. 287, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart). https://doi.org/10.18419/opus-12309
    5. Pavía Santolamazza, D. (2022). Event-based flood estimation using a random forest algorithm for the regionalization in small catchments (Dissertation No. 294, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung). https://doi.org/10.18419/opus-12697
    6. Moreno Leiva, S. (2022). Optimal Planning of Water and Renewable Energy Systems for Copper Production Processes with Sector Coupling and Demand Flexibility (Dissertation No. 291, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung). https://doi.org/10.18419/opus-12708
    7. Herma, F. (2022). Data processing and model choice for flood prediction (No. 296, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung). https://doi.org/10.18419/opus-12713
    8. Weinhardt, F. (2022). Porosity and permeability alterations in processes of biomineralization in porous media - microfluidic investigations and their interpretation (Dissertation No. 297, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart). https://doi.org/10.18419/opus-12822
    9. Michalkowski, C. (2022). Modeling water transport at the interface between porous GDL and gas distributor of a PEM fuel cell cathode (Dissertation No. 286, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung). https://doi.org/10.18419/opus-12106
    10. Modiri, E. (2022). Clustering simultaneous occurrences of extreme floods in the Neckar catchment (Dissertation No. 288, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung). https://doi.org/10.18419/opus-12127
    11. Mayar, M. A. (2022). High-resolution spatio-temporal measurements of the colmation phenomenon under laboratory conditions (Dissertation No. 289, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung). https://doi.org/10.18419/opus-12114
    12. Piotrowski, J. (2022). Effects of salt precipitation during evaporation on porosity and permeability of porous media [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-12376
    13. Schönau, S. (2022). Modellierung von Bodenerosion und Sedimentaustrag bei Hochwasserereignissen am Beispiel des Einzugsgsgebiets der Rems (Dissertation No. 292, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart). https://doi.org/10.18419/opus-12296
    14. Haun, S. (2022). Advanced methods for a sustainable sediment management of reservoirs (Habilitationsschrift No. 295, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart). https://doi.org/10.18419/opus-12532
  4. 2021

    1. Ackermann, S. (2021). A multi-scale approach for drop/porous-medium interaction (Vol. 281) [Promotionsschrift, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. https://doi.org/10.18419/opus-11577
    2. Becker, B. (2021). Development of efficient multiscale multiphysics models accounting for reversible flow at various subsurface energy storage sites (Dissertation No. 284, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart). https://doi.org/10.18419/opus-11753
    3. Schlabing, D. (2021). Generating weather for climate impact assessment on lakes (Vol. 283) [Promotionsschrift, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. https://doi.org/10.18419/opus-12051
    4. Beckers, F. (2021). Investigations on functional relationships between cohesive sediment erosion and sediment characteristics (E. des Instituts für Wasser-und Umweltsystemmodellierung der Universität Stuttgart, ed.) [Universität Stuttgart]. https://doi.org/dx.doi.org/10.18419/opus-11644
    5. Seitz, G. (2021). Modeling fixed-bed reactors for thermochemical heat storage with the reaction system CaO/Ca(OH)2 (Dissertation No. 278, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung). https://doi.org/10.18419/opus-11522
    6. Reuschen, S. (2021). Bayesian inversion and model selection of heterogeneities in geostatistical subsurface modeling (Dissertation No. 285, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung). https://doi.org/10.18419/opus-12013
    7. Emmert, S. (2021). Developing and calibrating a numerical model for microbially enhanced coal-bed methane production (Vol. 279) [Promotionsschrift, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. https://doi.org/10.18419/opus-11631
    8. Heck, K. (2021). Modelling and analysis of multicomponent transport at the interface between free- and porous-medium flow - influenced by radiation and roughness (Vol. 280) [Promotionsschrift, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. https://doi.org/10.18419/opus-11635
    9. Bakhshipour, A. E. (2021). Optimizing hybrid decentralized systems for sustainable urban drainage infrastructures planning [Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung]. https://doi.org/10.18419/OPUS-11494
  5. 2020

    1. Weishaupt, K. (2020). Model concepts for coupling free flow with porous medium flow at the pore-network scale : from single-phase flow to compositional non-isothermal two-phase flow (Vol. 273) [Dissertation, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung]. https://doi.org/10.18419/opus-10932
    2. Koch, T. (2020). Mixed-dimension models for flow and transport processes in porous media with embedded tubular network systems (Vol. 274) [Dissertation, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung]. https://doi.org/10.18419/opus-10975
    3. Seitz, L. (2020). Development of new methods to apply a multiparameter approach - a first step towards the determination of colmation (Vol. 276) [Dissertation, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. https://doi.org/10.18419/OPUS-11249
    4. Rodríguez Pretelín, A. (2020). Integrating transient flow conditions into groundwater well protection (Dissertation No. 272, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung). https://doi.org/10.18419/opus-10951
    5. Gläser, D. (2020). Discrete fracture modeling of multi-phase flow and deformation in fractured poroelastic media (Vol. 275) [Phdthesis, Stuttgart: Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. http://dx.doi.org/10.18419/opus-11040
    6. Wiekenkamp, I. (2020). Measuring and modelling spatiotemporal changes in hydrological response after partial deforestation [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-10908
  6. 2019

    1. Thom, M. (2019). Towards a better understanding of the biostabilization mechanisms of sediment beds (Dissertation No. 270, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung). https://doi.org/10.18419/opus-10808
    2. Most, S. (2019). Analysis and simulation of anomalous transport in porous media (Vol. 268) [Promotionsschrift, Universität Stuttgart, Institut für Wasser- Umweltsystemmodellierung]. https://elib.uni-stuttgart.de/handle/11682/10511
    3. Stolz, D. (2019). Die Nullspannungstemperatur in Gewichtsstaumauern unter Berücksichtigung der Festigkeitsentwicklung des Betons (Dissertation No. 271, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung). https://doi.org/10.18419/opus-10945
    4. Buchta, R. (2019). Entwicklung eines Ziel- und Bewertungssystems zur Schaffung nachhaltiger naturnaher Strukturen in großen sandgeprägten Flüssen des norddeutschen Tieflandes [Phdthesis, Stuttgart: Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. http://dx.doi.org/10.18419/opus-10520
    5. Brogi, C. (2019). Geophysics-based soil mapping for improved modelling of spatial variability in crop growth and yield [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-10746
    6. Haas, J. (2019). Optimal planning of hydropower and energy storage technologies for fully renewable power systems [Phdthesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. http://dx.doi.org/10.18419/opus-10297
    7. Beck, M. (2019). Conceptual approaches for the analysis of coupled hydraulic and geomechanical processes [Phdthesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. http://dx.doi.org/10.18419/opus-10418
    8. Schneider, M. (2019). Nonlinear finite volume schemes for complex flow processes and challenging grids [PhD Thesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. http://dx.doi.org/10.18419/opus-10416
  7. 2018

    1. Fenrich, E. K. (2018). Entwicklung eines ökologisch-ökonomischen Vernetzungsmodells für Wasserkraftanlagen und Mehrzweckspeicher [Phdthesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. http://dx.doi.org/10.18419/opus-10112
    2. Yan, J. (2018). Nonlinear estimation of short time precipitation using weather radar and surface observations [Phdthesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. http://dx.doi.org/10.18419/opus-10270
    3. Fetzer, T. (2018). Coupled Free and Porous-Medium Flow Processes Affected by Turbulence and Roughness - Models, Concepts and Analysis (Vol. 259) [Promotionsschrift, Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung]. https://doi.org/10.18419/opus-10016
    4. Beck, M. (2018). Conceptual approaches for the analysis of coupled hydraulic and geomechanical processes (Vol. 265) [Promotionsschrift, Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. https://doi.org/10.18419/opus-10418
    5. Schröder, H. C. (2018). Large-scale high head pico hydropower potential assessment [Phdthesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. http://dx.doi.org/10.18419/opus-10236
    6. Schmidt, H. (2018). Microbial stabilization of lotic fine sediments [Phdthesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. http://dx.doi.org/10.18419/opus-10015
    7. Harten, M. v. (2018). Analyse des Zuppinger-Wasserrades : hydraulische Optimierungen unter Berücksichtigung ökologischer Aspekte [Phdthesis, Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart]. http://dx.doi.org/10.18419/opus-10322

Journals und Bücher (letzte 50)

  1. 2025 (submitted)

    1. Pawusch, L., Scheurer, S., Nowak, W., & Maxwell, R. (n.d.). HydroStartML: A combined machine learning and physics-based approach to reduce hydrological model spin-up time. Advances in Water Resources.
  2. 2025

    1. Chen, Zhixin (陈植欣), Helmig, R., & Hu, Liming (胡黎明). (2025). Heat and moisture migration in porous media during remediation using superheated steam injection: A coupled experimental and numerical study. Physics of Fluids, 37, Article 4. https://doi.org/10.1063/5.0262877
    2. Hu, L., Cao, Y., Sun, J., Chen, Z., Wang, M., Wu, Z., Zhu, X., Ji, L., & Wen, Q. (2025). Field Demonstration of In Situ Remediation of Contaminated Groundwater Using Ozone Micro–Nano-Bubble-Enhanced Oxidation. Environmental Science & Technology, 59, Article 11. https://doi.org/10.1021/acs.est.4c13344
    3. Kröker, I., Brünnette, T., Wildt, N., Oreamuno, M. F. M., Kohlhaas, R., Oladyshkin, S., & Nowak, W. (2025). Bayesian3 Active Learning for Regularized Multi-Resolution Arbitrary Polynomial Chaos using Information Theory. International Journal for Uncertainty Quantification, 15, Article 3. https://doi.org/10.1615/Int.J.UncertaintyQuantification.2024052675
    4. Ghosh, T., Bringedal, C., Rohde, C., & Helmig, R. (2025). A phase-field approach to model evaporation from porous media: Modeling and upscaling. Advances in Water Resources, 199, 104922. https://doi.org/10.1016/j.advwatres.2025.104922
    5. Vahabzadeh, E., Buntic, I., Nazari, F., Flemisch, B., Helmig, R., & Niasar, V. (2025). Applicability of the Vertical Equilibrium model to underground hydrogen injection and withdrawal. International Journal of Hydrogen Energy, 106, 790–805. https://doi.org/10.1016/j.ijhydene.2025.01.201
    6. Aricò, C., Helmig, R., & Yotov, I. (2025). Mixed finite element projection methods for the unsteady Stokes equations. Computer Methods in Applied Mechanics and Engineering, 435, 117616. https://doi.org/10.1016/j.cma.2024.117616
    7. Keim, L., & Class, H. (2025). Rayleigh Invariance Allows the Estimation of Effective CO2 Fluxes Due To Convective Dissolution Into Water-Filled Fractures. Water Resources Research, 61, Article 2. https://doi.org/10.1029/2024WR037778
    8. Becker, S., Dang, T. T., Wei, R., & Kappler, A. (2025). Evaluation of Thiobacillus denitrificans’ sustainability in nitrate-reducing Fe(II) oxidation and the potential significance of Fe(II) as a growth-supporting reductant. FEMS Microbiol. Ecol., 101, Article 4. https://doi.org/10.1093/femsec/fiaf024
    9. Dufner, L., Hofmann, P., Dobslaw, D., & Kern, F. (2025). Degradation of bacteria for water purification in a TiO2-coated photocatalytic reactor illuminated by solar light. Applied Water Science, 15, 101. https://doi.org/10.1007/s13201-025-02453-x
    10. Krach, D., Weinhardt, F., Wang, M., Schneider, M., Class, H., & Steeb, H. (2025). A novel geometry-informed drag term formulation for pseudo-3D Stokes simulations with varying apertures. Advances in Water Resources, 195, 104860. https://doi.org/10.1016/j.advwatres.2024.104860
    11. Hu, L., Imorou, A. L., Chen, Z., & Xiao, H. (2025). Enhanced pressurized electro-osmotic dewatering technology for slurry. Separation and Purification Technology, 366, 132768. https://doi.org/10.1016/j.seppur.2025.132768
    12. Buntic, I., Schneider, M., Flemisch, B., & Helmig, R. (2025). A fully-implicit solving approach to an adaptive multi-scale model - coupling a vertical-equilibrium and full-dimensional model for compressible, multi-phase flow in porous media. Computational Geosciences, 29, Article 2. https://doi.org/10.1007/s10596-025-10351-z
  3. 2024 (submitted)

    1. Kohlhaas, R., Hommel, J., Weinhardt, F., Class, H., Oladyshkin, S., & Flemisch, B. (n.d.). Numerical Investigation of Preferential Flow Paths in Enzymatically Induced Calcite Precipitation Supported by Bayesian Model Analysis. Transport in Porous Media.
  4. 2024

    1. Keim, L., & Class, H. (2024). Replication Code for: Rayleigh invariance allows the estimation of effective CO2 fluxes due to convective dissolution into water-filled fractures [DaRUS]. https://doi.org/10.18419/darus-4089
    2. Coltman, E., Schneider, M., & Helmig, R. (2024). Data-Driven Closure Parametrizations with Metrics: Dispersive Transport. https://arxiv.org/abs/2311.13975
    3. Aricò, C., Helmig, R., Puleo, D., & Schneider, M. (2024). A new numerical mesoscopic scale one-domain approach solver for free fluid/porous medium interaction. Computer Methods in Applied Mechanics and Engineering, 419, 116655. https://doi.org/10.1016/j.cma.2023.116655
    4. Boon, M., Buntic, I., Ahmed, K., Dopffel, N., Peters, C., & Hajibeygi, H. (2024). Microbial induced wettability alteration with implications for Underground Hydrogen Storage. Scientific Reports, 14, Article 1. https://doi.org/10.1038/s41598-024-58951-6
    5. Buntic, I., Schneider, M., Flemisch, B., & Helmig, R. (2024). A fully-implicit solving approach to an adaptive multi-scale model -- coupling a vertical-equilibrium and full-dimensional model for compressible, multi-phase flow in porous media. https://arxiv.org/abs/2405.18285
    6. Xu, T., Xiao, S., Reuschen, S., Wildt, N., Franssen, H.-J. H., & Nowak, W. (2024). Towards a community-wide effort for benchmarking in subsurface hydrological inversion: benchmarking cases, high-fidelity reference solutions, procedure and a first comparison. Hydrology and Earth System Sciences, 28, Article 24. https://doi.org/10.5194/hess-28-5375-2024
    7. Keim, L., & Class, H. (2024). Replication Data for: Rayleigh invariance allows the estimation of effective CO2 fluxes due to convective dissolution into water-filled fractures [DaRUS]. https://doi.org/10.18419/darus-4143
    8. Li, S., Wiener, A., Kleinknecht, S. M., & Klaas, N. (2024). Method validation of an inductive measurement system (IMS) for nanoscale zero-valent iron (nZVI) particles determination in sand-packed columns. Microchemical Journal, 200, 110360. https://doi.org/10.1016/j.microc.2024.110360
    9. Shokri, J., Schollenberger, T., An, S., Flemisch, B., Babaei, M., & Niasar, V. (2024). Upscaling the reaction rates in porous media from pore- to Darcy-scale. Chemical Engineering Journal, 493, 152000. https://doi.org/10.1016/j.cej.2024.152000
    10. Veyskarami, M., Bringedal, C., & Helmig, R. (2024). Modeling and Analysis of Droplet Evaporation at the Interface of a Coupled Free-Flow--Porous Medium System. Transport in Porous Media. https://doi.org/10.1007/s11242-024-02123-7
    11. Weiss, F. J., Kim, J.-Y., Kurtis, K. E., VanderLaan, D., Tenorio, C. N., & Jacobs, L. J. (2024). Experimental study on the nonlinear mixing of ultrasonic waves in concrete using an array technique. NDT & E International, 143, 103054. https://doi.org/10.1016/j.ndteint.2024.103054
    12. Sereni, L., Junginger, T., Payraudeau, S., & Imfeld, G. (2024). Emissions and transport of urban biocides from facades to topsoil at the district-scale. Science of the Total Environment, 954. https://doi.org/10.1016/j.scitotenv.2024.176269
    13. Schneider, J., Kiemle, S., Heck, K., Rothfuss, Y., Braud, I., Helmig, R., & Vanderborght, J. (2024). Analysis of experimental and simulation data of evaporation-driven isotopic fractionation in unsaturated porous media. Vadose Zone Journal, 23, Article 5. https://doi.org/10.1002/vzj2.20363
    14. Schneider, M., & Koch, T. (2024). Stable and locally mass- and momentum-conservative control-volume finite-element schemes for the Stokes problem. Computer Methods in Applied Mechanics and Engineering, 420, 116723. https://doi.org/10.1016/j.cma.2023.116723
    15. Chen, Z., Tian, Y., & Hu, L. (2024). Experimental investigation on heat and moisture transfer of propylene glycol-mixed steam in porous media. Journal of Contaminant Hydrology, 104468. https://doi.org/10.1016/j.jconhyd.2024.104468
    16. Palomeque Alvarez, E. (2024). Experimental investigation of oxygen limitation of aerobic TCE-degrading bacteria in combination with direct current in porous media [Masterthesis].
    17. Tardio Ascarrunz, L. (2024). Power Output Optimization of a Field-Scaled Microbial Fuel Cell in Porous Media [Masterthesis].
    18. Krach, D., Weinhardt, F., Wang, M., Schneider, M., Class, H., & Steeb, H. (2024). Results for pseudo-3D Stokes simulations with a geometry-informed drag term formulation for porous media with varying apertures [DaRUS]. https://doi.org/10.18419/DARUS-4347
    19. Schollenberger, T., von Wolff, L., Bringedal, C., Pop, I. S., Rohde, C., & Helmig, R. (2024). Investigation of Different Throat Concepts for Precipitation Processes in Saturated Pore-Network Models. Transport in Porous Media, 151, Article 14. https://doi.org/10.1007/s11242-024-02125-5
    20. Boon, W. M., Gläser, D., Helmig, R., Weishaupt, K., & Yotov, I. (2024). A mortar method for the coupled Stokes-Darcy problem using the MAC scheme for Stokes and mixed finite elements for Darcy. Computational Geosciences, 28, Article 3. https://doi.org/10.1007/s10596-023-10267-6
    21. Ez-Zahra Cherqaoui, F. (2024). Investigating the effect of temperature on TDR measurements in different sands for a temperature range from 20°C to 90°C [Masterthesis].
  5. 2023

    1. Bozkurt, K., Akyalçın, L., & Kjelstrup, S. (2023). The thermal diffusion coefficient of membrane-electrode assemblies relevant to polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 48, Article 4. https://doi.org/10.1016/j.ijhydene.2022.09.302
    2. Class, H., Keim, L., Schirmer, L., Strauch, B., Wendel, K., & Zimmer, M. (2023). Seasonal Dynamics of Gaseous CO2 Concentrations in a Karst Cave Correspond with Aqueous Concentrations in a Stagnant Water Column. Geosciences, 13, 51. https://doi.org/10.3390/geosciences13020051
    3. Tatomir, A., Gao, H., Abdullah, H., Pötzl, C., Karadimitriou, N., Steeb, H., Licha, T., Class, H., Helmig, R., & Sauter, M. (2023). Estimation of Capillary-Associated NAPL-Water Interfacial Areas for Unconsolidated Porous Media by Kinetic Interface Sensitive (KIS) Tracer Method. Water Resources Research, 59, Article 12. https://doi.org/10.1029/2023WR035387
    4. Veyskarami, M., Michalkowski, C., Bringedal, C., & Helmig, R. (2023). Droplet Formation, Growth and Detachment at the Interface of a Coupled Free-FLow--Porous Medium System: A New Model Development and Comparison. Transport in Porous Media, 149, 389–419. https://doi.org/10.1007/s11242-023-01944-2
    5. Wu, H., Veyskarami, M., Schneider, M., & Helmig, R. (2023). A New Fully Implicit Two-Phase Pore-Network Model by Utilizing Regularization Strategies. Transport in Porous Media. https://doi.org/10.1007/s11242-023-02031-2
    6. Lee, D., Weinhardt, F., Hommel, J., Piotrowski, J., Class, H., & Steeb, H. (2023). Machine learning assists in increasing the time resolution of X-ray computed tomography applied to mineral precipitation in porous media. Scientific Reports, 13, 10529. https://doi.org/10.1038/s41598-023-37523-0
    7. Mohammadi, F., Eggenweiler, E., Flemisch, B., Oladyshkin, S., Rybak, I., Schneider, M., & Weishaupt, K. (2023). A surrogate-assisted uncertainty-aware Bayesian validation framework and its application to coupling free flow and porous-medium flow. Computational Geosciences, 27, Article 4. https://doi.org/10.1007/s10596-023-10228-z
    8. Kiemle, S., Heck, K., Coltman, E., & Helmig, R. (2023). Stable Water Isotopologue Fractionation During Soil-Water Evaporation: Analysis Using a Coupled Soil-Atmosphere Model. Water Resources Research, 59, Article 2. https://doi.org/10.1029/2022WR032385
    9. Junginger, T., Payraudeau, S., & Imfeld, G. (2023). Emissions of the Urban Biocide Terbutryn from Facades: The Contribution of Transformation Products. Environmental Science & Technology. https://pubs.acs.org/doi/10.1021/acs.est.2c08192
    10. Herzog, B., Kleinknecht, S., Haslauer, C., & Klaas, N. (2023). Experimental upscaling analyses for a surfactant-enhanced in-situ chemical oxidation (S-ISCO) remediation design. Journal of Contaminant Hydrology, Volume 258. https://doi.org/10.1016/j.jconhyd.2023.104230
    11. Bierbaum, T., Hansen, S. K., Poudel, B., & Haslauer, C. (2023). Investigating rate-limited sorption, sorption to air--water interfaces, and colloid-facilitated transport during PFAS leaching. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-023-30811-2
    12. Gläser, D., Koch, T., & Flemisch, B. (2023). GridFormat: header-only C++-library for grid file I/O. Journal of Open Source Software, 8, Article 90. https://doi.org/10.21105/joss.05778
    13. Ackermann, S., Fest-Santini, S., Veyskarami, M., Helmig, R., & Santini, M. (2023). Experimental validation of a coupling concept for drop formation and growth onto porous materials by high-resolution X-ray imaging technique. International Journal of Multiphase Flow, 160. https://doi.org/10.1016/j.ijmultiphaseflow.2022.104371
    14. Bierbaum, T., Klaas, N., Braun, J., Nürenberg, G., Lange, F. T., & Haslauer, C. (2023). Immobilization of per- and polyfluoroalkyl substances (PFAS): Comparison of leaching behavior by three different leaching tests. Science of the Total Environment, 876, Article 162588. https://doi.org/10.1016/j.scitotenv.2023.162588
    15. Schneider, M., Gläser, D., Weishaupt, K., Coltman, E., Flemisch, B., & Helmig, R. (2023). Coupling staggered-grid and vertex-centered finite-volume methods for coupled porous-medium free-flow problems. Journal of Computational Physics, 482, 112042. https://doi.org/10.1016/j.jcp.2023.112042

Konferenzveröffentlichungen (letzte 50)

  1. 2025

    1. Morales Oreamuno, M. F., Menzel, N., Oladyshkin, S., Wagner, F. M., & Nowak, W. (2025). Surrogate-assisted Bayesian inference with ERT data for contaminant transport modelling in the subsurface. Geophys. Res. Abstr., 26, EGU25-12561.
    2. Pawusch, L., Scheurer, S., Nowak, W., & Maxwell, R. (2025). Development of a Combined Machine Learning and Physics-based Approach to Reduce Hydrologic Model Spin-up Time. Geophys. Res. Abstr., 26, EGU2025-10229. https://doi.org/10.5194/egusphere-egu25-10229
    3. Wei, R., Le, A. V., Liu, B., Azari, M., Nowak, W., Kappler, A., & Oladyshkin, S. (2025). Modeling the Ammonium Removal Processes in Household Sand Filters. Geophys. Res. Abstr., 26, EGU25-205.
    4. Haslauer, C., Kroeker, I., Nißler, E., Oladyshkin, S., Nowak, W., Class, H., & Osmancevic, E. (2025). Large Temperatures in Water Distribution Pipes as a Water Quality Threat: Measurements and Modelling. Geophys. Res. Abstr., EGU25-13131. https://doi.org/10.5194/egusphere-egu25-13131
  2. 2024

    1. Keim, L., & Class, H. (2024). Replication Code for: Rayleigh invariance allows the estimation of effective CO2 fluxes due to convective dissolution into water-filled fractures [DaRUS]. https://doi.org/10.18419/darus-4089
    2. Keim, L., & Class, H. (2024). Replication Data for: Rayleigh invariance allows the estimation of effective CO2 fluxes due to convective dissolution into water-filled fractures [DaRUS]. https://doi.org/10.18419/darus-4143
    3. Wildt, N., & Oladyshkin, S. (2024, September). Learning Kinetic Sorption Mechanisms Using Ordinary Differential Arbitrary Polynomial Chaos Expansion.
    4. Krach, D., Weinhardt, F., Wang, M., Schneider, M., Class, H., & Steeb, H. (2024). Results for pseudo-3D Stokes simulations with a geometry-informed drag term formulation for porous media with varying apertures [DaRUS]. https://doi.org/10.18419/DARUS-4347
  3. 2023

    1. Weinhardt, F., Krach, D., Hommel, J., Class, H., & Steeb, H. (2023). Microfluidic and numerical investigation of anisotropic permeability alteration during biomineralization in porous media. In Interpore 2023: 15th Annual International Conference on Porous Media, May 22 - 25, 2023, Edinburgh, Scotland. https://interpore.org/
    2. Lee, D., Weinhardt, F., Hommel, J., Class, H., & Steeb, H. (2023). Time resolved micro-XRCT dataset of Enzymatically Induced Calcite Precipitation (EICP) in sintered glass bead columns [DaRUS]. https://doi.org/10.18419/darus-2227
    3. Keim, L., Class, H., Schirmer, L., Wendel, K., Strauch, B., & Zimmer, M. (2023). Data for: Measurement Campaign of Gaseous CO2 Concentrations in a Karst Cave with Aqueous Concentrations in a Stagnant Water Column 2021-2022. [DaRUS]. https://doi.org/10.18419/darus-3271
    4. Keim, L., Class, H., Schirmer, L., Strauch, B., Wendel, K., & Zimmer, M. (2023). Code for: Seasonal Dynamics of Gaseous CO2 Concentrations in a Karst Cave Correspond With Aqueous Concentrations in a Stagnant Water Column [DaRUS]. https://doi.org/10.18419/darus-3276
  4. 2022

    1. Ruf, M., Hommel, J., & Steeb, H. (2022). Enzymatically induced carbonate precipitation and its effect on capillary pressure-saturation relations of porous media - micro-XRCT dataset of medium column (sample 3) [DaRUS]. https://doi.org/10.18419/darus-2906
    2. Hommel, J., & Gehring, L. (2022). Enzymatically induced carbonate precipitation and its effect on capillary pressure-saturation relations of porous media - column samples [DaRUS]. https://doi.org/10.18419/darus-1713
    3. Trötschler, O. (2022, November). Verfahrensauswahl, Anwendung und Monitoring einer Schadensherdsanierung mit ISCO in einem flachen Geringwasserleiter -Vortrag.
    4. Weinhardt, F., Deng, J., Steeb, H., & Class, H. (2022). Optical Microscopy and log data of Enzymatically Induced Calcite Precipitation (EICP) in microfluidic cells (Quasi-2D-structure) [DaRUS]. https://doi.org/10.18419/darus-1799
    5. Bozkurt, K., & Akyalçın, L. (2022, January). Measurements of Thermo-osmotic Water Fluxes Through Membrane Electrode Assemblies of a Polymer Electrolyte Membrane Fuel Cell. 6th International Hydrogen Technologies Congress (IHTEC-2022), January 23-26, 2022, Canakkale, Turkey.
    6. Ruf, M., Hommel, J., & Steeb, H. (2022). Enzymatically induced carbonate precipitation and its effect on capillary pressure-saturation relations of porous media - micro-XRCT dataset of high column (sample 4) [DaRUS]. https://doi.org/10.18419/darus-2907
    7. Ackermann, S. (2022). Modeling evaporation from leaves. In InterPore, 14th International Conference on Porous Media, 30 May - 02 June 2022. https://events.interpore.org/event/40/contributions/4884/
    8. Ghosh, T., & Bringedal, C. (2022). A phase-field approach to model evaporation in porous media: Upscaling from pore to Darcy scale. In 14th Annual Meeting of the International Society for Porous Media (InterPore 2022), Abu Dhabi, United Arab Emirates & Online, May 30 - June 2, 2022. https://events.interpore.org/event/40/contributions/4527/
    9. Herzog, B. (2022, September). „Surfactant-Supported In-Situ Oxidation for the Remediation of DNAPL-Groundwater Contaminations” (presentation).
    10. Herzog, B. (2022, November). Untersuchungen zur tensidunterstützten ISCO-Sanierung von DNAPL anhand von 2D-Modellen - Vortrag.
    11. Weinhardt, F., Deng, J., Hommel, J., Vahid Dastjerdi, S., Gerlach, R., Steeb, H., & Class, H. (2022). Pore-scale mechanisms affecting permeability in biomineralization - Microfluidic investigations. In CMWR 2022: XXIV International Conference: Computational Methods in Water Resources, June 19-23, 2022, Gdańsk, Poland. https://cmwrconference.org/
    12. Gehring, L., Weinhardt, F., & Hommel, J. (2022). Investigating enzymatically induced carbonate precipitation and its effects on capillary pressure-saturation relations. In CMWR 2022: XXIV International Conference: Computational Methods in Water Resources, 9-23 June 2022, Gdańsk, Poland. https://cmwrconference.org/
    13. Hommel, J., & Weinhardt, F. (2022). Enzymatically induced carbonate precipitation and its effect on capillary pressure-saturation relations of porous media - microfluidics samples [DaRUS]. https://doi.org/10.18419/darus-2791
    14. Ruf, M., Hommel, J., & Steeb, H. (2022). Enzymatically induced carbonate precipitation and its effect on capillary pressure-saturation relations of porous media - micro-XRCT dataset of low column (sample 10) [DaRUS]. https://doi.org/10.18419/darus-2908
    15. Schollenberger, T., Bringedal, C., Kiemle, S., Pieters, G. J. M., van Duijn, C. J., & Helmig, R. (2022). Phases of physical processes in the development of evaporation-driven density instabilities. In CMWR 2022: XXIV International Conference: Computational Methods in Water Resources, June 19-23, 2022, Gdańsk, Poland. https://cmwrconference.org/
    16. Ghosh, T., & Bringedal, C. (2022). Upscaling of a Phase-field Model for Evaporation in Porous Media. In CMWR 2022: XXIV International Conference: Computational Methods in Water Resources, June 19 - 23, 2022, Gdańsk, Poland. https://cmwrconference.org/
  5. 2021

    1. Bringedal, C. (2021, February). Data and code for Upscaled equations for two-phase flow in highly heterogeneous porous media: Varying permeability and porosity [DaRUS]. https://doi.org/10.18419/darus-1376
    2. Gessner, J., Strobehn, B., Wolf, M., Trötschler, O., & Schrenk, V. (2021, June). In-situ Altlastensanierung im dicht bebauten innerörtlichen Bereich – Erkenntnisse und Empfehlungen (Oberursel) (Vortrag).
    3. Lipp, M., Schneider, M., Weishaupt, K., & Helmig, R. (2021). Coupling free flow and porous-medium flow: Comparison of non-refined, globally-refined and locally-refined axiparallel free-flow grids. In InterPore, 13th International Conference on Porous Media, 31.05.-04.06.2021. https://www.iws.uni-stuttgart.de/lh2/publications/poster/2021/Lipp-Interpore-2021.pdf
    4. Weinhardt, F., Class, H., Vahid Dastjerdi, S., Karadimitriou, N., Lee, D., & Steeb, H. (2021). Optical Microscopy and pressure measurements of Enzymatically Induced Calcite Precipitation (EICP) in a microfluidic cell [DaRUS]. https://doi.org/10.18419/darus-818
    5. Hommel, J., Akyel, A., Phillips, A. J., Gerlach, R., Cunningham, A. B., & Class, H. (2021). Enzymatically induced calcite precipitation: model development and experiments. In Interpore German Chapter 01.02.2021-02.02.2021, Stuttgart/online. https://www.iws.uni-stuttgart.de/lh2/publications/presentations/2021/Hommel-InterporeGermanChapter-2021.pdf
    6. Ghosh, T., Gujjala, Y. K., Deb, D., & Raja Sekhar, G. P. (2021). Novel Reservoir Quality Index and Its Impact on the Recovery Rate. In SIAM Conference on Mathematical & Computational Issues in the Geosciences (GS21), June 21 - 24, 2021, Virtual Conference. https://www.siam.org/conferences/cm/conference/gs21
    7. Ackermann, S., & Helmig, R. (2021). A multi-scale approach for drop/porous-medium interaction. In SIAM Conference on Mathematical & Computational Issues in the Geosciences, June 21 - 24, 2021. https://meetings.siam.org/sess/dsp_programsess.cfm?SESSIONCODE=70702
    8. Lipp, M., Schneider, M., & Helmig, R. (2021). Coupling free flow and porous-medium flow: Comparison of non-refined, globally-refined and locally-refined axiparallel free-flow grids. In SIAM, Conference on Mathematical & Computational Issues in the Geosciences, 21.-24.06.2021. https://www.iws.uni-stuttgart.de/lh2/publications/presentations/2021/Lipp-SIAM-2021.pdf
    9. Vahid Dastjerdi, S., Steeb, H., Ruf, M., Lee, D., Weinhardt, F., Karadimitriou, N., & Class, H. (2021). micro-XRCT dataset of Enzymatically Induced Calcite Precipitation (EICP) in a microfluidic cell [DaRUS]. https://doi.org/10.18419/darus-866
    10. Schulz, S., Bringedal, C., & Ackermann, S. (2021). Code for relative permeabilities for two-phase flow between parallel plates with slip conditions [DaRUS]. https://doi.org/10.18419/darus-2241
    11. Weinhardt, F., von Wolff, L., Hommel, J., Rohde, C., & Class, H. (2021). Investigation of crystal growth in Enzymatically Induced Calcite Precipitation by microfluidic experiments and mathematical modelling. In CrysPoM VII : 7th International Workshop on Crystallization in Porous Media, 07.09.21 - 09.06.21 Pau/online. https://cryspom7.sciencesconf.org/
    12. Weinhardt, F., Deng, J., Karadimitriou, N., Hommel, J., Gerlach, R., Class, H., & Steeb, H. (2021). The evolution of preferential flow paths during Enzymatically Induced Calcite Precipitation and its effect on the permeability. In Interpore 13th Annual Meeting (31.05.2021-04.06.2021), online.
    13. Herzog, B. (2021, June). „The EU Life „Surfing“ Project: Research on Surfactant-Supported In-Situ Oxidation for the Remediation of DNAPL-Groundwater contaminations“ (presentation).
    14. Hommel, J., Weinhardt, F., Steeb, H., & Class, H. (2021). Investigating the Effect of Enzymatically Induced Carbonate Precipitation on Hydraulic Properties. In InterPore, 13th International Conference on Porous Media, 31.05.-04.06.2021. https://events.interpore.org/event/25/
    15. Scholz, L., & Bringedal, C. (2021). Code for effective heat conductivity in thin porous media [DaRUS]. https://doi.org/10.18419/darus-2026
    16. Weinhardt, F., Class, H., Vahid Dastjerdi, S., Gerlach, R., Karadimitriou, N., & Steeb, H. (2021). Experimental Methods and Imaging for Enzymatically Induced Calcite Precipitation in micro-fluidic devices. In Interpore German Chapter 01.02.2021-02.02.2021, Stuttgart/online.
    17. Schollenberger, T., Meisenheimer, D., Wildenschild, D., & Helmig, R. (2021). Salt precipitation processes in porous media - investigations on the pore scale. In CrysPoM VII : 7th International Workshop on Crystallization in Porous Media, 07.06.21 - 09.06.21 Pau/online. https://cryspom7.sciencesconf.org/
    18. Lipp, M., Helmig, R., & Weishaupt, K. (2021). Coupling free flow and porous-medium flow: Comparison of non-refined, globally-refined and locally-refined axiparallel free-flow grids. In WCCM, joint 14th World Congress in Computational Mechanics and ECCOMAS Congress, 11.-15.01.2021. https://www.iws.uni-stuttgart.de/lh2/publications/presentations/2021/Lipp-WCCM-2021.pdf
  6. 2020

    1. Ghosh, T., Bringedal, C., Helmig, R., & Raja Sekhar, G. P. (2020). Upscaled equations for two-phase flow in highly heterogeneous porous media. In in 12th Annual Meeting of the International Society for Porous Media (InterPore 2020), Online, August 31 - September 4, 2020, Qingdao/online.
    2. Hommel, J., Akyel, A., Phillips, A. J., Gerlach, R., Cunningham, A. B., Helmig, R., & Class, H. (2020). A Numerical Model for Enzymatically Induced Calcite Precipitation. In Interpore 12th Annual Meeting and Jubilee 2020, 30.08.2020 - 04.09.2020, Qingdao/online.
    3. Becker, B., Guo, B., Bandilla, K., Celia, M., Flemisch, B., & Helmig, R. (2020). Development of multiphysics models accounting for reversible flow at various subsurface energy storage sites. In Interpore 2020, 31.08.2020 - 04.09.2020, online. https://www.iws.uni-stuttgart.de/lh2/publications/presentations/2020/Interpore2020_B_Becker.pdf
    4. Lipp, M., Schneider, M., & Helmig, R. (2020). A locally refined quadtree finite-volume staggered-grid scheme. In SFB 1313 Seminar, Gültstein. https://www.iws.uni-stuttgart.de/publikationen/hydrosys/paper/2020/lipp-A_locally_refined_quadtree_finite-volume_staggered-grid_scheme.pdf

Technische und wissenschaftliche Berichte (letzte 50)

  1. Keim, L., & Class, H. (2024). Replication Code for: Rayleigh invariance allows the estimation of effective CO2 fluxes due to convective dissolution into water-filled fractures [DaRUS]. https://doi.org/10.18419/darus-4089
  2. Keim, L., & Class, H. (2024). Replication Data for: Rayleigh invariance allows the estimation of effective CO2 fluxes due to convective dissolution into water-filled fractures [DaRUS]. https://doi.org/10.18419/darus-4143
  3. Krach, D., Weinhardt, F., Wang, M., Schneider, M., Class, H., & Steeb, H. (2024). Results for pseudo-3D Stokes simulations with a geometry-informed drag term formulation for porous media with varying apertures [DaRUS]. https://doi.org/10.18419/DARUS-4347
  4. Lee, D., Weinhardt, F., Hommel, J., Class, H., & Steeb, H. (2023). Time resolved micro-XRCT dataset of Enzymatically Induced Calcite Precipitation (EICP) in sintered glass bead columns [DaRUS]. https://doi.org/10.18419/darus-2227
  5. Keim, L., Class, H., Schirmer, L., Wendel, K., Strauch, B., & Zimmer, M. (2023). Data for: Measurement Campaign of Gaseous CO2 Concentrations in a Karst Cave with Aqueous Concentrations in a Stagnant Water Column 2021-2022. [DaRUS]. https://doi.org/10.18419/darus-3271
  6. Keim, L., Class, H., Schirmer, L., Strauch, B., Wendel, K., & Zimmer, M. (2023). Code for: Seasonal Dynamics of Gaseous CO2 Concentrations in a Karst Cave Correspond With Aqueous Concentrations in a Stagnant Water Column [DaRUS]. https://doi.org/10.18419/darus-3276
  7. Ruf, M., Hommel, J., & Steeb, H. (2022). Enzymatically induced carbonate precipitation and its effect on capillary pressure-saturation relations of porous media - micro-XRCT dataset of medium column (sample 3) [DaRUS]. https://doi.org/10.18419/darus-2906
  8. Hommel, J., & Gehring, L. (2022). Enzymatically induced carbonate precipitation and its effect on capillary pressure-saturation relations of porous media - column samples [DaRUS]. https://doi.org/10.18419/darus-1713
  9. Weinhardt, F., Deng, J., Steeb, H., & Class, H. (2022). Optical Microscopy and log data of Enzymatically Induced Calcite Precipitation (EICP) in microfluidic cells (Quasi-2D-structure) [DaRUS]. https://doi.org/10.18419/darus-1799
  10. Ruf, M., Hommel, J., & Steeb, H. (2022). Enzymatically induced carbonate precipitation and its effect on capillary pressure-saturation relations of porous media - micro-XRCT dataset of high column (sample 4) [DaRUS]. https://doi.org/10.18419/darus-2907
  11. Ghosh, T., & Bringedal, C. (2022). A phase-field approach to model evaporation in porous media: Upscaling from pore to Darcy scale. In 14th Annual Meeting of the International Society for Porous Media (InterPore 2022), Abu Dhabi, United Arab Emirates & Online, May 30 - June 2, 2022. https://events.interpore.org/event/40/contributions/4527/
  12. Hommel, J., & Weinhardt, F. (2022). Enzymatically induced carbonate precipitation and its effect on capillary pressure-saturation relations of porous media - microfluidics samples [DaRUS]. https://doi.org/10.18419/darus-2791
  13. Ruf, M., Hommel, J., & Steeb, H. (2022). Enzymatically induced carbonate precipitation and its effect on capillary pressure-saturation relations of porous media - micro-XRCT dataset of low column (sample 10) [DaRUS]. https://doi.org/10.18419/darus-2908
  14. Braun, J., Bierbaum, T., Haslauer, C., Klaas, N., & Nissler, E. (2022). Forschungsvorhaben „Nachweis PFAS-Immo“ Entwicklung einer Vorgehensweise zum Nachweis der PFAS-Immobilisierung für konkrete, vorgegebene Immobilisierungsansätze - Schlussbericht [Wissenschaftlicher Bericht]. Institut für Wasser-und Umweltsystemmodellierung.
  15. Bringedal, C. (2021, February). Data and code for Upscaled equations for two-phase flow in highly heterogeneous porous media: Varying permeability and porosity [DaRUS]. https://doi.org/10.18419/darus-1376
  16. Weinhardt, F., Class, H., Vahid Dastjerdi, S., Karadimitriou, N., Lee, D., & Steeb, H. (2021). Optical Microscopy and pressure measurements of Enzymatically Induced Calcite Precipitation (EICP) in a microfluidic cell [DaRUS]. https://doi.org/10.18419/darus-818
  17. Haslauer, C., & Trötschler, O. (2021). ISCO Pforzheim - Kurzbericht Ausführung ISCO (Technischer Bericht No. TB2021/01; Vol. VEG92).
  18. Haslauer, C., & Trötschler, O. (2021). Ausführung CO2-Gastracertest zur Reichweitenermittlung - Reichweitentests BL (Technischer Bericht No. TB2021/02; Vol. VEG93).
  19. Vahid Dastjerdi, S., Steeb, H., Ruf, M., Lee, D., Weinhardt, F., Karadimitriou, N., & Class, H. (2021). micro-XRCT dataset of Enzymatically Induced Calcite Precipitation (EICP) in a microfluidic cell [DaRUS]. https://doi.org/10.18419/darus-866
  20. Schulz, S., Bringedal, C., & Ackermann, S. (2021). Code for relative permeabilities for two-phase flow between parallel plates with slip conditions [DaRUS]. https://doi.org/10.18419/darus-2241
  21. Scholz, L., & Bringedal, C. (2021). Code for effective heat conductivity in thin porous media [DaRUS]. https://doi.org/10.18419/darus-2026
  22. Braun, J., & Klaas, N. (2020). “Schnelltest-Prototypentwicklung zur vor-Ort Ermittlung des Oxidationsmittelverbrauchs des Untergrunds für eine effektivere in-situ Bodensanierung” (Technischer Bericht No. TB2020/04; Vol. VEG91).
  23. Trötschler, O., & Haslauer, C. (2020). Kurzbericht: Hydraulische Kontrollmaßnahmen - Technische Beratung Definition Sanierungsziel, Submission und Offerten zur Sanierung Schnepfenmatt (Technischer Bericht No. TB2020/01; Vol. VEG88).
  24. Trötschler, O., & Haslauer, C. (2020). Kurzbericht: Erweiterung Hydraulisches Modell Schnepfenmatt- Technische Beratung Definition Sanierungsziel, Submission und Offerten zur Sanierung Schnepfenmatt (Technischer Bericht No. TB2020/04; Vol. VEG90).
  25. Drüppel, K., Blum, P., Steger, H., Fleuchhaus, P., Tissen, C., Schweizer, D., Doherr, D., Schallwig, C., Koenigsdorff, R., Bachseitz, M., Ryba, M., Reduth, Y., Schmidt, T., Riegger, M., Janzen, F., Moormann, C., Buhmann, P., Braun, J., Giannelli, G., et al. (2020). GEO.cool: Kühlung mit oberflächennaher Geothermie - Möglichkeiten, Grenzen, Innovation (Abschlussbericht) [Wissenschaftlicher Bericht]. https://pd.lubw.de/10160
  26. Bierbaum, T., Haslauer, C., Klaas, N., & Braun, J. (2020). Zwischenbericht 2019 – Forschungsvorhaben „Nachweis PFAS-Immo“ (Wissenschaftlicher Bericht No. WB2020/02; Vol. VEG89).
  27. Koschitzky, H.-P., Trötschler, O., & Haslauer, C. (2019). Machbarkeitsstudie und Kostenschätzung Thermische In-situ-Sanierung LCKW-Schaden (Technischer Bericht No. TB2019/04; Vol. VEG85).
  28. Braun, J., & Klaas, N. (2019). CKW-Schaden Osnabrück Voruntersuchungen zur Sanierung mittels ISCO Abschlussbericht (Kurzbericht) (Technischer Bericht No. TB2019/03; Vol. VEG84).
  29. Görtz, J., Prasasti, E. B., Wieprecht, S., & Terheiden, K. (2019). Bestimmung der Porenradienverteilung und gesättigten hydraulischen Leitfähigkeit von Asphaltproben der Schluchseetalsperre.
  30. Höge, M. (2019). Bayesian Multi-Model Frameworks - Properly Addressing Conceptual Uncertainty in Applied Modelling [Promotionsschrift, Universität Tübingen, Mathematisch-Naturwissenschaftliche Fakultät]. https://publikationen.uni-tuebingen.de/xmlui/handle/10900/87769
  31. Chow, R. (2019). Modelling Surface Water-Groundwater Exchange: Evaluating Model Uncertainty from the Catchment to Bedform-Scale [Promotionsschrift, Universität Tübingen, Mathematisch-Naturwissenschaftliche Fakultät]. https://publikationen.uni-tuebingen.de/xmlui/handle/10900/89044
  32. Beckers, F., Biserov, R., & Wieprecht, S. (2019). Experimental Investigation of Sediment Stability at Reservoirs on the Rhône River (Bericht No. 09/2019). http://doi.org/10.5281/zenodo.3739802
  33. Braun, J., & Klaas, N. (2019). Abschlussbericht: NOD-Untersuchungen Sanierung Leinfelden mittels ISCO (Technischer Bericht No. TB2019/06; Vol. VEG86).
  34. Bierbaum, T. (2019). Comparative study of a fully-implicit and a sequential solution strategy for dynamic two-phase flow pore-network models [Mastersthesis].
  35. Braun, J., & Klaas, N. (2019). CKW-Schaden Leinfelden Voruntersuchungen zur Sanierung mittels ISCO (Kurzbericht) (Technischer Bericht No. TB2019/02; Vol. VEG83).
  36. Schütze, M., Seidel, J., Chamorro, A., & León, C. (2019). Integrated modelling of a megacity water system – The application of a transdisciplinary approach to the Lima metropolitan area. Journal of Hydrology, 573, 983–993. https://doi.org/10.1016/j.jhydrol.2018.03.045
  37. Trötschler, O., & Haslauer, C. (2019). Kurzbericht Maßnahmen DU CKW-Schaden, Kanton Solothurn (Technischer Bericht No. TB2019/07; Vol. VEG87).
  38. Koschitzky, H.-P., & Trötschler, O. (2018). Machbarkeitsbewertung mit Kostenschätzung Thermische In-situ-Sanierung LCKW-Schaden in Neumünster (Technischer Bericht No. 2018/1; Vol. VEG80).
  39. Koschitzky, H.-P., Trötschler, O., & Boscher, F. (2018). Machbarkeitsstudie und Kostenschätzung Thermische In-situ-Sanierung LCKW-Schaden Ehem. Chemische Reinigung Christl (Technischer Bericht No. 2018/04; Vol. VEG82).
  40. Klaas, N., & Braun, J. (2018). PAK-Schaden - Voruntersuchungen zur Sanierung mittels ISCO und Tensiden (Technischer Bericht No. 43132; Vol. VEG81).
  41. Noack, M., Haun, S., & Wieprecht, S. (2017). Abflussmessungen im Seli River für die WKA Bumbuna in Sierra Leone - Messkampagne Mai/Juni 2017 (Technischer Bericht No. 2017/09).
  42. Haun, S., Doucet, M. P., & Noack, M. (2017). Erweiterte hydraulisch-numerische Untersuchung unterstrom des Hochwasserrückhaltebeckens Klosterhof K2 (Technischer Bericht No. 2017/01).
  43. Grüninger, C., Fetzer, T., Flemisch, B., & Helmig, R. (2017). Coupling DuMuX and DUNE-PDELab to investigate evaporation at the interface between Darcy and Navier-Stokes flow. In Archive of Numerical Software (Nos. 2017–1). https://doi.org/10.18419/opus-9360
  44. Braun, J., & Trötschler, O. (2017). Abschätzung der maximalen mobilen Teerölphase am Standort ,,Robert Bosch GmbH, Block 1″ - Teeröl ,,Enamel” - Kurzbericht (Technischer Bericht No. 2017/13; Vol. VEG79).
  45. Giannelli, G., & Braun, J. (2017). Einfluss des Betriebs von Wärmepumpen auf potentielle Durchfrostung einer Erdwärmesonde (EWS-Frost) - Schlussbericht (Wissenschaftlicher Bericht No. WB02/2016; Vol. VEG71).
  46. Koschitzky, H.-P., & Trötschler, O. (2017). Machbarkeitsbewertung Thermische In-situ Sanierung ,,Halle 5.2″ (Technischer Bericht No. 2017/12; Vol. VEG78).
  47. Haun, S., & Noack, M. (2017). Messtechnische Erfassung der Schwebstoffkonzentrationen während der Entleerung des Gepatsch-Stausees mittels LISST-StreamSide (Technischer Bericht No. 2017/02).
  48. Braun, J., Kleinknecht, S., Koenigsdorff, R., Feuerstein, P., Van de Ven, A., Zorn, R., Riegger, M., Rolker, J., Blum, P., Steger, H., Stober, I., Gratwohl, P., Moormann, C., & Buhman, P. (2017). Nachhaltige Nutzung von Erdwärmesonden [Final Report]. https://www.iws.uni-stuttgart.de/publikationen/vegas/l7513013_19.pdf
  49. Doucet, M. P., Schmid, G., & Noack, M. (2017). Wasserbauliche Modellversuche zur Bestimmung der Abflusskennlinien des Hochwasserrückhaltebeckens HRB9 Waldhausen/Lorch (Technischer Bericht No. 2017/14).
  50. Schäfer Rodrigues, A., Schmid, G., Wieprecht, S., & Noack, M. (2017). Erosionsmessungen an Sedimentkernen aus dem Oberwasser der Wehranlagen Marckolsheim und Rhinau (Vol. 42795) [Technischer Bericht].
Zum Seitenanfang